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Module summary. This module introduces students to three outstandingly influ-
ential developments from 19th century mathematics:

• complex numbers;
• the rigorous notion of limit; and
• vectors in a three-dimensional space.

Complex numbers are the natural setting for much pure and applied math-
ematics, and vectors provide the natural language to describe mechanics, gravita-
tion and electromagnetism, while the rigorous notion of limit is fundamental to
calculus. Along the way, students will go beyond the straightforward calculation
and problem solving skills emphasized in A-level Mathematics, and learn to for-
mulate rigorous mathematical proofs.

Objectives. On completion of this module, students should be able to:
(1) perform algebraic calculations with complex numbers and solve simple equa-

tions for a complex variable;
(2) determine whether simple sequences and series converge;
(3) perform calculations with vectors, write down the equations of lines, planes

and spheres in vector language, and, conversely, describe the geometry of
the solution sets of simple vector equations;

(4) construct rigorous mathematical proofs of simple propositions, including
proofs by mathematical induction.
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CHAPTER 1

Numbers

God has created the Natural Numbers, but everything else is a
man’s work. (Leopold Kronecker)

In the first part of the course we will deal with numbers. You should be
familiar with natural numbers and integers, rational numbers and real numbers.
We will recall their properties and uses. The main topic in this part will be complex
numbers. We will discuss how to calculate with complex numbers and how to
represent them graphically. We will also discuss one of the most famous formulas
in mathematics: Euler’s Formula.

1. Natural numbers and integers

In mathematics, we use sets to collect objects, which often are united by com-
mon properties. The simplest examples are sets of numbers, which we consider in
this chapter.

Firstly, we denote the set of natural numbers by

N = {1, 2, 3, . . .}.

Note, that we do not include 0 in natural numbers, however this agreement is not
universal. We also use the notation

N0 = {0} ∪ N = {0, 1, 2, 3, . . .}.

(The symbol ‘∪’ denotes the union of the two sets; please have a look at basic
notations from set theory if you are not familiar with them.)

There are two arithmetic operations—addition and multiplication—which, for a
given pair of natural numbers, produce the result produce. The result is a natural
number again and we say that natural numbers form a set closed under the binary oper-
ation of addition and multiplication. Furthermore, these operation have the following
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2. PROOF BY INDUCTION CHAPTER 1. NUMBERS

properties:

n+m = m+ n, (commutativity of addition),(1)

(n+m) + k = n+ (m+ k), (associativity of addition),(2)

n ·m = m · n, (commutativity of multiplication),(3)

(n ·m) · k = n · (m · k), (associativity of multiplication),(4)

(n+m) · k = n · k+ n · k, (distributive law), ,(5)

for all n, m, k ∈ N.

2. Proof by induction

In mathematics we adopt rigour standards how we can decide whether things
are right or wrong. A small amount of simple statements (called axioms) are taken
to be true without any justification. For example, to define natural numbers rigor-
ously we need only five Peano’s axioms. One of them is:

The set of natural numbers is infinite.
For any statement, which is not an axiom, we need to use the mathematical process
to establish whether a statement is true, the process is called proof . We do not go
into the details and theory behind proofs (this happens in the field known as
mathematical logic); for us a proof of a statement means to turn this statement into
something that is obviously true, in a series of mathematically correct steps.

The method of proof by induction is a powerful and important way to prove
statements of the type “For all natural numbers, it is true that. . . ”.

2.1. First example. To prove a mathematical statement as above, mathematical
induction works as follows: We first check that the statement is true for a specific
number (this is called the basis of induction). Then, in the proof’s main part, we
assume that the statement is true for some number n (induction assumption) and
use this to show that it must be also true for the successor n+ 1 (induction step).

Therefore, this method works in the same way as a domino effect. If you are
presented with a long row of dominoes, you can be sure that whenever a domino
falls, its next neighbour will also fall (this corresponds to the induction proof).
To get the whole process going, however, you must make sure that one specific
(usually the first) domino falls (which corresponds to the basis of the induction).

Let us take a look at some examples to make things more specific.

Claim. For all numbers n ∈ N, we have

1 + 2 + . . . + (n− 1) + n =

n∑
k=1

k =
n(n+ 1)

2

(Note the use of the ‘sum symbol’
∑

to abbreviate the above sum.)

Proof. We use the proof by induction.
Step 1. Show that the statement is true for n = 1:
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CHAPTER 1. NUMBERS 2. PROOF BY INDUCTION

We have 1 = 1·2
2 , such that for n = 1 the assertion is true.

Step 2. Assume that the statement is true for some (unspecified) number n:
For an n ∈ N, we assume that

n∑
k=1

k =
n(n+ 1)

2
.

Step 3. Show that the statement is true for the successor n+ 1:
We want to show that

n+1∑
k=1

k =
(n+ 2)(n+ 1)

2
.

Proof of Step 3:

n+1∑
k=1

k =

 n∑
j=1

k

+ (n+ 1)

(use assumption in Step 2 =
n(n+ 1)

2
+ (n+ 1)

for the 1st term)

=
n(n+ 1)

2
+

2(n+ 1)
2

=
(n+ 2)(n+ 1)

2
and so the statement is also true for n+ 1.

We have thus proved by induction that the claim is true for all n ∈ N. □

Remark 2.1. The above formula can also be proved in a different way. For
this, consider the following.∑n

k=1 k = 1 + 2 + . . .+ (n− 1) + n

+
∑n

k=1 k = n + (n− 1) + . . .+ 2 + 1

2
∑n

k=1 k = (n+ 1) + (n+ 1) + . . .+ (n+ 1) + (n+ 1).

So, the columns on the right-hand side each add up to n + 1, and there are n of
these terms, which implies

2 ·
n∑

k=1

k = n(n+ 1).

This little trick proves the formula, too.
The story goes that the famous German mathematician Carl Friedrich Gauss

used this clever idea as a school boy to compute the sum of the first 100 natural
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2. PROOF BY INDUCTION CHAPTER 1. NUMBERS

numbers; much to the annoyance of his school-teacher, who wanted to use this
task to keep his children busy for a while.

In mathematics, there is usually more than one way to prove a statement. For
the example above, we see that adding up the numbers in 2 different ways provides
a very brief (and what mathematicians call ‘elegant’ proof). But of course, first of
all you need to have such a clever idea. The advantage of mathematical induction
is that it gives you a clear framework, in which to prove a statement.

Also, we have so far presented the simplest version of mathematical induction.
There are several extensions:

• In step 1, the induction basis can start at a different number (see the
second example below).

• In the induction step we can go from n to n+2 to prove statements about
even numbers, or go from n to n − 1 to prove statements about negative
integers.

2.2. Second example. Mathematical induction can be used in different situa-
tions. The second example concerns an inequality.

Lemma 2.2. For all natural numbers n > 4 we have n2 < 2n.

Before we prove the lemma, you might want to check why the statement is not
true for all natural numbers.

Proof. We use again proof by induction.
Step 1. As required by the statement, we start the induction proof by checking

it for n = 5:

We have 52 = 25 < 32 = 25.

Step 2. Assume that the Lemma is true for some n, i.e.

n2 < 2n.

Step 3. Prove the statement for n+ 1.

We want to prove that (n+ 1)2 < 2n+1.
We first transform the left-hand side

(n+ 1)2 = n2 + 2n+ 1
< 2n + 2n+ 1,

where we use the induction assumption for the n2-term.
Now, let us assume for the moment, that the following is

true:

(6) 2n+ 1 < 2n for all n > 4.
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We can use the Inequality (6) to complete the above proof,
as follows

2n + 2n+ 1 < 2n + 2n

= 2 · 2n

= 2n+1.

Going through the list of inequalities, we find that (n+1)2 <

2n+1.
Hence, assuming that (6) is true, we can prove the Lemma using mathematical

induction.

It remains, of course, to prove (6); i.e., we want to show that 2n + 1 < 2n for
all numbers n > 4. This can be done by induction again:

Step 1. For n = 5 we have 11 < 32, as required.

Step 2. Assume that 2n+ 1 < 2n for some number n.

Step 3. Show that 2(n+ 1) + 1 < 2n+1.
We have

2(n+ 1) + 1 = 2n+ 1 + 2
< 2n + 2
< 2n + 2n

= 2n+1,

where for the first inequality we have used the induction as-
sumption.

This proves that the Inequality (6) is correct. Putting it all together we have proved
Lemma 1 using mathematical induction. □

2.3. Example 3: Geometric sums. We will mainly use proofs by induction to
verify formulas for sums. A particular important example is given by the sum
of geometric progression, and so we want to prove this sum formula here. (We
already use the concept of a real number here, but will only discuss these numbers
briefly afterwards.)

Lemma 2.3. Let q ∈ R be a real number. Then
n∑

k=0

qk =

{
qn+1−1
q−1 q ̸= 1

n+ 1 q = 1
.

Proof. In the case q = 1 the proof is simple, since we simply add up ‘1’s for
n+ 1 times. So, we will concentrate on q ̸= 1, and present a proof by induction.

Step 1. If n = 0, then we find 1 = q−1
q−1 , and so the statement is correct.

9



2. PROOF BY INDUCTION CHAPTER 1. NUMBERS

Step 2. We assume that for some n

n∑
k=0

qk =
qn+1 − 1
q− 1

.

Step 3. We now want to show that

n+1∑
k=0

qk =
qn+2 − 1
q− 1

.

Proof of Step 3. We have

n+1∑
k=0

qk =

(
n∑

k=0

qk

)
+ qn+1

(using Step 2.) =
qn+1 − 1
q− 1

+ qn+1

=
1

q− 1
(
qn+1 − 1 + qn+2 − qn+1)

=
qn+2 − 1
q− 1

.

Therefore, we have proved the lemma, using mathematical induction. □

2.4. Example 4: Be careful! Sometimes we may be mislead by reasoning
which looks like a proof but is not. The following statement is obviously false:

For any n different points of the plane there is a straight line
passing them.

However we may construct the following “proof” of this statement by mathemat-
ical induction:

Step 1. If n = 1 the statement is obviously true: for every point there is a line
passing it, in fact an infinite number of such lines. The statement is also true for
n = 2: every two distinct points define the unique straight line.

Step 2. Now we assume that any n different points admit a line passing them.

Step 3. Take any n + 1 different points A1, A2,. . .An, An+1. By the previous step
there is a line, call it l1 passing points A1, A2,. . .An. For the same reason, there
is a line, call it l2 passing points A2,. . .An, An+1. Lines l1 and l2 both pass points
A2,. . .An, thus these two lines coincide and pass all points A1, A2,. . .An, An+1.
Our “proof” is complete.

Can you spot an error in the above arguments?
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3. Extending natural numbers: integers, rationals, reals

3.1. Integers. It is a common situation, that we need to find a quantity through
its relation to others. Typically, such a relation may be expressed as an equation,
e.g. x + 3 = 5 which has the only solution (root) x = 2. We quickly discover many
equations with natural numbers, which do not have any solution among natural
numbers, e.g. x+ 5 = 3.

A way out of this situation is to extend our notion of number. This will be a
common theme in this part of the course: If there are equations for which no solu-
tions exist in the set of numbers we have, we ‘simply’ extend the set of numbers,
so that we are able to write down a solution.

As the first step we introduce the set of integers as the set of all solutions to
equations x+ n = m with natural n and m. Integers will be denoted by

Z = N0 ∪ (−N)
= {0, 1,−1, 2,−2, 3,−3, . . .}
= {. . . ,−2,−1, 0, 1, 2, . . .}.

Now the equation x + 5 = 3 has the only integer solution x = −2. Also, addition
and multiplication are extended to integers: the set Z is closed under these two
operation and all properties (1)–(5) are preserved.

All of those sets are infinite. Since all natural numbers are integers, we can
write

N ⊂ N0 ⊂ Z,

Usually, we will use the letters j,k, l,m and n to denote integer variables.

3.2. Rational numbers. Consider further equation with integer coefficients:
x ·2 = −6, it has the unique integer root x = −3. However a similar equation x ·6 =
−2 does not have an integer solution. Thus we again looking for an appropriate
extension of numbers.

Rational numbers are defined as fractions r = p
q

, that is solutions of the equation
r · q = p. We denote the set of all rational numbers by

Q =

{
r =

p

q
, with p ∈ Z, q ∈ N

}
.

Note, that our agreement 0 ̸∈ N allows to avoid meaningless expressions like 1
0 .

Of course, if we write a rational number as a fraction, then this representation
is not unique, since for example

2 =
2
1
=

8
4

.

We usually assume that p and q have no common divisors.
As before addition and multiplication are extended to rationals (by arithmetic

of fractions) with preservation of properties (1)–(5). Also rationals are sufficient to
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3. INTEGERS, RATIONALS, REALS CHAPTER 1. NUMBERS

solve any linear equation ax + b = c with rational coefficients a, b and c, where
a ̸= 0.

3.3. Irrational numbers. We next move on to real numbers. They are ‘needed’
if we want to solve certain quadratic equations. The standard example is the
equation x2 = 2. We call the (positive) solution x =

√
2, and we claim that it is not

a rational number. Such numbers are called irrationals.
How can we actually prove that

√
2 is irrational? For this, we will use another,

very important mathematical technique - the proof by contradiction or indirect proof .
We will demonstrate this method using the before-mentioned example.

Lemma 3.1. The equation x2 = 2 does not have a rational solution.

Remark 3.2 (Proof by Contradiction). Suppose that S is a mathematical state-
ment that we want to prove. (For example S might be the statement “For all
integers n and m, if n×m is odd then n and m are both odd.”) In order to carry
out a proof by contradiction or indirect proof of S we start by assuming that S is false.
In other words we assume a statement S̄ which is equivalent to saying “S is false”.
The idea is then to deduce from the statement S̄ something that is obviously false
or a contradiction. If all the steps in this deduction are mathematically correct,
then our starting point S̄ must be false. This means that the statement “S is false”
is itself false. Therefore the statement S is true, which we wanted to prove.

Proof. So let us start with the proof of the lemma. We want to prove that
there is no rational solution for x2 = 2, and so we assume that there does exist such
a solution, say x = p/q. We also assume that p and q have no common divisors.

We then have, that

x2 =
p2

q2 = 2,

that is

(7) p2 = 2q2,

and so p2 is an even number. Therefore, p is even, too, because only the square of
an even number is an even number. Thus p = 2m for some integer m. So

(8) (2m)2 = 22m2 = 2q2

so that (dividing through by 2) we have

(9) 2m2 = q2 .

Thus q2 is even and so q is also even (by the same argument applied to p). In other
words both p and q are even, i.e. 2 is a common divisor of both p and q. However
we assumed that p and q had no common divisors.

We have thus arrived at a contradiction and can conclude that our starting
assumption must be wrong. And this means that the lemma is correct, i.e. it
means that

√
2 is not a rational number. □

12
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0 x

Figure 1. A real number x ∈ R corresponds to a point on the real line.

3.4. Real numbers and the real line. Real numbers are the set of rational and
irrational numbers. We denote this set by the symbol ‘R’. We will not define real
numbers precisely, but a good thing to keep in mind is that real numbers are the
natural environment to do calculus. Calculus is mainly based on the concept of
limits, and the set of real numbers can be defined as the set of numbers that are
limits of sequences of rational numbers. (We consider sequences and their limits
later in the course.)

An alternative definition of real numbers uses the decimal representation of
numbers. Every real number x can be written as

x = m.a1a2a3a4a5 . . . m ∈ Z, ai ∈ {0, 1, 2, . . . 9}.

For example
• 2/5 = 0.2,
• 4/3 = 1.3333 . . . = 1.3 where the overline denotes a repeating sequence,
• π = 3.141592653589793238462643 . . ..

It is known that if x is rational, then the sequence of the ai’s is either finite or
it starts to repeat itself at some point. Consequently, an irrational number has a
decimal representation with a non-repeating, infinite sequence of digits ai.

Similarly, we can illustrate the set of real numbers (or parts thereof) graph-
ically, as the real line. This is a common graphical representation, where every
number corresponds to a point on the line. Note that implicitly, the concept of the
real line is used whenever you plot graphs of functions, etc.

4. Complex numbers

We now come to the main topic of this first part—complex numbers. Again,
we can motivate the ‘need’ for complex numbers by considering equations without
real solutions. It is not hard to find examples of such equations. Consider, for
instance,

(10) x2 + 2x+ 5 = 0.

Using the standard formula for quadratic equation, the solutions would be

x1,2 = −1 ±
√
−4 = −1 ± 2

√
−1,

and since there are no (real) square-roots of negative numbers, no real solutions
exist. In a formal way, however, we can write down a solution as above or by
defining the square-root of a negative number in a meaningful way. This idea
leads to the introduction of complex numbers.
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4. COMPLEX NUMBERS CHAPTER 1. NUMBERS

4.1. Definition of complex numbers.

Definition 4.1. A complex number z is a number

z = x+ yi, x,y,∈ R
where i denotes the imaginary unit defined as a solution of the equation i2 = −1.

We call x the real part of z and y the imaginary part of z. The corresponding
notations are Re(z) and Im(z).

Remark 4.2.
(1) The set of all complex numbers is called C.
(2) If y = 0, then z = x ∈ R. So, the real numbers are a subset of the complex

numbers, R ⊂ C. On the other hand, if x = 0, then z = yi. Such numbers
are called (purely) imaginary numbers.

(3) In the engineering literature it is common to use ‘j’ instead of ‘i’ as a
symbol for the imaginary unit.

We can now express the solutions of the quadratic equation x2 + 2x + 5 = 0
from above as complex numbers. Indeed, we have

x1,2 = −1 ±
√
−4 = −1 ± 2i,

Note the relation between the solutions x1 and x2. This gives rise to another
definition.

Definition 4.3. For a complex number z = x + yi, we define the complex
conjugate number z̄ as z̄ = x− yi.

4.2. Operations with complex numbers. Given a new set of numbers, we
need to know how to calculate with them. Fortunately, most operations involving
complex numbers are intuitive, that is satisfy (1)–(5), as long as we keep in mind
that i2 = −1.

They are defined as follows:
• Addition:

(11) (x1 + y1i) + (x2 + y2i) = (x1 + x2) + (y1 + y2)i.

For example: (1 − 4i) + (2 + 3i) = 3 − 1i = 3 − i.

• Subtraction:

(12) (x1 + y1i) − (x2 + y2i) = (x1 − x2) + (y1 − y2)i.

For example: (1 − 4i) − (2 + 3i) = −1 − 7i.

• Multiplication:

(x1 + y1i) · (x2 + y2i) = x1x2 + y1x2i+ x1y2i+ y1y2i
2

= (x1x2 − y1y2) + (y1x2 + x1y2)i.(13)
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For example: (1 − 4i) · (2 + 3i) = 14 − 5i.

• Division: This is best done using a little trick. For this note first, that for
z = x+ yi, we have

z · z̄ = (x+ yi) · (x− yi) = x2 + y2 ∈ R.

This can be used to compute z1/z2 in the following way:

x1 + y1i

x2 + y2i
=

(x1 + y1i)(x2 − y2i)

(x2 + y2i)(x2 − y2i)
=
x1x2 + y1y2

x2
2 + y

2
2

+

(
x2y1 − x1y2

x2
2 + y

2
2

)
i

if x2
2 + y

2
2 > 0.

For example: (1 − 4i)/(2 + 3i) = 1
13 (1 − 4i) · (2 − 3i) = 1

13 (−10 − 11i).

Remark 4.4.
(1) Recall that R ⊂ C. It is therefore important to note that the ‘new’ opera-

tions for complex numbers agree with the familiar ones, if both z1 and z2
are real.

(2) We use rules (1)–(5) for calculations with complex numbers, this means
that equations for complex numbers can be transformed or simplified in
the same way as equations for real numbers.

We finally introduce another concept, which already appeared in the division
of complex numbers.

Definition 4.5. For a complex number z = x+ yi we define its modulus as

|z| =
√
z · z̄ =

√
x2 + y2.

Finally, we remark that complex numbers are algebraically closed, that means
that any algebraic equation

anx
n + an−1x

n−1 + . . . + a2x
2 + a1x+ a0 = 0

with complex coefficients an, . . . , a0 has a complex root (this will be proved in the
course of complex analysis in the second year). Thus, we do not need to look for
further extensions of numbers from the point of view of algebraic equations. But
we will see another reason for this in the third chapter.

5. Geometry of complex numbers

Complex numbers shall not be viewed as purely abstract concept, in fact
they are intimately connected with the geometry of the plane. Presentation in
this section is greatly influenced by the booklet “Geometry of complex num-
bers, quaternions and spins” by V.I. Arnold (Moscow, 2002, in Russian) translated
as [1, Part II].
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y

x

z=x+yi

Re z

Im z

Figure 2. A complex number z can be represented as a point in
the complex plane.

5.1. The complex plane. The graphical presentation is provided by the com-
plex plane (or the Argand diagram). Recall that

C = {z = x+ yi, x,y ∈ R},

such that each complex number is characterised by 2 real numbers x and y.
Draw rectangular (also known as Cartesian) coordinates on the plane. In the

complex plane the real part x of a number z corresponds to its horizontal compo-
nent (along the real axis), whereas the imaginary part y corresponds to its vertical
component (along the imaginary axis), see Figure 2.

We can use the complex plane to interpret operations with complex numbers
geometrically.

i) The complex conjugate of a number can be obtained by reflection in the
real axis, see Figure 3.

ii) The addition of 2 complex numbers z1 and z2 has an easy geometric inter-
pretation as a translation or using a parallelogram, see Figure 4. There-
fore, complex numbers behave like vectors under addition. (We will dis-
cuss vectors in the last part of the course.)

Using the properties of the mirror reflection we note:

Lemma 5.1. (1) The conjugation of the complex conjugation returns the com-
plex number: z̄ = z.

(2) A complex number is equal to its complex conjugation if and only if it is real:
z = z̄⇔ z ∈ R.

(3) A complex number z satisfy the identity z = −z̄ if and only if it is purely
imaginary.

16
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z=x+yi

Re z

Im z

z=x−yi

Figure 3. A complex number z and its complex conjugate z̄ in the
complex plane.

Im z

Re z

z

z + z

z
1 2

2

1

Figure 4. Addition of two complex numbers z1 and z2.

We will also need the following theorem.

Theorem 5.2. (1) Complex conjugation of the sum of two complex numbers is
equal to the sum of their complex conjugates:

z1 + z2 = z̄1 + z̄2.

(2) Complex conjugation of the product of two complex numbers is equal to the
product of their complex conjugates:

z1 · z2 = z̄1 · z̄2.

Proof. the first statement follows from the above geometric interpretation of
conjugation and sum. It can be also verified from the formula (11).

The second statement follows from the formula (12). □

17



5. GEOMETRY OF COMPLEX NUMBERS CHAPTER 1. NUMBERS

In order to obtain a clear geometric interpretation for the multiplication and
division of complex numbers, it turns out, that it is beneficial to introduce new
coordinates in the complex plane; so-called polar coordinates.

5.2. The polar form of a complex number. Instead of using real and imagi-
nary part of a complex number z to determine its position in the complex plane,
we can also characterise z by its distance r from the origin 0, and the angle ϕ
between the line connecting z and 0, and the positive real axis, see Figure 5. The
coordinates (r,ϕ) are called polar coordinates in the (complex) plane.

First, we note the geometric meaning of modulus, which follows from the
Pythagoras theorem (do you know its proof?):

Lemma 5.3. The distance from the point z = x + yi to 0 is equal to the modulus
|z| =

√
zz̄ =

√
x2 + y2.

Corollary 5.4. A complex number z and its conjugation z̄ have equal moduli: |z| =
|z̄|.

Combining the previous lemma with the geometric meaning of addition of
complex numbers we obtain the next

Corollary 5.5. The distance between two complex numbers z and w is |z−w|.

The known from geometry triangle inequality together with geometric interpre-
tation of sum implies the following inequality for moduli of complex numbers:

(14) |z+w| ⩽ |z|+ |w|.

Thus for the polar coordinates we found that r = |z|, i.e. it is the modulus of z.

Definition 5.6. The angle ϕ is called the argument of the complex number z,
arg(z).

Definition 5.7. A complex z number with the modulus equal 1, that is |z| = 1,
is called unimodular. For an unimodular z with an argument arg(z) = ϕ we have:

(15) z = cosϕ+ i · sinϕ.

The identity (15) can be considered as a definition of sine and cosine functions.

Theorem 5.8. Multiplication by an unimodular complex number z is a rotation of
the complex plane by the angle arg(z).

Proof. Take a complex number w. It is transformed by the multiplication to
zw. We calculate the modulus:

|zw|2 = zwzw = (zz̄) · (ww̄) = |w|2.

So the lengths of a vector is preserved. Furthermore, the distance between points
is preserved, cf. Cor. 5.5:

|zw1 − zw2| = |z(w1 −w2)| = |z| · |(w1 −w2)| = |w1 −w2|.

18



CHAPTER 1. NUMBERS 5. GEOMETRY OF COMPLEX NUMBERS

z=x+yi

Re z

Im z

r

φ

Figure 5. Polar coordinates can be used to describe a complex
number z in the complex plane.

We note that the transformation w 7→ zw fixes point 0 (since z · 0 = 0), so this
transformation is a rotation around 0. To find the angle of rotation we note that
1 7→ 1 · z = z. That is, the complex number 1 with argument 0 is transformed to
the number with argument arg(z). Therefore, multiplication by z increments the
argument of any complex number by arg(z). □

The following simple result immediately follows from formula (13):

Lemma 5.9. If a > 0 is real then the transformation w 7→ aw is a scaling with the
factor a. In particular, |a ·w| = a · |w|.

The lemma implies that if we scale the complex number z by the real factor 1
|z|

then we get an unimodular complex number z
|z|

. Thus we obtained the following:

Corollary 5.10. Any complex number z is the product of the positive real number
|z| and the unimodular complex number z

|z|
, that is: z = |z| · z

|z|
.

This corollary together with the formula (15) suggest the following definition:

Definition 5.11. For a complex number z = x+ yi, we call

z = r(cosϕ+ i · sinϕ)

its polar form. Here, r denotes the modulus of z and ϕ its argument.

Remark 5.12. The angle ϕ is measured in radians. Therefore, angles which
differ by a multiple of 2π are identical. We use the convention that ϕ ∈ (−π,π].

19
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Example 5.13. i) For z = 1 − i, we compute r = |z| =
√

1 + 1 =
√

2, and
we find ϕ = −π/4. Therefore,

z =
√

2 (cos(−π/4) + i · sin(−π/4)) .

ii) For z = i, we have r = 1 and ϕ = π/2, such that

z = i = 1 · (cos(π/2) + i · sin(π/2)),

which is obviously true.

We are ready to prove the following theorem:

Theorem 5.14. The product z ·w has a modulus of |z||w|, and an argument arg(z)+
arg(w).

Proof. We can represent the number z as the product |z| z
|z|

. We note that the
number z

|z|
has the same argument as z (why?).

Thus, the multiplication by z = |z| · z
|z|

is the composition of two transfor-
mations: the rotation by arg(z) (due to the multiplication by z

|z|
) and scaling by

|z|. Therefore the modulus of w is transformed to |z||w| and the argument of w is
transformed to arg(z) + arg(w). □

Geometrically, we can interpret complex multiplication as a stretching and a
rotation in the complex plane, see also Figure 6.

5.3. Application to trigonometry. We can use the above connection between
arithmetic of complex numbers and geometry of plane to demonstrate main results
in trigonometry.

First, we describe the transformation between the Cartesian and polar coordi-
nates. That can be obtained from two two forms of writing of the same complex
number and the observation that two complex numbers are equal if and only if their
real parts are equal and their complex parts are equal. Then, we see that for a point
z = x+ yi = r(cosϕ+ i sinϕ) the equality of real and imaginary parts are:

x = r cosϕ, y = r sinϕ,

and on the other hand
r =

√
x2 + y2, tanϕ =

y

x
.

The last formula suggests that ϕ = arctan y
x

, but we need to be careful choosing
the value of ϕ as it may differ by π from the actual. For example, two complex
numbers 1 + i and −1 − i has the common value y

x
= 1, but arg(1 + i) = π

4 and
arg(−1 − i) = − 3π

4 .
Let us now consider the multiplication of two complex numbers z1 and z2 in

polar coordinates. For this, set

z1 = r1(cosϕ1 + i sinϕ1), z2 = r2(cosϕ2 + i sinϕ2).
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Im z

Re z

z
2

z

z z
21

φφ φφ+

1

1 2
2

1

Figure 6. Multiplying two complex numbers in the complex
plane.

Then using the theorem 5.14 we obtain:

z1 · z2 = r1r2 (cosϕ1 cosϕ2 − sinϕ1 sinϕ2 + i(cosϕ1 sinϕ2 + cosϕ2 sinϕ1))

= r1r2 (cos(ϕ1 + ϕ2) + i sin(ϕ1 + ϕ2)) .

This implies the following important trigonometric formulas of addition:

cos(ϕ1 + ϕ2) = cosϕ1 cosϕ2 − sinϕ1 sinϕ2,

sin(ϕ1 + ϕ2) = cosϕ1 sinϕ2 + cosϕ2 sinϕ1.

In the special case z1 = z2 = r(cosϕ+ i sinϕ), we find that

(r(cosϕ+ i sinϕ))2 = r2 (cos(2ϕ) + i sin(2ϕ)) ,

which gives the doubling argument identities:

cos(2ϕ) = cos2ϕ− sin2ϕ, sin(2ϕ) = 2 cosϕ sinϕ.

This results can be generalized and yields an important formula for complex
numbers.

Theorem 5.15 (De Moivre’s Theorem). For all complex numbers z = r(cosϕ +
i sinϕ) and all natural numbers n ∈ N, we have

(r(cosϕ+ i sinϕ))n = rn (cos(nϕ) + i sin(nϕ)) .

This theorem can be proved using mathematical induction, and we will use it
later to compute complex roots. Next, however, we will take a look at yet another
representation of complex numbers, which comes from one of the most beautiful
and surprising formulas in mathematics.
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5.4. The exponential form and Euler’s formula. We continue to explore the
connection between geometry and arithmetic of complex numbers. The well-
known proposition (Prop. I.5 in Euclid): the base angles of an isosceles triangle are
equal (do you know its proof?). It is easy to show the following

Proposition 5.16. If in a triangle ABC, the vertex C belong to the (unique) circle
with the diameter AB, then the angle ACB is right.

Proof. We denote by O the midpoint of AB (see the left drawing on Fig. 7),
thenO is the centre of the circle with the diameterAB. By the theorem assumption,
the segments OA, OB and OC are equal and we have two pairs of equal angles in
two isosceles triangles (see the illustration). Since the sum of all angles in ABC (as
any other triangle) is 180◦, the angle ACB is exactly the half of this, that is it is a
right angle. □

O
AB

C

O
AB

C

O
AB

C

Figure 7. The diameter and the right angle.

Also, it is elementary to derive from the isosceles triangle theorem that among
two sides of a triangle, the bigger side is opposite to the larger angle (this also follows
from the sine rule). Using this statement we can show the converse of Prop. 5.16.

Proposition 5.17. If in a triangle ABC the angle C is right then the vertex C belong
to the circle with the diameter AB.

You can proof this theorem modifying the proof of Prop. 5.16, see the central
and right drawing on Fig. 7.

The following result easily follows from the geometric meaning of multiplica-
tion of complex numbers.

Lemma 5.18. The following conditions are equivalent:
(1) Vectors z and w are orthogonal.
(2) Re(zw̄) = 0 (in other words: zw̄ is purely imaginary).

Moreover, if w ̸= 0 the above conditions are equivalent to the following:

22
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(3) Re( z
w
) = 0 (in other words: z

w
is purely imaginary).

The imaginary part has a geometric meaning as well:

Lemma 5.19. The following conditions are equivalent:
(1) Vectors z and w are co-linear.
(2) Im(zw̄) = 0 (in other words: zw̄ is a real number).

Moreover, if w ̸= 0 the above conditions are equivalent to the following:

(3) Im( z
w
) = 0 (in other words: z

w
is a real number).

We already know that zw = z̄ · w̄. We can show by mathematical induction
that zn = (z̄)n for any natural n. Can we extend the meaning of an expression az

for complex z and real a > 0? In view of our previous discussion it is naturally to
request that az = az̄ on top of the usual law of exponents: az+w = az · aw. From
these two requirements follows:

Proposition 5.20. Let a > 0 and ϕ be reals, then the number aiϕ shall be unimod-
ular.

Proof. Consider the expression z = (aiϕ − 1)(a−iϕ + 1), we claim that it is
purely imaginary. To this end we will show that z̄ = −z:

z̄ = (aiϕ − 1)(a−iϕ + 1)

= (a−iϕ − 1)(aiϕ + 1) (by Thm. 5.2 and az = az̄)

= (a−iϕ − 1)(aiϕa−iϕ)(aiϕ + 1) (since aiϕa−iϕ = aiϕ−iϕ = a0 = 1)

= ((a−iϕ − 1)aiϕ)(a−iϕ(aiϕ + 1)) (by the associative law)

= (1 − aiϕ)(1 + a−iϕ) (by the distributive law)

= −(aiϕ − 1)(a−iϕ + 1)
= −z.

If (aiϕ − 1)(a−iϕ + 1) is purely imaginary, then by Lem. 5.18 vectors (aiϕ − 1) and
(aiϕ + 1) are orthogonal. But these vectors connect the point aiϕ with end-points
1 and −1 of the unit circle. By the Prop. 5.17 the orthogonality of vectors implies
that aiϕ belong to the unit circle, i.e. aiϕ is an unimodular complex number. □

If aiϕ is unimodular, then as we already know aiϕ = cosψ+ i sinψ. For some
angle ψ, which can be considered as function of ϕ. The law of exponents and the
law of complex multiplication tell us that: ainϕ = cosnψ+i sinnψ for any natural
n. Thus, ψ shall be a linear function of ϕ, that means that there is a constant α
determined solely by a such that ψ = αϕ. Clearly, the simplest situation occurs if
α = 1 and then ψ = ϕ.
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Definition 5.21. The Euler’s constant e is a real, which satisfies to Euler’s For-
mula.

(16) eiϕ = cosϕ+ i sinϕ.

We have arrived at one of the most remarkable formulas in the whole of math-
ematics. To hint its importance we mention that the number e also known as the
base of natural logarithms. It is known that e is an irrational number approximately
equal to 2.718281828. . . . Furthermore, like π, the Euler’s constant is not a root of
any algebraic equation with integer coefficients, such numbers are called transcen-
dental. An example of an irrational numbers which is not transcendental is

√
2

since it is a root of the equation x2 − 2 = 0 with integer coefficients.
Note that Euler’s formula gives us a way to write the polar form of a complex

number in a more compact way.

Definition 5.22. For a complex number z = x+yi = r(cosϕ+ i sinϕ), we call

z = reiϕ

its exponential form.

Remark 5.23.
(1) We have discussed 3 equivalent representations of a complex number z,

namely

z = x+ yi, with x,y ∈ R
= r(cosϕ+ i sinϕ), where r = |z|, ϕ = arg(z)

= reiϕ.

(2) De Moivre’s Formula immediately follows from the exponential form.
Indeed, the theorem simply follows from the fact that

zn =
(
reiϕ

)n
= rn

(
eiϕ
)n

= rneinϕ,

and converting this back into polar form.
(3) If we set ϕ = π in Euler’s formula, we get eiπ = cosπ+ i sinπ = −1 or

eiπ + 1 = 0.

This remarkable expression is known as Euler’s identity. It gives a relation
between the numbers 0, 1, i, e,π and is considered to be one of the most
beautiful and important mathematical formulas.

5.5. Sketching sets of complex numbers in the complex plane. Before leav-
ing this section we consider look at an example of a set of complex numbers
sketched in the complex plane.

Example 5.24. Sketch the following set in the complex plane

M = { z ∈ C | |z− 1 − i| >
√

2 }
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Figure 8. The set M = { z ∈ C | |z − 1 − i| >
√

2 } in the complex
plane.

Notice firstly that the complex number z − 1 − i can be written z − (1 + i), i.e. as
the “difference” of two complex numbers. Write z = x + yi with x,y ∈ R. Thus
z− 1 − i = (x− 1) + (y− 1)i and so

|z− 1 − i| >
√

2 ⇔
√

(x− 1)2 + (y− 1)2 >
√

2

⇔ (x− 1)2 + (y− 1)2 > 2

(where we have used the fact that (x − 1)2 + (y − 1)2 ⩾ 0). Now we note that
(x− 1)2 + (y− 1)2 = 2 is the equation of the circle with radius

√
2 and centre (1, 1)

in the Cartesian x,y plane. Interpreting this remark in the context of the complex
plane thus shows us that the set M is the set of complex numbers lying on the
circle of radius

√
2 and centre w = 1 + i. See Figure 8.

6. Complex roots

In the last part of this chapter we discuss how to solve equations for complex
numbers. Of particular interest here are n-th roots of complex numbers.

Definition 6.1. For a number w ∈ C we define its complex n-th roots as the
solutions z of the equation zn = w.

Example 6.2. i) The complex square-roots ofw = 2 are given by {−
√

2,
√

2}.
ii) The complex 4th-roots of w = 1 are {1,−1, i,−i} (you can easily check that

the 4th power of all of these numbers gives w = 1).

So, complex square-roots form a set of complex numbers.
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Remark 6.3. We need to take care with the notation z = n
√
w for complex

roots. In this notes it is used for the whole set of all roots. Do not confuse this
concept with the ‘square-root function’ f(x) =

√
x, which gives the unique number

y (the only positive real from the set 2
√
x) and is only defined for non-negative real

numbers x.

6.1. Computation of complex roots. Complex roots of numbers are best com-
puted using the exponential form. So, let w = reiϕ, let n ∈ N, and let z = ρeiθ be
a solution of zn = w. Since, by de Moivre’s Formula

zn = ρneinθ,

we must have
ρ = n

√
r

(where this root denotes the positive real solution of this equation), and there are
n possible solutions for the angle θ

θ ∈
{
ϕ+ 2kπ
n

, with 0 ⩽ k ⩽ n− 1
}

.

In particular, we obtain the important result that every complex number (dif-
ferent from zero) has exactly n different n-th roots).

Remark 6.4. Before considering an example let us look informally at why the
last sentence holds (i.e. why every nonzero complex number has exactly n different
n-th roots). Consider w = reiϕ, then in fact w = rei·(ϕ+2kπ) for any integer k (i.e.
k ∈ Z). In other words we have infinitely many ways of writing/representing the
same complex number w in exponential (or polar) form. When we are looking
for the arguments (angles) of the nth roots of w, we are in fact looking for θ such
that nθ ∈ {ϕ + 2kπ | k ∈ Z } since we are in effect trying to solve the equation
zn = w with z = ρeiθ and w = ei·(ϕ+2kπ) or, in other words, ρneinθ = ei·(ϕ+2kπ),
(for any k ∈ Z). But looking for θ such that nθ ∈ {ϕ + 2kπ | k ∈ Z } of course
means looking for θ ∈ { ϕ+2kπ

n
| k ∈ Z }. Now if we let k range over the numbers

{0, 1, . . . ,n− 1} only we see that the possible values of θ in this range, i.e. the set

(17)
{
ϕ

n
,
ϕ+ 2π
n

. . . ,
ϕ+ 2(n− 1)π

n

}
are all distinct. On the other hand if we set k = n and we let θ = ϕ+2kπ

n
then,

rewriting n for k we see that this is just θ = ϕ+2nπ
n

= ϕ
n

+ 2π = ϕ
n

. But ϕ
n

is
already in the set of values picked out for θ by letting k range over the numbers
{0, 1, . . . ,n − 1}. In effect, for k ⩾ n (or k < 0) the values of θ just repeat some
value already obtained in the set displayed in (17). So this set is precisely the set
of arguments (angles) of the nth roots of w = eiϕ.

Example 6.5. Compute all 3
√

1 +
√

3i. (I.e. solve z3 = w where w = 1 +
√

3i.)
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Solution:
i) Transform the number w into polar form: w = 1 +

√
3i.

So, |w| = 2, and arg(w) = arctan
√

3
1 = π

3 , and we have w = 2 · eiπ
3 .

ii) Compute the roots for 3
√

1 +
√

3i. In other words solve the equation z3 =

w = 1+
√

3i. (Also written as z = 3
√

1 +
√

3i.) We expect to find 3 different
solutions z1, z2, z3. Using the formulas above we compute for1 k ∈ {0, 1, 2},

zk+1 = teϕk+1

where (the modulus of zk+1)

t =
3
√

2

and

ϕk+1 =
π
3 + 2kπ

3
=

π+ 6kπ
9

.

(To understand the notation2 here, notice that with k = 0, zk+1 = teϕk+1

rewrites as z1 = teϕ1 ; with k = 1, zk+1 = teϕk+1 rewrites as z2 = teϕ2 ; and
with k = 2 zk+1 = teϕk+1 rewrites as z3 = teϕ3 .)

We thus find that

z1 =
3
√

2 · eiπ
9 ,

z2 =
3
√

2 · ei(π
9 + 2

3 π)

=
3
√

2 · ei 7
9 π

z3 =
3
√

2 · ei(π
9 + 4

3 π)

=
3
√

2 · ei 13
9 π

=
3
√

2 · e−i 5
9 π,

where for z3 (in the last step) we have subtracted 2π such that the angle
ϕ ∈ (−π,π].

iii) If required, we finally convert the roots z1, . . . , z3 back into Cartesian co-
ordinates, that is, into the standard form zk = xk + yki. For example, for
z1 = x1 + y1i, we have

x1 =
3
√

2 cos(π/9) ≈ 1.183938513, y1 =
3
√

2 sin(π/9) ≈ 0.4309183781,

and so z1 ≈ 1.183938513 + 0.4309183781i.

1The notation k ∈ {0, 1, 2} means “k is in the set {0,1,2}”, in other words “either k = 0 or k = 1
or k = 2”.

2You might prefer (as I do) to name the solutions as z0, z1, z2. In this case the notation becomes,

for k ∈ {0, 1, 2}, zk = teϕk where ϕk =
π
3 +2kπ

3 = π+6kπ
9 . I have chosen not to use this notation here

to maintain consistency with the rest of the notes (where solutions are denoted x1, x2 etc).
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Figure 9. The three complex solutions z1, z2 and z3 of z3 = w

(with w = 1 +
√

3i).

Remark 6.6. The last example can be represented in the complex plane as in
Figure 9. Notice that geometrically the roots z1, z2 and z3 lie on a circle. Also
that the angle between the roots (in terms of the line connecting each root to the
origin) is precisely 6π

9 , i.e. 2π
3 . More generally for n ⩾ 1 you will always find 2π

n

separating the (lines to the origin) of the n-many n-th roots of w.

6.2. Solving polynomial equations. Complex roots are of importance for the
solution of polynomial equations. We will only discuss one simple example here.

Example 6.7. Find all complex solutions of z4 − 2z2 + 1 = 3.
Solution: For this example, let us first introduce v = z2. Then we obtain an

equation for v

v2 − 2v+ 1 = (v− 1)2 = 3.

We immediately conclude that v−1 is either
√

3 or −
√

3, such that the two solutions
for v are

v1 = 1 +
√

3, v2 = 1 −
√

3.
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Finally, recalling that v = z2, we arrive at 4 solutions of the equation in z

z1 =
√
v1 =

√
1 +

√
3 ,

z2 = −
√
v1 = −

√
1 +

√
3 ,

z3 =
√
v2 =

√
1 −

√
3 ,

=

√
(
√

3 − 1) · (−1) ,

=

(√
(
√

3 − 1)
)
i ,

z4 = −
√
v2 = −

(√
(
√

3 − 1)
)
i .

(Note that v2 < 0.)

The computations in this example are pretty straightforward. This is not al-
ways the case. Indeed, there is no general method or formula for solving polyno-
mial equations of degree greater than 4. (The degree of an equation is the highest
power of z appearing in it.)

On the other hand, it is always true that for an equation of degree n, there
exist n complex solutions. For example, we found 4 solutions for the 4-th order
equation above. This important result is known as the Fundamental Theorem of
Algebra (Gauss, Argand), which is most naturally proven in the course of Complex
Analysis.
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CHAPTER 2

Sequences and Series

Arithmetic of rational numbers, i.e. fractions, is performed according to ex-
plicit rules which return precise answers. How this can be extended to irrationals
numbers. e.g.

√
2, π, e? The corresponding is easier to describe in terms of

sequences and their limits.
In this part we discuss sequences and series of real numbers. We will mainly

be concerned with the notion of a limit, which is one of the most important con-
cepts in mathematics. We will discuss its rigorous definition, analyse properties of
limits and derive conditions for sequences (and series) to have a limit.

1. Sequences of real numbers

1.1. Definition and Examples. A sequence of real numbers is simply an (infi-
nite) ordered list of real numbers

(a1,a2,a3, . . .), with an ∈ R for all n ∈ N.

So, in a sequence, we simply have a real number an allocated to each natural
number n. More precisely, we can define this as a function

Definition 1.1. A sequence of real numbers is a function a : N → R. For the
function values we write an := a(n). The whole sequence will be denoted by (an)
or (an)n∈N.

In the simplest cases we can define the function can be explicitly written.

Example 1.2. With the rule an = 2n − 1, we obtain the sequence of odd
numbers

a1 = 1, a2 = 3, a3 = 5, a4 = 7, . . . or (1, 3, 5, 7, . . .).
Similarly, with an = 1

n
, we have

a1 = 1, a2 =
1
2

, a3 =
1
3

, a4 =
1
4

, . . .

If a sequence is given by such a rule of the form an = f(n), then we call the
sequence explicitly defined.

An important example of explicitly defined sequence is the sequence of all
prime numbers:

a1 = 2, a2 = 3, a3 = 5, a4 = 7, a5 = 9, a6 = 11, . . . .
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Although the sequence is explicitly defined we do not know an analytic mathe-
matical expression, which produces an for any n.

Often it is easy to define new elements of sequences from values of previous
elements.

Example 1.3. On the other hand, we have already come across the Fibonacci
numbers, that is, the list of numbers

(1, 1, 2, 3, 5, 8, 13, 21, 34, . . .)

This sequence is defined by a recursion as follows:

a1 = 1, a2 = 1, and an = an−1 + an−2 if n > 2.

Hence, in order to compute a100, we need a99 and a98 and all other elements of
the sequence before that. Such sequences, for which an = g(an−1,an−2, . . . ,an−k)
are called recursively or implicitly defined. Sometimes they are also called difference
equation, indicating their more difficult analysis. We also remark, that it is some-
times possible to convert recursive definition of a sequence into explicit, which
has clear advantages. For example, this is possible for Fibonacci numbers (can
you find an explicit formula?).

The next example starts from recursively defined sequence and provide an
explicit formula for it.

Example 1.4. Assume you pay £100 into an account at the beginning of the
first year. At the end of each year, the bank pays 5% interest. How much money
is there in the account after n years?

Solution: Let mn denote the money in the account at the end of year n. Let
m0 = 100 (in pounds) denote the starting capital. Then

m1 = 1.05 · 100 = 105,
m2 = 1.05 · 105 = 110.25,
m3 = 1.05 · 110.25 = 115.76, etc.

So, we can define the sequence (mn) recursively by

mn = 1.05 ·mn−1.

On the other hand, a careful look at the elements shows that m2 = (1.05)2 ·m0 and
m3 = (1.05)3 ·m0. We conclude that we have in general

mn = (1.05)n ·m0.

This second formula is obviously more convenient, if you want to compute mn for
n = 20, 40, 120, . . . . It is easy to generalise this example to an arbitrary geometric
progression an+1 = q ·an, i.e. an+1 = qna1. An arithmetic progression an+1 = an+d
can be treated similarly: an+1 = a1 + nd.
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Example 1.5. Assume that a bank agreed to pay 100% interest at the end of
year on our deposit of £1. Thus, we will get 1+1=£2 at the end of the year. If
the bank agreed to add the interest each month proportionally, then our deposit
will be multiplied by (1 + 1

12 ) each month, and at the end of year we will get
(1 + 1

12 )
12 (see the previous example). If the interest will be added every day then,

the final sum will be (1 + 1
365 )

365. Motivated by this example, we are interested in
the sequence

(18) an =

(
1 +

1
n

)n

.

Using the binomial formula:

an =
(
1 + 1

n

)n
= 1 + n

1!
1
n
+ (n−1)n

2!
1
n2 + . . . + (n−k)(n−k+1)...(n−1)n

k!
1
nk + . . . + 1

nn

= 1 + 1 + 1
2!

(
1 − 1

n

)
+ . . . + 1

k!

(
1 − k

n

) (
1 − k−1

n

)
. . .
(
1 − 1

n

)
+ . . . + 1

nn(19)

⩽ 1 + 1 + 1
2! +

1
3! + . . . + 1

k! + . . . + 1
n! (since

(
1 − m

n

)
⩽ 1 for m ⩽ n)

⩽ 1 + 1 + 1
2 + 1

22 + . . . + 1
2k−1 + . . . + 1

2n−1 (since k! > 2k−1 for all k)
⩽ 1 + 2

= 3.(20)

Thus 2 ⩽ an ⩽ 3 for all n.

Example 1.6. Let a be a positive number and we assume that a ⩾ 1, otherwise
we can replace it by 1

a
⩾ 1. We want to evaluate

√
a from the following procedure.

Put x1 = a, and recursively define:

(21) xn+1 =
1
2

(
xn +

a

xn

)
.

We can show by induction that xn+1 ⩽ xn and the inequality between arithmetic

a b

a+b
2

√
ab

Figure 1. The arithmetic mean is no less than the geometric mean.
The vertical interval is the geometric mean

√
ab due to two similar

right triangles.
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and geometric means (see Fig. 1) implies that xn+1 >
√
a (can you do this?), then

|xn+1 −
√
a| ⩽ |xn −

√
a|. That is, each next number in the sequence will be closer

to
√
a. Will we get a right approximation from it?

Sometimes, we need some logical operations to define a sequence.

Example 1.7. Here are two examples of sequences of logically defined sequence:

an =

{
n2, if n is even;
−n2, if n is odd, and bn =

{
n, if n is prime;
n2, if n is composite.

Note, that that the first sequence also admit an explicit definition: an = (−n)2.
Can you find an analytical expression for the sequence (bn)?

There is no any conceptual difficulty to define sequences of complex num-
bers as well. However, some of the following results and definitions need to be
amended accordingly.

1.2. Properties of sequences. Before we turn to limits of sequences, let us
discuss two other, more basic, properties of sequences.

Definition 1.8. • A sequence (an) is bounded below, if there exists a
number c ∈ R, such that an ⩾ c for all n ∈ N.

• A sequence (an) is bounded above, if there exists a number c ∈ R, such
that an ⩽ c for all n ∈ N.

• A sequence (an) is bounded, if there exists a number c ∈ R, such that
|an| ⩽ c for all n ∈ N.

Remark 1.9. Note that a sequence is bounded, if and only if it is bounded
above and bounded below. The two properties—to be bounded above and below—
are logically independent one from another as can be seen from the next example.

Example 1.10. (1) (an) with an = exp(n) is bounded below with c = 0,
but not above.

(2) (an) with an = −n is bounded above with c = 0, but not below.
(3) (an) with an = (−1)nen is not bounded below or above (it is unbounded).
(4) (an) with an = 1/n is bounded.

To see this, note that 1/(n+ 1) < 1/n, 1/1 = 1 and 1/n > 0 for all n ∈ N.
Thus |an| ⩽ 1 for all n ∈ N, which shows the boundedness.

(5) The sequence (an) (18) is bounded below by 2 and above by 3 as shown
in (20).

(6) The sequence (xn) (21) is bounded above by a and below by
√
a, as dis-

cussed in that example.

Definition 1.11. • A sequence (an) is called increasing (strictly increas-
ing), if

an+1 ⩾ an, (an+1 > an) for all n ∈ N.
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• A sequence (an) is decreasing (strictly decreasing), if

an+1 ⩽ an, (an+1 < an) for all n ∈ N.

• If a sequence is either (strictly) increasing or (strictly) decreasing we call
it (strictly) monotone.

As we can see from the next example

Example 1.12. (1) (an) with an = exp(n) is strictly increasing.
(2) (an) with an = 1/n is strictly decreasing.
(3) The constant sequence with an = 3 for all n is both increasing and de-

creasing.
(4) (an) with an = cosn is neither decreasing nor increasing (since cosn

changes sign).
(5) The sequence (an) (18) shall be increasing, obviously we will get more

money if the interest is added more frequently. Can you prove this rigor-
ously? (Hint: if you compare the formula (19) for n = m and n = m + 1
you will see that the later has one more positive term and each other term
is bigger than the respective term for n = m. )

(6) The sequence (xn) (21) is strictly decreasing, as discussed in that example.

The property of boundedness is not completely independent from the prop-
erty to be monotone.

Exercise 1.13. Show that every monotone sequence is bounded at least either
above or below.

We will later discuss how these properties are related to the property of a
sequence to have a limit. Before, we do so, we first need to introduce this very
important property.

2. Limits

2.1. Convergence of sequences. We now define what it means for a sequence
to have a limit. The concept of a limit is the foundation of the whole of calcu-
lus. Whenever you compute a derivative, you compute a limit (of the difference
quotient); whenever you compute an integral, you compute a limit (of a Riemann
sum).

The goal in this part is to discuss this concept in detail, establish properties of
sequences, which have a limit, and find conditions that ensure that a sequence has
a limit.

Definition 2.1. Let (an) ⊂ R be a sequence. We say that an tends (or con-
verges) to the limit l ∈ R as n tends to infinity (or that an has the limit l), if for
any ε > 0, there exists a number N = N(ε), such that |an − l| < ε for all n > N.

If a sequence has a limit we call it convergent and say that the sequence tends
to l. We write an → l as n→ ∞ or limn→∞ an = l, if an has the limit l.
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Example 2.2. In order to see that this definition agrees with our expectations
about what it means to have a limit, we will prove that the sequence an = 1/n
tends to l = 0 as n → ∞, using the definition. This means, we have to show that
for all ε > 0, we find a number N, such that |an| < ε for all n > N.

For this, let us choose a fixed but arbitrary ε > 0. Then, for this ε, there exists
a number N, such that N > 1

ε
(for example, if ε = 0.21, we might choose N = 5).

We claim that with this N, the condition in the definition is satisfied.
Indeed, for all n > N, we have 1

n
< 1

N
, and since N > 1

ε
, we also have 1

N
< ε.

So, we have that an = |an − 0| < 1
ε

for all n > N. And since ε was arbitrary,
this proves that an → 0 as n→ ∞.

Discussion of the definition. In short we can write the definition for a sequence
to have limit l as follows:

lim
n→∞an = l ⇔ ∀ε > 0 ∃N : |an − l| < ε, ∀n > N.

Let us discuss the separate parts of this in detail.
• ‘∀ε > 0’: This really means ‘for all small positive numbers ε’. Indeed, if

the inequality |an − l| < ε is satisfied for one ε, then it is automatically
satisfied for all larger numbers. So, this condition becomes stricter, the
smaller the number ε is.

• ‘∃N . . . ∀n > N:’ This means that the inequality is fulfilled for a whole
‘tail’ of the sequence (an).

• ‘|an − l| < ε’: This means l − ε < an < l + ε, like an easy discussion of
the inequality reveals.

Hence, we can illustrate the property of a sequence to have a limit l as in Figure 2:
Give some number ε > 0, we find a number N, such that to the right of the line
n = N all elements of the sequence lie in a ’tube’ of diameter 2ε around l. The
dynamic process of convergence (‘a sequence tends to a limit’) has been translated
into inequalities, which need to be satisfied for tails of sequences.

Definition 2.3. • We say that a sequence diverges, if it has no limit
l ∈ R.

• Moreover, a sequence (an) diverges to ∞ (limn→∞ an = ∞), if for all
A > 0, there exists a number N, such that an ⩾ A for all n > N.

• Similarly, a sequence (an) diverges to −∞ (limn→∞ an = −∞), if for all
B < 0, there exists a number N, such that an ⩽ B for all n > N.

Remark 2.4. Comparing definition 2.1 of the limit and the definition 2.3 a
sequence divergent to ±∞ we see many similarities. Thus, for those sequences
we says that they tend to ±∞. The behaviour of divergent sequences (without any
limit) is radically different, see for example an = (−1)n.

Our first result tells us that a convergent sequence has a unique limit.

Lemma 2.5. A sequence (an) has at most one limit.
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n

N

l

l+ ε

l ε

Figure 2. Convergence of a sequence to the limit l.

Proof. We will prove this indirectly, so—looking for a contradiction—let us
assume that there is a sequence (an), such that limn→∞ an = l1 and limn→∞ an =

l2 with l1 ̸= l2. Then, |l2 − l1| > 0, and we choose ε = 1
2 |l2 − l1|. Now,

lim
n→∞an = l1 ⇒ ∃N1 : |an − l1| < ε, ∀n > N1

lim
n→∞an = l2 ⇒ ∃N2 : |an − l2| < ε, ∀n > N2.

Therefore, for n > max{N1,N2}, we find that |an − l1| < ε and |an − l2| < ε. But
this means,

|l2 − l1| = |l2 − an + an − l1|

⩽ |l2 − an|+ |an − l1|

< ε+ ε.

Since |l2 − l1| = 2ε, we have arrived at |l2 − l1| < |l2 − l1|. This is impossible and the
desired contradiction. We conclude that no sequence with two limits can exist. □

Remark 2.6. In the above proof we have used the fact that

|x+ y| ⩽ |x|+ |y| ∀x,y ∈ R.

This important inequality is known as the triangle inequality.

2.2. Arithmetics of limits. One of the main tasks when faced with a sequence
is to compute its limit (if it exists). In this part we will discuss several simple
results which help us to achieve this.
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Theorem 2.7. Let (an) and (bn) be sequences with an → a and bn → b as n→ ∞.
Then

i) an + bn → a+ b,
ii) an · bn → a · b,

iii) an

bn
→ a

b
, if b ̸= 0,

as n→ ∞.

Proof. We will only present the proof for part i) in order to give a flavour of
the general method.

So, let an → a and bn → b and choose a fixed, but arbitrary ε > 0. Then we
find N1 and N2, such that

|an − a| <
ε

2
∀n > N1

|bn − b| <
ε

2
∀n > N2.

Hence, for n > max{N1,N2} we have

a−
ε

2
< an < a+

ε

2
, b−

ε

2
< bn < b+

ε

2
,

and therefore, after adding the inequalities,

a+ b− ε < an + bn < a+ b+ ε.

In summary, we have found an index N = max{N1,N2}, such that for all n > N,
we have |(an+bn)−(a+b)| < ε. Since ε was arbitrary, this proves an+bn → a+b
as n→ ∞. □

Example 2.8. Compute limn→∞ n3−3n2+1
3n3+4 .

First note that both numerator and denominator of an diverge to infinity, as
n→ ∞. This gives rise to a so-called indeterminate limit, and we need to simplify
the expression, before we can apply the above result. This can be done as follows.

lim
n→∞ n

3 − 3n2 + 1
3n3 + 4

= lim
n→∞ n

3

n3 · 1 − 3 1
n
+ 1

n3

3 + 4
n3

=
limn→∞ 1 − limn→∞ 3 1

n
+ limn→∞ 1

n3

limn→∞ 3 + limn→∞ 4
n3

=
1
3

.

(Note that we have made use of the fact that limn→∞ 1/nk = 0 for k ∈ N. For k = 1
we have already discussed the proof. For general k, this will be proved in detail
below.)
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n

l

an

bn

cn

Figure 3. Illustration of the sandwich rule.

Another tool for the computation of limits is to compare a difficult sequence
to a simpler one. For example, the following statement is true.

Lemma 2.9. Consider two sequences (an) and (bn) with an ⩾ bn for all n ∈ N.
Assume that limn→∞ an = a and limn→∞ bn = b. Then a ⩾ b.

This lemma remains true in the case that bn diverges to infinity, that is, if
b = ∞.

The next result, known as the sandwich rule or squeeze rule, can be used in
many examples to compute limits.

Theorem 2.10 (Sandwich or Squeeze rule). Let (an) and (cn) be sequences with
limn→∞ an = limn→∞ cn = l. Assume further, that for a sequence (bn), we have

an ⩽ bn ⩽ cn, ∀n ∈ N.

Then (bn) converges and limn→∞ bn = l.

Proof. Let ε > 0. Then there exists numbers N1 and N2, such that

l− ε < an < l+ ε, ∀n > N1

l− ε < bn < l+ ε, ∀n > N2.

Hence, both inequalities are satisfied for n > max{N1,N2}, and in particular, we
have

l− ε < an ⩽ bn ⩽ cn < l+ ε ∀n > max{N1,N2}.
This implies limn→∞ bn = l. An illustration of the theorem is given in Figure 3.

□
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2.3. Computing limits: Examples. One of the main tasks when given a se-
quence, is to compute its limit. In the simplest cases, we can apply Theorem 2.7.
In this section, we will have a look at some important, more complicated examples.

i) an = 1
nα with α > 0 as a parameter. Then limn→∞ an = 0.

For α = 1 we already checked this, using the definition. If α > 1, then we can
use the sandwich rule to compute the limit, since

1
n

⩾
1
nα

⩾ 0.

Since limn→∞ 1
n
= limn→∞ 0 = 0, we conclude that limn→∞ 1

nα = 0.
For 0 < α < 1, we also find that limn→∞ 1

nα = 0. This can be proved by
checking the definition of convergence, or by using the general result that for a
sequence (an) with limn→∞ an = ±∞, we have limn→∞ 1/an = 0. We write this
as ‘1/∞ = 0’. (We will not prove this result.)

ii) an = βn with β ∈ R as a parameter. The sequence diverges for β ⩽ −1, for
other values we have:

lim
n→∞an =


∞ if β > 1
1 if β = 1
0 if |β| < 1

.

There is nothing to prove for β = 1, so we concentrate on the other cases. Let
us start with the case β > 1 and set β = 1 + h with some h > 0. Then, using the
binomial theorem,

βn = (1 + h)n = 1 + nh+ . . . + nhn−1 + hn > 1 + nh.

And therefore, limn→∞ βn ⩾ limn→∞ 1 + nh = ∞.
If |β| < 1, then we set β = 1/|β|. Therefore β > 1 and by the above, we have

limn→∞ βn = ∞. Now we again apply ‘1/∞ = 0’ to find limn→∞ βn = 0.
iii) an = nα

βn , where α > 0 and β > 1. Then limn→∞ an = 0. (This is usually
described as ‘exponential growth beats polynomials growth’.)

We will not prove this here, but only note that the proof uses again the bino-
mial theorem (see [2] for more details). Note, however, that the limit is of the form
‘∞∞ ’. This is a so-called indeterminate limit. There are no general rules for limits
of this type (see below for more examples), and each case needs to be discussed
carefully.

As an example, let us compute the next limit:

lim
n→∞ n

10 − 5n2 + 2n

3 · 2n − n
= lim

n→∞ 2n

2n
·

n10

2n − 5n2

2n + 1
3 − n

2n
=

1
3

,

applying the above result.
iv) an = n

√
n = n1/n. Then limn→∞ an = 1.

We note, that the limit is another indeterminate expression, now of the form
‘∞0’. For the proof, we again employ the binomial theorem. Firstly note that
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a1 = 1. Consider an = n
√
n for n > 1. Note that we can set n

√
n = 1+hn, for some

real number hn > 0. Then

n = (1 + hn)
n = 1 + nhn +

n(n− 1)
2

h2
n + . . . + nhn−1

n + hnn.

Thus, n > n(n−1)
2 h2

n, which after some transformations leads to hn <
√

2
n−1 . Since

limn→∞√ 2
n−1 = 0, we can apply the sandwich rule to see that limn→∞ hn = 0.

(Formally let (cn) and (bn) be the sequences defined by setting cn = 0 for all

n ∈ N and b1 = 1 and bn =
√

2
n−1 for n > 1. Then limn→∞ cn = limn→∞ bn = 0

whereas cn ⩽ an ⩽ bn for all n ∈ N. So by the Sandwich rule lims→∞an = 0.)
This in turn implies that n

√
n = 1.

v) an =
(
1 + 1

n

)n introduced in Example 1.5. We will demonstrate the ex-
istence of the limit in Example 2.16, its value e = limn→∞ an is called Euler’s
constant, which is e ≈ 2.718281828 . . . .

This limit is of the form ‘1∞’. In this case, it is not easy to see that the sequence
should converge at all. It is even more surprising, that the sequence converges to
Euler’s number e. We will also derive a different formula for e:

e =

∞∑
k=0

1
k!

.

vi) an =
√
n+ 5 −

√
n+ 3. Then limn→∞ an = 0. This limit is of the form

‘∞ − ∞’. Again, for limits of this type, no general rule exists, and each of them
needs to be discussed separately. Especially, when square-roots are involved, the
following method is often successful:

lim
n→∞

√
n+ 5 −

√
n+ 3 = lim

n→∞
√
n+ 5 −

√
n+ 3 ·

√
n+ 5 +

√
n+ 3√

n+ 5 +
√
n+ 3

=
(n+ 5) − (n+ 3)√
n+ 5 +

√
n+ 3

=
2√

n+ 5 +
√
n+ 3

= 0.

To summarise this section, let us recall the main points to observe, when com-
puting limits of sequences.

• If necessary, split the expression for your sequence into as simple conver-
gent parts.

• If possible, apply Theorem 2.7.
• Use the rules ‘1/∞ = 0’ or ‘1/0 = ∞’.
• If the limit is of one of the following (indeterminate) types

‘∞/∞’, ‘0/0’, ‘0 ·∞’, ‘∞−∞’, ‘1∞’, ‘∞0’,
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then no general rules are available. You need to simplify the expression
as much as possible (and maybe use rules like ‘exponential growth beats
polynomial growth’).

Remark 2.11. If I ⊆ R is an interval (i.e. of the real line), f is a continuous
function over the interval I, and (an) and (bn) are sequences such that

(i) an = f(bn), for all n ∈ N,

(ii) bn ∈ I, for all n ∈ N,

(iii) (bn) converges and limn→∞ bn = b,

then

lim
n→∞an := lim

n→∞ f(bn)
= f

(
lim
n→∞bn

)
= f (b)

The point here for this course is that you are not expected to be conversant with
the notion of a continous function. However, in exercises you may come across
examples of functions that are continous over an interval of the real line and you
can apply this remark. For example you may come across the following cases:

(1) I = R and f(x) = sin(x), cos(x) or exp(x).

(2) I = [0,+∞) and f(x) =
√
x.

Remark 2.12. If the sequence (an) has limit a and (cn) is a (infinite) subse-
quence of (an) then (cn) also has limit a. For example, if

(i) cn = a2n for all n ∈ N,
(ii) cn = an+K for some fixed K ∈ N, e.g. K = 1 or K = 107.

2.4. Convergence criteria. We have introduced the properties of monotonicity
and boundedness at the beginning of this part. We will now relate them to the
property of a sequence to have a limit. The first result is the following.

Lemma 2.13. Every convergent sequence is bounded.

Proof. Assume the sequence (an) has a limit l. Then for all ε > 0 we find a
number N, such that |an − l| < ε for all n > N. Now, let us choose ε = 1. Then
we find a number N, such that |an − l| < 1 for all n > N. Hence the subsequence
(an)n>N is bounded. On the other hand, there are only finitely many elements
a1,a2, . . . ,aN left, and there must exist a maximum or minimum of those finitely
many numbers. Therefore, the sequence (an) is bounded. □
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So far we have focussed on ways to compute the limit of a sequence. In some
cases, however, this computation is very difficult or even impossible to achieve.
Then, the next best thing is show that a sequence actually has a limit. (In that case,
it makes sense to look for ways to approximate this limit.) We will state one result,
which will be of particular importance in the next chapter, when we discuss series
of real numbers.

Theorem 2.14 (Monotone Convergence). Consider a sequence (an), which is de-
creasing and bounded below. Then (an) has a limit.

Similarly, consider a sequence (bn), which is increasing and bounded above. Then
(bn) has a limit.

Remark 2.15.
(1) In the above theorem, no statement about the location of the limit is made.

This is characteristic for a convergence criterion. It only gives us condi-
tions for a sequence to converge.

(2) We can state the theorem in a different way: A monotone sequence either
diverges to ±∞ or it has a limit l. (This gives us a connection between
monotonicity and convergence.)

(3) We can also ask what happens if a sequence (an) is bounded (but not
necessarily monotone). In this case it can be shown that a subsequence
converges, but in general not the whole sequence. (This is known as the
Bolzano–Weierstrass Theorem, but it is beyond the scope of this course.)

We conclude this part with an application of Theorem 2.14.

Example 2.16. We have seen that the sequence an =
(
1 + 1

n

)n considered in
Example 1.5 is monotonically increasing and bounded above by 3. Thus there is a
limit, which is called Euler’s constant e.

Example 2.17. Consider the sequence xn defined in Example 1.6. We have
seen that the sequence is monotonically decreasing: xn+1 ⩽ xn. Yet, the sequence
is bounded: xn ⩾

√
a. Thus, the sequence has a limit limn→∞ xn = l. Take the

recurrence relation (21) and pass to the limit there:

lim
n→∞ xn+1 =

1
2

(
lim
n→∞ xn +

a

limn→∞ xn
)

.

Thus the limit l has to satisfy the relation l = 1
2

(
l+ a

l

)
, that is l2 = a or l = ±√

a.
However, since all xn ⩾

√
a are positive, the limit l have to be positive as well.

Therefore l =
√
a.

Example 2.18. Let us consider (an), defined by

an+1 =
1
2
an(1 − an), a0 =

1
2

.

It is easy to check the following:
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a) If an ∈ [0, 1], then an+1 ∈ [0, 1].
b) If an ∈ [0, 1], then an+1 ⩽ an.

Indeed consider (a). Firstly a1 = 1
2 . Suppose that n ⩾ 1 and an ∈ [0, 1]. If an = 0

or 1 then an+1 = 0. Otherwise 0 < an < 1 and so 0 < 1 − an < 1. But this means
that

0 <
1
2
an(1 − an) <

1
2
an .

Thus an+1 ∈ [0, 1]. So by Mathematical Induction we can conclude that an ∈ [0, 1]
for all n ∈ N.

Now consider (b). As we have already seen, if an = 0 or 1 then an+1 = 0. So
an+1 ⩽ an (by (a)). Otherwise 0 < 1 − an < 1 (as we have already noted) so that

an+1 =
1
2
an(1 − an) <

1
2
an < an .

Thus an+1 ⩽ an for all n ⩾ 0.
Therefore, the sequence (an) is decreasing, and it is bounded below by c = 0.

Using Theorem 2.14, we conclude that (an) has a limit, say a.
In this case, we can also compute the limit a. For this, note first that limn→∞ an =

limn→∞ an+1 (this follows from Rem. 2.12, which is easy to show from the defini-
tion of the limit). Hence, we can take the limit in the defining equation to find (for
the second “=” in the equation below)

lim
n→∞an = lim

n→∞an+1 = lim
n→∞

(
1
2
an(1 − an)

)
But then by applying Theorem 2.7 we get that

lim
n→∞an =

1
2

lim
n→∞an(1 − lim

n→∞an)
and so since we know that the sequence (an) has a limit, which we denote a (i.e.
a = limn→∞ an) we get the equation

a =
1
2
a(1 − a).

This equation has the solutions a1 = 0 and a2 = −1, and the only possible limit
for (an) is therefore a = a1 = 0. We have thus shown that (an) converges to 0.

Example 2.19. We shall be careful when using the above technique to eval-
uate limits of recursively defined sequences. For example, take the sequence de-
fined by an+1 = −an. If we put limn→∞ an+1 = − limn→∞ an we shall conclude
limn→∞ an = 0. However, the sequence 1, −1, 1, −1, . . . does not have a limit at
all.
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3. Infinite Series

Given a sequence, (ak), we have so far investigated the behaviour of (ak) as
k → ∞. In some examples, however, we are not interested in the sequence (ak)
itself, but in what happens when we add up the elements ak. Adding up, the first
n terms, a1, . . . ,an, we can define

sn = a1 + . . . + an =

n∑
k=1

ak.

The number sn is called a partial sum. If we are interested in the sum of all numbers
ak, then—since adding an infinite quantity of numbers is not possible—we will
again consider a limit process, namely the limit of the sequence of partial sums
(sn). This leads to the idea of an infinite series.

3.1. Definition and Examples.

Definition 3.1. Let (ak) be a sequence, and let (as above) sn =
∑n

k=1 ak
denote the n-th partial sum. The infinite series

∑∞
k=1 ak is said to converge, if the

sequence of partial sums (sn) converges. We call s = limn→∞ sn the sum of the
series and write

s =

∞∑
k=1

ak.

(To denote that
∑∞

k=1 ak converges, we also use the notation
∑∞

k=1 ak <∞.)
If the sequence (sn) diverges to ±∞, then we say that the infinite series diverges

to ±∞ and write
∑∞

k=1 ak = ±∞.

Let us take a look at a few examples.
i) Let us take the interval [0, 1] and colour the left half [0, 1

2 ] in blue. Then
we colour in blue the left half [ 1

2 , 3
4 ] of the reminder [ 1

2 , 1] and so on. On
the n-th step the uncoloured part of the interval has the length 1

2n and
the coloured has the length 1

2 + 1
4 + 1

8 + . . . + 1
2n . In the limit n → ∞ the

whole interval will be coloured thus we shall agree that:

1 =
1
2
+

1
4
+

1
8
+ . . . =

∞∑
k=1

1
2k

.

The same Fig. 4 can be used to illustrate one of Zeno’s paradoxes: Achilles
and the Tortoise.

ii) More generally, if ak = qk for some fixed real number q ∈ R, then the
corresponding series

∑∞
k=0 q

k is called a geometric series. The geometric
series is one of the rare examples, for which the sum can be computed
explicitly. To see this, recall that

n∑
k=0

qk = 1 + q+ q2 + . . . + qn =
1 − qn+1

1 − q
, if q ̸= 1.
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Figure 4. Achilles and Tortoise

(If q = 1, then
∑n

k=0 q
k = n+ 1.)

Since we have an explicit formula for the n-th partial sum, we can
now easily investigate its behaviour as n tends to infinity. Since qn → 0
for |q| < 1, we obtain the following important result

∞∑
k=0

qk =

{
1

1−q
, if |q| < 1;∞, if q > 1.

(Note that no statement is made for the range q < 1. In this case the
series diverges, but does not approach infinity or minus infinity.)

iii) For ak = 1/k, we find s1 = 1, s2 = 1 + 1
2 , s3 = 1 + 1

2 + 1
3 , etc. Obviously,

for the sequence (ak) we have ak → 0, as k → ∞. But what happens to
the sequence of partial sum (sn) as n tends to infinity?
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To understand this, we group terms in1 ∑ak in a clever way:
∞∑

k=1

1
k
= 1 (> 1

2 )

+
1
2
+

1
3

(> 1
4 + 1

4 = 1
2 )

+
1
4
+

1
5
+

1
6
+

1
7

(> 1
8 + 1

8 + 1
8 + 1

8 = 1
2 )

+
1
8
+

1
9
+ . . . +

1
14

+
1

15
(> 1

16 + 1
16 + . . . + 1

16 + 1
16 = 1

2 )

+
1

16
+

1
17

+ . . . +
1

30
+

1
31

(> 1
32 + 1

32 + . . . + 1
32 + 1

32 = 1
2 )

+ . . .

So, we can always group terms in the sum, such that they add up
to more than 1/2. In particular, if we add up all terms in the sum on
the right-hand side, we have to add up ‘1/2’s infinitely many times. We
therefore conclude, that the sequence of partial sum is unbounded and
diverges. But this means that the series

∑∞
k=1

1
k

also diverges.
The infinite series ∞∑

k=1

1
k

is called the harmonic series, and is an important example of an infinite
series, for which the corresponding sequence (ak) tends to 0, but the
series

∑
ak still diverges.

Remark 3.2. The divergence of the harmonic series is extremely slow.
For example, to reach a sum of 4, we have to add up the first 30 terms in
the series. But to reach a sum of 20, we would have to add up 275 million
terms.

Example 3.3. As an application, we want to use the geometric series to prove
that

0.99999 . . . = 0.9 = 1

For this, note that the decimal representation 0.9999 . . . describes the number

0.99999 . . . = 0 +
9

101 +
9

102 +
9

103 + . . . = 9 ·
∞∑

k=1

1
10k

.

1Note the use of
∑

ak as shorthand for
∑∞

k=1 ak.
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Now, using the formula for the geometric sum and observing that

1
100 +

∞∑
k=1

1
10k

= 1 +

∞∑
k=1

1
10k

=

∞∑
k=0

1
10k

,

we indeed find

0.99999 . . . = 9 ·
(

1
1 − 1

10

− 1

)
= 9 · 1

9
= 1.

As noted above, it is an exception that the sum of an infinite series can be
computed explicitly. Here is some remarkable series with intriguing sums:

e = 1 +
1
2!

+
1
3!

+
1
4!

+
1
5!

+ . . . =
∞∑

k=1

1
k!

;

π

4
= 1 −

1
3
+

1
5
−

1
7
+

1
9
− . . . =

∞∑
k=1

(−1)k−1

2k− 1
;

π2

6
= 1 +

1
22 +

1
32 +

1
42 +

1
52 + . . . =

∞∑
k=1

1
k2 .

Usually, the main tasks when given an infinite series is to decide whether it
converges or not. We will discuss a variety of criteria for this.

Remark 3.4. It is helpful to remember that the convergence of an infinite series∑∞
k=1 ak

is equivalent to the convergence of the sequence of partial sums sn =∑n

k=1 ak
. Implication in one way is explicitly required by Definition 3.1. To see the

opposite connection, take an arbitrary sequence (sn) and define a new sequence
(an) by the relations:

a1 = sn, and an = sn − sn−1, for n > 1.

We can directly check that (sn) is the sequence of partial sums for the series∑∞
k=1 ak. Thus we can use all results for sequences obtained earlier to derive

convergence of series and wise-verse, all new results for series can be used to
investigate convergence of sequences.

3.2. Properties of (convergent) series. It is not easy to decide whether a series
converges. For the example of the harmonic series we have noted above that the
divergence is so slow, that it is almost impossible to detect in numerical experi-
ments. We will learn about different tests that can be used for infinite series. The
first one is a fairly easy to check condition for divergence.

Lemma 3.5 (Vanishing Test). Consider
∑∞

k=1 ak. If the infinite series converges,
then limk→∞ ak = 0.
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Proof. Let sn =
∑n

k=1 ak denote the n-th partial sum. By the assumption
in the lemma, the infinite series converges, and therefore limn→∞ sn exists. But
then—using a standard trick from the theory of convergent sequences—the limit
limn→∞ sn−1 must exist, too, and we have limn→∞ sn = limn→∞ sn−1. Therefore,

0 = lim
n→∞ sn − lim

n→∞ sn−1

= lim
n→∞ (sn − sn−1)

= lim
n→∞

(
n∑

k=1

ak −

n−1∑
k=1

ak

)

= lim
n→∞

(
n−1∑
k=1

ak + an −

n−1∑
k=1

ak

)
= lim

n→∞an.

□

Remark 3.6. Important: You can only use this lemma in the following way

If lim
k→∞ak ̸= 0, then

∑∞
k=1 ak cannot converge.

(That is why the result is called the vanishing test.)
The fact that limk→∞ ak = 0 does not imply the convergence of the series.

Indeed, for the harmonic series
∑∞

k=1 ak, the sequence ak = 1/k tends to zero, but
the series diverges to infinity.

In order to discuss further tests, we will first introduce the concept of absolute
convergence.

Definition 3.7. An infinite series
∑∞

k=1 ak is called absolutely convergent, if the
series

∑∞
k=1 |ak| converges.

Obviously, there is only a difference between the two series in the definition,
if (ak) contains negative elements (because otherwise |ak| = ak for all k). But in
this case, we can expect the sum

∑∞
k=1 ak to be smaller than

∑∞
k=1 |ak|, since both

positive and negative numbers are added. In particular, the absolute convergence
of a series implies its convergence. This is exactly what the next lemma states.

Lemma 3.8. If
∑∞

k=1 |ak| converges, then
∑∞

k=1 ak also converges, and we have∣∣∣∣∣
∞∑

k=1

ak

∣∣∣∣∣ ⩽
∞∑

k=1

|ak|.

In the following we will discuss several criteria for the absolute convergence
of an infinite series. They are useful, because we have just learned that if a series
satisfies a condition for absolute convergence, then it will also converge.
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Similar to the methods we used for sequences, a main technique is to compare
the terms in an infinite series with terms in a series that is known to converge (or
to diverge). Indeed, we have the following theorem.

Theorem 3.9 (Comparison test). Let
∑∞

k=1 bk be a series of non-negative numbers,
and assume that

∑∞
k=1 bk converges (i.e.

∑∞
k=1 bk < ∞). Furthermore, let

∑∞
k=1 ak be

an infinite series, such that |ak| < c · bk, for all k with some c ∈ R. Then the series∑∞
k=1 ak is absolutely convergent.

Proof. We consider the partial sums for the series (|ak|). So, let sn =
∑n

k=1 |ak|
denote the n-th partial sum. Then, since obviously all |ak| ⩾ 0, the sequence (sn)
is increasing. Moreover,

n∑
k=1

|ak| ⩽
n∑

k=1

c · bk

= c

n∑
k=1

bk

⩽ c

∞∑
k=1

bk.

Hence, the sequence (sn) is bounded, and therefore, by Theorem 2.14, the se-
quence (sn) converges. But this implies

∑n
k=1 |ak| < ∞, that is, the infinite series

formed using the (ak) is absolutely convergent. □

Before we use this result, let us state an immediate consequence

Lemma 3.10. For the sequence (ck) with ck ⩾ 0 for all k ∈ N, assume that∑∞
k=1 ck = ∞ (i.e.

∑∞
k=1 ck diverges to +∞). Furthermore, assume that for the se-

ries
∑∞

k=1 ak, we have ak ⩾ b · ck for all k ∈ N for some b ∈ R such that b > 0. Then∑∞
k=1 ak diverges, that is,

∑∞
k=1 ak = ∞.

The comparison test leads us to a convergence result for a very important type
of infinite series.

Example 3.11. i) Consider ∞∑
k=1

1√
k

.

We can use the comparison test with the sequence ck = 1/k. Indeed, we
have

1√
k
⩾

1
k

, ∀k ∈ N,

and
∑∞

k=1
1
k
= ∞. Therefore, Lemma 3.10 implies that∞∑

k=1

1√
k
= ∞.
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ii) Now, consider ∞∑
k=1

1
k2 .

To decide about the convergence of this infinite series, we consider the
telescopic series ∞∑

k=1

1
k(k+ 1)

.

We have already discussed, that

1
1 · 2

+
1

2 · 3
+ . . . +

1
n(n+ 1)

=
n

n+ 1
,

and this implies ∞∑
k=1

1
k(k+ 1)

= lim
n→∞ n

n+ 1
= 1 .

Now, we also have∣∣∣∣ 1
(k+ 1)2

∣∣∣∣ =
1

(k+ 1)2 ⩽
1

k(k+ 1)
,

and so, applying the comparison test (i.e. Theorem 3.9), we get∞∑
k=1

1
(k+ 1)2 < ∞

However∞∑
k=1

1
k2 = 1 +

1
22 +

1
32 + . . . = 1 +

∞∑
k=1

1
(k+ 1)2

We thus conclude that ∞∑
k=1

1
k2 < ∞

(i.e. that the series
∑∞

k=1
1
k2 converges).

The last 2 examples were special cases of a more general result, the proof of
which is beyond the scope of this course. Nevertheless, the result is so important,
that it cannot be left out.

Lemma 3.12. Consider the infinite series∞∑
k=1

1
kα

, with α > 0.

Then the series converges, if α > 1, and it diverges for α ⩽ 1.
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Remark 3.13. Note that in the same way as for sequences, the convergence of a
series is—by the very definition—an asymptotic property. So, if any the conditions
above is only satisfied for a tail of the sequence (ak), that is, for all k greater than
some number K, then we can still use this test to decide about convergence. In
other words, the first 1, 2, . . . ,K terms of the sequence (ak) play no role.

3.3. The ratio test. In the last part of this chapter we will discuss the most
important test for the convergence of an infinite series—the ratio test.

Theorem 3.14 (Ratio Test or D’Alembert’s Test). Consider the infinite series∑∞
k=1 ak, and assume that the limit

L = lim
k→∞

|ak+1|

|ak|

exists. Then,
• if L < 1, the series

∑∞
k=1 ak converges absolutely;

• if L > 1, the series diverges.

Proof. We first consider the case L < 1: The idea of the proof is to compare
the series with an appropriate geometric series. For this, let us choose a number
q, such that L < q < 1. Since |ak+1|

|ak|
→ L, and letting ε = q − L, we know (by the

definition of convergence) that there exists a number K̂ ∈ N, such that

L− ε <
|ak+1|

|ak|
< L+ ε ,

for all k > K̂. In particular, as L+ ε = L+q−L = q, and setting K = K̂+ 1, we thus
know that

|ak+1|

|ak|
< q ,

for all k ⩾ K. In other words
|ak+1| < q|ak| ,

for all k ⩾ K. Thus we see that |aK+1| < q|aK|, and |aK+2| < q|aK+1| < q
2|aK|, and

more generally that, for any number n > 2,

|aK+n| < q|aK+n−1| < q
2|aK+n−2| < . . . < qn−1aK+1 < q

n|aK|.

Since q < 1, we can use the comparison test for the series
∑∞

k=K |ak| with the
convergent geometric series

∑∞
k=1 q

k. Indeed note that
∑∞

k=K |ak| can be rewritten
as

∑∞
k=0 |aK+k| and we see that

|aK+k| ⩽ |aK| · qk

for all k ⩾ 0. Hence by the comparison test Theorem 5 (with the constant c =
|aK|) and the fact that

∑∞
k=1 q

k converges, we know that the series
∑∞

k=K |ak| =∑∞
k=0 |aK+k| converges. But this implies that the series

∑∞
k=1 |ak| converges (see

the above remark). I.e.
∑∞

k=1 ak converges absolutely.
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For the second case, L > 1, we use a similar argument as above to see that there is
a number K, such that |ak+1| > |ak| for all k > K. But then ak ̸→ 0, and therefore,
by the vanishing test, the series does not converge. □

Example 3.15.
a) For

∑∞
k=1

1
k! we have ak = 1

k! , and therefore

|ak+1|

|ak|
=

1
(k+1)!

1
k!

=
k!

(k+ 1)!
=

1
k+ 1

.

Therefore, limk→∞ |ak+1|

|ak|
= 0 < 1, and we conclude that the series con-

verges.

b) For
∑∞

k=1
k4

4k , we have ak = k4

4k , and thus

|ak+1|

|ak|
=

(k+ 1)4 · 4k

k4 · 4k+1 =
1
4
(k+ 1)4

k4 .

Therefore, limk→∞ |ak+1|

|ak|
= 1

4 < 1, and the series converges.

c) For
∑∞

k=1
(k+1)2

k4+1 we have ak = (k+1)2

k4+1 . In this case

|ak+1|

|ak|
=

(k+ 2)2 · (k4 + 1)
((k+ 1)4 + 1) · (k+ 1)2

Now, limk→∞ |ak+1|

|ak|
= 1. In this case the ratio test does not allow us to

make a statement about whether the series converges or diverges. Here
we need to use a different test. For example, observing that ak = (k+1)2

k4+1 ≈
1
k2 for large values of k, we could use the comparison test.

3.4. Alternating series. So far, all tests have been for the absolute convergence
of a series. We can use them to decide about the convergence of a series, since
every absolutely convergent series must be convergent. A natural question is, if
there are series that are convergent, but not absolutely convergent.

The answer is yes, and an example can be found in the class of alternating
series.

Definition 3.16. An infinite series
∑∞

k=1 ak is called alternating, if ak ·ak+1 <
0.

So, in an alternating series, the terms ak always change sign. Examples are
given by series of the form∞∑

k=1

(−1)k

k!
,

∞∑
k=1

(−1)k · k2

k4 + 1
, etc.

A convergence test for alternating series goes back to the German mathemati-
cian Leibniz.

52



CHAPTER 2. SEQUENCES AND SERIES 3. INFINITE SERIES

Lemma 3.17 (Alternating Test or Leibniz’s Test). Let
∑∞

k=1 ak be an alternating
series. Assume that

(1) |ak| → 0 as k→ ∞; and
(2) |ak| is decreasing, i.e. |ak+1| < |ak| for all k.

Then the series
∑∞

k=1 converges.

To prove the Lemma we notice that the sequence of partial sums (sn) is such
that the intervals [sn, sn+1] are nested, that is [sn+1, sn+2] ⊂ [sn, sn+1], and their
length sn+1 − sn = an+1 tends to zero. Such sequence of intervals has the only
common point which is the limit for the sequence of intervals’ endpoints sn.

s1s2 s3s40

Figure 5. Partial sums of an alternating series.

Example 3.18 (Alternating harmonic series). We will discuss the alternating
harmonic series, using this lemma. This series is defined as∞∑

k=1

(−1)k+1

k
= 1 −

1
2
+

1
3
−

1
4
± . . .

Hence, for this series ak = (−1)k+1

k
and |ak| =

1
k

. Obviously, |ak| → 0 as k → ∞,
and moreover, |ak| is a decreasing sequence. Hence, by the alternating series test
this series converges.

We know already that the series is not absolutely convergent, because the
series

∑∞
k=1 |ak| is just the harmonic series, which diverges.

Remark 3.19. The Alternating Test inherited the first condition limkto∞ |ak| →
0 from the Vanishing Test, see Lem. 3.5, and it alone is not sufficient for conver-
gence of an alternating series as the next example shows.

Example 3.20. Define

ak =


−

1
2m

, if k = 2m, m ∈ N.

1
m

, if k = 2m+ 1, m ∈ N.

Then the series is alternating and limk→∞ ak = 0—consider separately when k is
even and odd. However, for the series

∑n
k=1 ak the partial sums are:

s2m =

m∑
k=1

1
k
−

m∑
k=1

1
2m

>

m∑
k=1

1
k
− 1.

They tend to infinity because the partial sums f the harmonic series do. The series∑∞
k=1 ak diverges in the absence of the monotone condition |ak+1| < |ak|.
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3.5. Arithmetics of convergent series. We will only briefly list some rules for
computations with convergent series. The first 2 of these have already been used
in calculations earlier.

Lemma 3.21. If the series
∑∞

k=1 ak and
∑∞

k=1 bk are convergent, then

•
∞∑

k=1

(ak + bk) =

∞∑
k=1

ak +

∞∑
k=1

bk,

•
∞∑

k=1

α · ak = α

∞∑
k=1

ak, for any α ∈ R.

Furthermore, if
∑∞

k=1 ak and
∑∞

k=1 bk are absolutely convergent, then

•
( ∞∑

k=1

ak

)
·
( ∞∑

l=1

bl

)
=

∞∑
k=2

k−1∑
l=1

al · bk−l.

Note that the last double sum is a way to write down all possible products of
any term from the first sum and any term from the second sum. Furthermore, any
such product will appear at the double sum only once.

4. Power series

As an application of the theory presented here, we now have a look at power
series. Power series have been introduced in MATH1050, and we want to recall
the most important results here and put them in relation to the general theory we
have considered so far.

4.1. Radius and Interval of Convergence.

Definition 4.1. A power series is a series of the form∞∑
k=1

ckx
k,

where (ck) is a given sequence of coefficients and x ∈ R.

So, for a power series the terms are of the form ak = ckx
k. If x is varied,

then the value of the series changes, and we can think of the series as describing a
function f(x) =

∑∞
k=1 ckx

k.

Example 4.2. If ck = 1/k!, then a power series can be formed as
∑∞

k=0
xk

k! , and
we have seen already that ∞∑

k=0

xk

k!
= ex.

We will not discuss what the relation between a function f and its power
series is, here. This is part of the MATH1050 course. We concentrate on finding
out conditions for the convergence of a given power series.
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To decide about the convergence of a power series we can apply the ratio test.
With ak = ckx

k (so that |ak| = |ck| · |x|k) we have

|ak+1|

|ak|
=

|ck+1|

|ck|
· |x|

k+1

|x|k
=

|ck+1|

|ck|
· |x|.

Thus, assuming limk→∞ |ck+1|

|ck|
= l exists, we find that

lim
k→∞

|ak+1|

|ak|
= l|x|.

Therefore,
• the series converges for |x| < 1

l
,

• the series diverges for |x| > 1
l
.

Introducing R = 1/l, then the series diverges for x ∈ (−R,R), and it diverges for
x < −R or x > R.

Note that R = limk→∞ |ck|

|ck+1|
. This motivates our next definition.

Definition 4.3. The number

R = lim
k→∞

|ck|

|ck+1|

is called the radius of convergence of the power series
∑∞

k=1 ckx
k.

The ratio test does not give any information about what happens for x = ±R.
Indeed, these 2 cases have to be studied for each series individually. After such an
investigation we may establish the interval of convergence. In fact, convergence may
occur either at both end-points, or only one of them or neither. Thus, in general
there are four possibilities for the interval of convergence: [−R,R], [−R,R), (−R,R]
or (−R,R) depending on the convergence at the end-points.

Example 4.4. As an example we consider the series∞∑
k=1

xk

k
.

Here, ck = 1/k and we see that

|ck|

|ck+1|
=

k

k+ 1
→ 1 as k→ ∞.

I.e. the radius of convergence of the series is R = 1 and we conclude that the series
converges if |x| < 1, that is, if x ∈ (−1, 1).(

Note that reasoning directly via the ratio test gives

|ak+1|

|ak|
=

k

k+ 1
|x| → 1 · |x| as k→ ∞.
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Hence the series converges if 1 · |x| < 1, i.e. if |x| < 1.
)

In order to find out what happens for x = ±1, we substitute these 2 values
into the series:

• x = 1: In this case the series is
∑∞

k=1
1
k

, i.e. it is the harmonic series which
diverges.

• x = −1: Now the series is
∑∞

k=1
(−1)k

k
.Note that

∞∑
k=1

(−1)k+1

k
= (−1) ·

∞∑
k=1

(−1)k

k
.

Thus the series converges as the alternating harmonic series
∑∞

k=1
(−1)k+1

k

converges (by application of the alternating series test).

In summary, the power series
∑∞

k=1
xk

k
converges, if x ∈ [−1, 1).

4.2. Illustration: the Euler formula. Let us for the moment return to complex
numbers. The theory of sequences and series can be used for complex numbers
with minimal adjustments. Already know that Euler’s number e = 2.71828 . . . can
be defined as the limit of a series

e =

∞∑
n=0

1
n!

= 1 +
1
1!

+
1
2!

+
1
3!

+
1
4!

+
1
5!

+ . . .

In a similar way we can define the exponential exp(x) of a number x ∈ R as

ex =

∞∑
n=0

xn

n!
= 1 +

x1

1!
+
x2

2!
+
x3

3!
+
x4

4!
+
x5

5!
. . . .

In particular, we can use this series to evaluate eiπ. Plotting partial sums sn on
the complex plane we can visualise Euler’s identity eiπ + 1 = 0 as on Fig. 6.

Expanding eiϕ into the power series we obtain:

exp(iϕ) =
∞∑

n=0

(iϕ)n

n!
= 1 +

(iϕ)1

1!
+

(iϕ)2

2!
+

(iϕ)3

3!
+

(iϕ)4

4!
+

(iϕ)5

5!
. . .

= 1 + i
ϕ1

1!
−
ϕ2

2!
− i
ϕ3

3!
+
ϕ4

4!
+ i
ϕ5

5!
. . .

= 1 −
ϕ2

2!
+
ϕ4

4!
∓ . . . + i

(
ϕ1

1!
−
ϕ3

3!
+
ϕ5

5!
∓ . . .

)
(22)

where we have used i2 = −1, i3 = −i, etc., and where we have changed the order
of terms in the sum. Comparing (22) with Euler’s formula eiϕ = cosϕ+ i sinϕ we
equate the real and imaginary parts of both equations. This gives power series for
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1

i

s1

s2s3

s4 s5

s6s7

s8 s9

s10

Figure 6. Euler’s identity eiπ + 1 = 0 graphically represented
through the exponent series.

sine and cosine functions:

sin(x) =

∞∑
k=0

(−1)k
x2k+1

(2k+ 1)!
= x−

x3

3!
+
x5

5!
−
x7

7!
± . . . ,

cos(x) =

∞∑
k=0

(−1)k
x2k

(2k)!
= 1 −

x2

2!
+
x4

4!
−
x6

6!
± . . .
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CHAPTER 3

Vectors

1. Introduction

We often meet a quantity, which has a direction and a magnitude. Standard
examples can be found in mechanics: a force, for example. Think of a force acting
on (=pushing) a ball. Then the outcome of this push will depend both on the
direction of the force and on its strength. Another example from physics are
velocities. In geometry, translations of a plane or space are defined by the direction
and distance as well.

Such quantities are described by mathematical object called a vectors. The
main properties of vectors that they can be added and multiplied by a number. In
this context numbers are called scalars.

Graphically, vectors are usually represented by arrows (on the plane or in
space). The direction of the arrow corresponds to the direction of the vector, and
its length to the vector’s magnitude.

We will indicate vectors in this script by bold letters, i.e, like a, b, v, etc. In
writing, there are several options. It is common to denote vectors as a⃗, b⃗ or v⃗, or as
a, b or v. It does not matter, what method is chosen, but it is important (and very
helpful) to distinguish vectors from numbers (scalars), in order to avoid confusion,
when such quantities are mixed.

We have already met vectors on the plane in Section 5, Chap. 1 and seen that
complex numbers are helpful to describe geometrical properties, cf. Lem. 5.18
and 5.19, Chap. 1. To treat vectors in 3D space, which we denote by R3, we will
use quaternions. For a geometrical introduction of quaternions see also [1, Part II,
p. 52].

In this (elementary) introduction to vectors we will define the main opera-
tions with vectors and discuss their relations to the equations for lines, planes and
spheres.

2. Quaternions and vectors

To define complex numbers we used the imaginary unit i, such that i2 = −1.
To describe vectors in R3 we need three imaginary units i, j and k, which will be
called base quaternions.
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2.1. Quaternion: introduction. A quaternion is an expression of the form:

(23) u = u0 + u1i+ u2j+ u3k, where u0,u1,u2,u3 ∈ R.

The real number u0 = Re(u) is called the real part ( or scalar part) of the quaternion
u. The expression u1i + u2j + u3k = Im(u) is called the imaginary part of the
quaternion u. We keep this name to stress the similarity to complex numbers.
It may be also called the vector part of the quaternion u. We will show that it is
convenient to identify vectors in R3 with expressions bi + cj + dk, that is with
quaternions with vanishing real part.

Similarly to complex case we define the conjugated quaternion:

(24) ū = u0 − u1i− u2j− u3k, where u = u0 + u1i+ u2j+ u3k.

We define addition of quaternions component-wise, that is by the formula:

(25) a+ b = (ao + b0) + (a1 + b1)i+ (a2 + b2)j+ (a3 + b3)k,

where

a = a0 + a1i+ a2j+ a3k,
b = b0 + b1i+ b2j+ b3k.

We can easily check that such addition is commutative and associative, see (1)
and (2). Also we define a multiplication of a quaternion by a real number (scalar)
by component-wise multiplication:

(26) ta = ta0+ta1i+ta2j+ta3k, where a = a0+a1i+a2j+a3k and t ∈ R.

We can again verify the commutativity tu = ut, stu = tsu and associativity
s(tu) = (st)u of such multiplication.

To make a connection between quaternions and vectors we introduce the con-
cept of coordinates and position vectors.

2.2. Position vectors and coordinates. Let us consider the 3-dimensional space
R3 and denote the coordinate axes as usual by x, y and z. (All of the following
works in R2 in the same way; we just do not have the z-direction.) Every point
P ∈ R3, can be characterised by its coordinates P = (p1,p2,p3), where p1 denotes
the (signed) distance of P to the y-z plane, p2 is the distance of P to the x-z plane,
and p3 is the distance of P to the x-y plane, see Figure 1.

We can associate points in R3 with vectors in R3 by introducing the following
vectors

• i as the vector with magnitude ∥i∥ = 1 in the direction of the x-axis;
• j as the vector with magnitude 1 in the direction of the y-axis;
• k as the vector with magnitude 1 in the direction of the z-axis.
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z

x

P=(p ,p ,p )

0

y

2 31

p p

p

1 2

3

Figure 1. Coordinates of a point P ∈ R3 and the corresponding
position vector.

Using the vectors (i, j,k), a point in R3 can be associated with its position vector,
that is the vector connecting P to the origin O. This vector is denoted by

−→
OP, and

if P = (p1,p2,p3), we have

−→
OP = p1i+ p2j+ p3k.

We also write
−→
OP = (p1,p2,p3) as an abbreviation for the position vector. (It does

not really matter, whether to write the position vector as a row vector or as a
column vector. In this course, we use row vectors.)

Interpreting vectors as position vectors of points in R3, it is now straight-
forward to express formulas for the addition of vectors by the triangle rule and
addition of the respective quaternions (25), see the left drawing on Fig. 2. It is
worth to notice that addition of vectors can be done either by the triangle rule or
the parallelogram rule—with the same result, see Fig. 3.

Similarly, we can visualise the multiplication by scalar, see the right drawing
on Fig. 2. So, by multiplying a vector with a real number, we only change its
magnitude, but not its direction. More precisely, let ∥a∥ denote the magnitude of
the vector a. Then

∥ra∥ = |r|∥a∥, for all r ∈ R.
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a1 b1

a2

b2

a1 + b1

a2 + b2

a1 t · a1

a2

t · a2

Figure 2. Addition and multiplication of vectors through coordinates.

a

b
a+b

a)

a

a+b b

b)

Figure 3. Addition of 2 vectors using the parallelogram law in on
the left in a) or, equivalently, the triangle law in panel b).

Example 2.1. For a = i + 3j − k = (1, 3,−1) and b = 2i + 4j − 3k = (2, 4,−3),
we have

2a− b = (2, 6,−2) − (2, 4,−3) = (0, 2, 1) = 2j+ k.

Remark 2.2. All of the above applies in a straightforward manner to vectors
in R2 (or more generally to vectors in Rn). In the case of a 2-dimensional vector
we can simply forget about the k-coordinate and set it to 0 in all formulas.

3. Scalar product and vector product

We have seen in Lem. 5.18 and 5.18, Chap. 1 that product of complex numbers
can express the property of vectors to be parallel and orthogonal. We want to
introduce a product of quaternions which will be acting in a similar way.
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3.1. Multiplication of quaternions. If we assume that product is associative
and has the distributive law then it will be enough to define product of base
quaternions. Following the complex number case we put

(27) i2 = −1, j2 = −1, k2 = −1.

Furthermore we need to put

(28) ij = k.

The motivation for this can be found in rotations: after we rotate by 180◦ around
x-axis and by 180◦ around y-axis, the result will be the same as of a single rotation
by 180◦ around z-axis. Another way to remember the quaternion multiplication is
through the formula:

(29) i2 = j2 = k2 = ijk = −1.

We can also use the following mnemonic diagram:

i

jk

The product of two base quaternion is the third one, it is come with the sign + if
we pass from the first factor to the second along the blue arrows and the sign is −
if we go in the opposite direction.

It is an important distinction of quaternion from all other numbers we studied
so far is that quaternion multiplication is not commutative:

(30) ij = −ji, ik = −ki, kj = −jk.

From now on we have enough information for the multiplication of quaternions.
First, we multiply both sides of (28) from the left by i and get iij = ik, or −j = ik
using (27). Thus, ki = j by (30). Similarly we get jk = i.

To start, we calculate the product aā of a quaternion and its conjugated (24):

(31) āa = aā = a2
0 + a

2
1 + a

2
2 + a

2
3, where a = a0 + a1i+ a2j+ a3k.

We obtained the real number. In the special case of vectors:

(a1i+ a2j+ a3k)(−a1i− a2j− a3k) = a
2
1 + a

2
2 + a

2
3.

Furthermore, this is a simple application of Pythagoras’ theorem to see that the
last expression gives the square of vector’s length. We will also call this magnitude
the norm of the vector.

Definition 3.1. The norm ∥a∥ of the vector a = (a1,a2,a3) = a1i + a2j + a3k
is defined as

(32) ∥a∥ =
√
−aa =

√
aā =

√
a2

1 + a
2
2 + a

2
3.
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Note, the following property of the norm: ∥λa∥ = |λ|∥a∥ for any real λ. Such
a scaling can be used to produce a vector with the same direction and any new
norm. In particular, for any non-zero vector a the vector b = 1

∥a∥a has the same

direction and unit norm: ∥b∥ = ∥a∥
∥a∥ = 1.

In general the product of two vectors as quaternions is:

ab = −(a1b1 + a2b2 + a3b3)(33)

+ (a2b3 − a3b2)i+ (a3b1 − a1b3)j+ (a1b2 − a2b1)k,(34)

where
a = a1i+ a2j+ a3k and b = b1i+ b2j+ b3k.

As we see, the product of two vectors has both the real and imaginary parts.
They both deserve a special attention. To begin with, we notice the following
consequences of (33) which split the non-commutative product into commuting
and anti-commuting parts:

(35) Re(ab) = Re(ba), Im(ab) = −Im(ba).

3.2. The scalar product.

Definition 3.2. The scalar product (or dot product) a ·b of two vectors a and b
is defined as

(36) a · b = −Re(ab) = −
1
2
(ab+ ba) = a1b1 + a2b2 + a3b3,

where a = a1i+ a2j+ a3k and b = b1i+ b2j+ b3k.

Remark 3.3. The scalar product of two vectors is a real number, which is also
called scalar in opposition to vectors.

From the definition (36) and properties (35) we have a·b = b·a. Also, because
of quaternions multiplication law we have the following properties

(1) a · (b+ c) = a · b+ a · c;
(2) (ra) · b = r(a · b)

Geometrical meaning of the scalar product is reviled by the following statement.

Lemma 3.4. The scalar product can be geometrically presented as:

(37) a · b = ∥a∥ · ∥b∥ · cos θ,

where θ denotes the angle between a and b.

Proof. We calculate:

∥a+ b∥2 = −(a+ b)(a+ b)

= −aa− ba− ab− bb

= ∥a∥2 + 2a · b+ ∥b∥2.
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Thus:

2a · b = ∥a+ b∥2 − ∥a∥2 − ∥b∥2

= 2∥a∥ · ∥b∥ · cos θ,

by the Cosine Rule: ∥a+ b∥2 = ∥a∥2 + ∥b∥2 + 2∥a∥ · ∥b∥ · cos θ. □

Corollary 3.5. (1) If a and b are perpendicular vectors, then θ = π/2, and
therefore cos θ = 0. We conclude that a · b = 0.

(2) If a and b are parallel vectors, with θ = 0, we have cos θ = 1, and thus
a · b = ∥a∥ · ∥b∥. In particular, for every vector a we find that a · a = ∥a∥2.

Obviously, formula (37) can be used to compute the angle between vectors.

Example 3.6. Compute the angle θ of the vector a = (1, 2, 3) with the x-axis.
A general vector along the x-axis is of the form b = (x, 0, 0). Then, if θ denotes

the angle between a and b, we have

cos θ =
a · b

∥a∥ · ∥b∥ =
(1, 2, 3) · (x, 0, 0)

∥(1, 2, 3)∥ · ∥(x, 0, 0)∥ =
x√
14x

=
1√
14

.

We conclude that θ = arccos(1/
√

14). (In particular, we see that—as expected—
the angle does not depend on the value of x.)

Example 3.7. In a triangle, an altitude is a segment of the line through a vertex
perpendicular to the opposite side. We use the scalar product to show that three
altitudes are concurrent1, that is all three meet at a point—the orthocenter of the
triangle, see Fig. 4.

A B

C

H

a
b

c

Figure 4. Three altitudes of a triangle meet at its orthocenter.

Let ABC be a triangle and H be the intersection of two altitudes from vertices
A and B. Denote by a, b and c vectors from H to A, B and C respectively. Using

1See http://www.cut-the-knot.org/triangle/altitudes.shtml for the surprising history and
various proofs of this result.
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a

b

b cos θ

θ

Figure 5. Given two vectors a and b with angle θ between them,
the projection of b onto a is given by ∥b∥ cos θ.

the scalar product, we write the given orthogonality as

a · (b − c) = 0 and b · (a − c) = 0.

Opening the brackets we obtain:

a · b − a · c = 0 and b · a − b · c = 0.

Subtracting one from another we conclude

b · c − a · c = 0 or, equivalently (b − a) · c = 0.

Thus the line from H to C is the third altitude of the triangle ABC and H is its
orthocenter.

Apart from its connection to the angle between vectors, there is a second geo-
metric interpretation of the scalar product. This one is particularly useful for
computing distances between geometrical objects (like the distance from a point
to a plane or the distance between 2 straight lines). For this, consider the 2 vectors
in Figure 5. Using simple trigonometry, we see that the proportion of b in the di-
rection of a (i.e. the length of the perpendicular projection) is given by ∥b∥ cos θ,
where θ denotes the angle between a and b. Comparing this with the formula for
the scalar product, we find that

‘projection of b onto a’ =
a · b
∥a∥ .
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Remark 3.8. So far, all the formulas have been stated for vectors in R3. As
usual, if we deal with 2-dimensional vectors, then we simply ignore the third
component and find that (v1, v2) · (w1,w2) = v1w1 + v2w2.

3.3. The vector product in R3. Next, we discuss the imaginary part of the
product (34). In contrast to the scalar product, which is defined for vectors in all
dimensions, this vector product is only defined for three-dimensional vectors.

Definition 3.9. Let a,b ∈ R3 be three-dimensional vectors. The vector product
(or cross product) a× b is defined by:

a× b = Im(ab) =
1
2
(ab− ba)(38)

= (a2b3 − a3b2)i+ (a3b1 − a1b3)j+ (a1b2 − a2b1)k,

In contrast to the scalar product, the vector product of two vectors is another
vector (hence the name).

Lemma 3.10. a × b is a vector, which is perpendicular to both a and b, and which
has norm

∥a× b∥ = ∥a∥ · ∥b∥ · sin θ,
where θ denotes the angle between a and b.

Proof. To establish orthogonality we use the scalar product:

a · (a× b) =
1
2
a · (ab− ba)

= −
1
4
(a(ab− ba) + (ab− ba)a)

= −
1
4
(aab− aba+ aba− baa)

= −
1
4
(−∥a∥2b+ b∥a∥2)

= 0.

We used that the multiplication by the real number ∥a∥2 is commutative. Since
the scalar product vanishes, a and a× b are orthogonal.

We will calculate the vector product in the 2D position. The formula ∥a∥ ·
∥b∥ · sin θ gives the area S of parallelogram spanned by vectors a and b. This area
can be also calculated if we will subtract from the area of the rectangle the area of
shaded region on the Fig. 6:

S = (a1 + b1)(a2 + b2) − a1a2 − b1b2 − 2a2b1

= a1a2 + b1a2 + a2 + a1b2 + b1b2 − a1a2 − b1b2 − 2a2b1

= a1b2 − a2b1

□
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b1

b1
a1

a1

b2

b2

a2

a2

S

Figure 6. Area of the parallelogram

Remark 3.11. The direction of a × b is not completely determined by the
orthogonality condition, since there are 2 options for the vector to be perpendicular
to the two given vectors. In order to remove this ambiguity, the right-hand rule is
used to determine the direction of a× b.

Remark 3.12. Another way to express this formula is to make use of deter-
minants. If you are familiar with the concept of a determinant, then you can also
remember that

(a1,a2,a3)× (b1,b2,b3) =

∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ .
Example 3.13. Find a vector v, which is perpendicular to the 2 vectors a =

(3, 0, 1) and b = (1, 1,−2) and which has norm ∥v∥ = 1.

We first compute a vector c that is perpendicular to both a and b and adjust
the length in a second step. We use the vector product and set

c = a× b = (3, 0, 1)× (1, 1,−2) = (−1, 7, 3).

(To make sure we have not made a mistake, we can easily check that c ·a = c ·b =
0.)

Having computed a vector perpendicular to both a and b, we still need to
adjust the norm. So, let v = rc, and let us compute r. We want to have ∥v∥ = 1,
and so need to solve

∥v∥ = ∥rc∥ = |r| · ∥c∥ = 1.
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Therefore, we choose r = 1/∥c∥. A simple computation shows ∥c∥ =
√

59, and so
the desired vector is

v =
1√
59

(−1, 7, 3).

Remark 3.14. It worth to highlight the relation between orthogonality and two
types of products we considered:

(1) To check orthogonality of two vectors a and b we use their scalar product:
a · b = 0.

(2) To build a vector orthogonal to vectors a and b we use their vector product:
a× b = 0.

4. Lines, Planes and Spheres

In the last part of this chapter, we will discuss the equations for (straight) lines,
planes and spheres using vectors.

4.1. Equations for lines. Before deriving equations, let us think about what
(geometrical) data we need to characterise a line. There are several options:

i) A point P, and a vector v determine a unique line through P in the direc-
tion of v.

ii) Two points P1 and P2 determine the line connecting them.
iii) In R2, a line is determined by its slope and a point P, through which it

goes.
Let us now see how this data can be turned into equations.

i) For the first case, let Q be an arbitrary point on the line. Then we have

(39)
−→
OQ =

−→
OP + sv,

for some s ∈ R. (As usual,
−→
OQ denotes the position vector of the point

Q.) If the value of the parameter s is changed, then different points on the
line are reached. Because of this, the equation (39) is called the parametric
form of a (straight) line.

If, in R3, we have P = (p1,p2,p3) and v = (v1, v2, v3), and if we set
Q = (x,y, z) for the unknown point Q, then the parametric from of the
line can also be written as

(x,y, z) = (p1,p2,p3) + s · (v1, v2, v3) .

This reads in coordinates

x = p1 + sv1

y = p2 + sv2

z = p3 + sv3,
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from which it follows that
x− p1

v1
=
y− p2

v2
=
z− p3

v3
(= s).

This is the second form of the equation of a straight line.

Remark 4.1. If vi = 0 for some 1 ⩽ i ⩽ 3 you should deduce the
second form of the equation(s) of the line appropriately. E.g. (i) If v1 = 0
(and v2 ̸= 0, v3 ̸= 0) then the appropriate equations are: x = p1, y−p2

v2
=

z−p3
v3

. (ii) If v1 = v3 = 0 (and v2 ̸= 0) then the appropriate equations are
x = p1, z = p3. This is the line parallel to the y axis that passes through
the point (p1,p2,p3) (or, more succinctly, the point (p1, 0,p3)).

ii) If we know 2 points P1 and P2 on the line, then we can easily convert this
data into the first case by observing that the connecting vector

−−→
P1P2 =−−→

OP2 −
−−→
OP1 is parallel to the line. Therefore, we have the parametric form

of the line as −→
OQ =

−−→
OP1 + s ·

−−→
P1P2, s ∈ R.

iii) The last case is specific to R2. Here the slope of a line is defined as
the ratio between the change in the y-direction and the change in the
x-direction. More precisely, if P = (p1,p2) and Q = (q1,q2) are 2 given
points on a straight line (and p1 ̸= q1), then the slope of the line is

m =
q2 − p2

q1 − p1
.

Given the slope m of a line, we can easily construct the direction vector
v as v = (1,m). In particular, the parametric form is (x,y) = (p1,p2) + s ·
(1,m) or

x = p1 + s, y = p2 + s ·m.

But from this we easily obtain y = p2 + (x − p1)m = mx + p2 − p1m.
This is the familiar form of a linear function, whose graph is (of course)
a straight line.

Remark 4.2. In the special case when q1 = p1 (so that q1−p1 = 0), this
means that P and Q lie on the same vertical line (i.e. parallel to the y axis)
in the xy-plane. Hence in the this case the direction vector v = j = (0, 1)
and the parametric form of the line is: (x,y) = (p1,p2) + s · (0, 1).

Example 4.3. Find the equation of the line through P1 = (1, 2) and P2 = (3, 4)
and its slope. Where does the line intersect the x-axis?
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To solve this problem, we first compute a vector v in the direction of the line
as v =

−−→
OP2 −

−−→
OP1 = (3 − 1, 4 − 2) = (2, 2). We therefore have for a point Q = (x,y)

on the line, that
(x,y) = (1, 2) + s · (2, 2), s ∈ R.

This implies (x− 1)/2 = (y− 2)/2 or y = x+ 1. These are the different possibilities
of stating the equations of the line. From the parametric form we find that the
slope is m = 2/2 = 1, and of course this is confirmed, since y = x+ 1.

For the second part, observe that intersections with the x-axis occur, if y = 0.
Using the parametric form, this means, we have to solve y = 2 + 2s = 0. The
solution is s = −1, which —substituted into the equation for x gives x = 1+ (−1) ·
2 = −1. Therefore, the intersection occurs at the point (−1, 0). Of course, this
result can also (and probably more easily) obtained from the equation y = x+ 1.

As a summary, we note that there are several options to write down equations
for lines in R2 or R3. The most general (and usually quite easily derived) form is
the parametric form. All information about the line is contained in this equation,
and so all further questions can be answered from this form alone. For certain
questions, however, it might be useful to transform this into the second form of
the equation for a line, as some computations are easier there.

4.2. Planes in R3. We continue with the discussion of planes in R3. Again, we
start by establishing the amount of data we need to characterise a plane, and then
think about, how to turn this data into an equation.

Planes can be characterised in the following ways:

i) A point P, and 2 vectors v1 and v2 determine a plane, containing P and
parallel to both v1 and v2, as long as v1 and v2 point in different direc-
tions. This means v2 ̸= av1 for some a ∈ R.

ii) Three points P1, P2 and P3 determine a plane that contains all 3 points, as
long as the points do not lie in a straight line.

iii) A point P and a vector n determine the plane which goes through P and
for which all vectors in the plane are perpendicular to n.

The last option might seem a bit contrived, but we will see that it results in a
quite useful equation for the plane. An illustration can be found in Figure 7

Let us derive equations for planes with the given data:

i) Similar to the case of a straight line, we can immediately turn this data
into the parametric form of a plane by observing that for any point Q in
the plane, we must have

−→
OQ =

−→
OP + sv1 + tv2, s, t ∈ R.

So, for a plane we have two parameters, rather than only one.
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Figure 7. A plane can be characterised by 3 points on the plane
or by it’s normal vector.

ii) When given 3 points P1, P2, P3, it is easy to write down the parametric
form of the plane these points determine. We have

−→
OQ =

−−→
OP1 + s ·

−−→
P1P2 + t ·

−−→
P1P3, s, t ∈ R.

iii) If the vector n is perpendicular to the plane, then this means it is perpen-
dicular to all vectors in the plane. So, let Q = (x,y, z) be a point on the
plane. Then the vector

−→
PQ lies in the plane, and we therefore have

−→
PQ · n = 0.

But since,
−→
PQ =

−→
OQ−

−→
OP, this equation can be written as

(
−→
OQ−

−→
OP) · n = 0,

or −→
OQ · n =

−→
OP · n.

Hence, if we know n = (n1,n2,n3) and P = (p1,p2,p3), then the equation
for the plane reads

n1x+ n2y+ n3z = n1p1 + n2p2 + n3p3.

This is sometimes called the Cartesian form of the equation for a plane.
As for the case of lines, we illustrate these general comments using an exam-

ple.

Example 4.4. Find the equation of the plane through A = (1, 0, 0), B = (1, 1, 0)
and C = (0, 2,−1), and compute its line of intersection with the plane whose Carte-
sian form is 2x+ y = 4.
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We start by deriving the equation of the first plane. Two vectors in this plane
are given by

−→
AB = (0, 1, 0) and

−→
AC = (−1, 2,−1). We use them to compute a

normal vector by letting

n =
−→
AB×−→

AC = (0, 1, 0)× (−1, 2,−1) = (1, 0,−1).

Now, computing n · −→OA = (1, 0,−1) · (1, 0, 0) = 1, we obtain as the equation of the
plane

(1, 0,−1) · (x,y, z) = 1, or x− z = 1.
In order to find the intersection with the second plane, we note that points in

the intersection need to satisfy both equations describing the planes. This means
we can find those points by solving the equations

x− z = 1 and 2x+ y = 4

simultaneously. The first equation implies that z = x − 1, whereas the second
equation gives y = 4 − 2x. Therefore, point on the line of intersection are of the
form

(x,y, z) = (x, 4 − 2x, x− 1),
or, setting x = s as a parameter

(x,y, z) = (0, 4,−1) + s · (1,−2, 1).

This is the parametric form of the line of intersection of the 2 planes.

Notation. If a vector n is perpendicular to a plane S we say that n is a normal
vector for the plane S.

Note. Given any plane S whose equation in Cartesian form is

a1x+ a1y+ a3z = b

for some a1,a2,a3,b ∈ R, the vector (a1,a2,a3) is a normal vector for S.

Why? Consider any (fixed) point P = (p1,p2,p3) in the plane. Then

(40) a1p1 + a2p2 + a3p3 = b

Now n is a normal vector for S if and only if
−→
PQ · n = 0

for any point Q = (x,y, z) in the plane S, if and only if

(
−−→
OQ−

−→
OP) · n = 0

i.e. if and only if
(x,y, z) · n = (p1,p2,p3) · n .

i.e. if and only if
n1x+ n2y+ n3z = b
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by (40). Hence we can take ni = ai for 1 ⩽ i ⩽ 3. In other words

n = (a1,a2,a3) .

Example (i) A normal vector for the plane

3x− 4y+ 5z = 7

is n = (3,−4, 5).

(ii) A normal vector for the plane

2x+ 3z = 0

is m = (2, 0, 3).

4.3. Spheres in R3. Let us start by recalling the equation for a circle in R2. If
the circle has centre (x1,y1) and radius r, then points on the circle satisfy

(x− x1)
2 + (y− y1)

2 = r2.

Using the 2-dimensional vectors (x,y) and (x1,y1), we can rewrite this as

∥(x,y) − (x1,y1)∥2 = r2.

Hence—as expected—a circle is the set of points that are at distance r from the
centre (x1,y1).

In the same way, a sphere in R3 is the set of points at a certain distance r from
a centre (x1,y1, z1). Thus, these points have to satisfy the equation

∥(x,y, z) − (x1,y1, z1)∥2 = r2,

which means
(x− x1)

2 + (y− y1)
2 + (z− z1)

2 = r2.

Example 4.5. Where does the sphere with centre P = (2,−1, 1) and radius
r = 4 intersect the z-axis?

The equation of the sphere is

(x− 2)2 + (y+ 1)2 + (z− 1)2 = 16.

Points on the z-axis are of the form (0, 0, z), so we need to solve

4 + 1 + (z− 1)2 = 16

This means (z − 1)2 = 11, which has solutions z± = 1 ±
√

11. The 2 points of
intersection are therefore

P± = (0, 0, z±) = (0, 0, 1 ±
√

11).

Example 4.6. A sphere with its centre at the origin just touches the plane S
whose Cartesian form is

2x− y− 3z = −1 .
What is the radius of the sphere? State its equation.
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Solution. A normal vector for S is

n = (2,−1,−3) .

Hence the line L through O = (0, 0, 0) in the direction of n is given by the equation
(in parametric form)

(x,y, z) = (0, 0, 0) + s · (2,−1,−3)

= (2s,−s,−3s) .

Thus L intersects S at the point satisfying

2(2s) − (−s) − 3(−3s) = −1

i.e. where s = − 1
14 . Hence the intersection is obtained by substituting − 1

14 for s in
the equation of the line L. I.e. the intersection is at the point

(x,y, z) = −
1

14
(2,−1,−3) .

The distance from the plane to the origin is thus 1
14

√
22 + 12 + 32 = 1√

14
. Hence the

equation of the sphere is

x2 + y2 + z2 =
1

14
.

(i.e. (x− 0)2 + (y− 0)2 + (z− 0)2 = ( 1√
14
)2) and the radius of the sphere is r = 1√

14
.
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C (complex numbers), 14
Im(z) (the imaginary part), 14
N (natural numbers), 5
Q (rational numbers), 11
R (real numbers), 13
R3, 58
Re(z) (the real part), 14
Z (integers), 11
cos, 18
sin, 18
∀ (for all, for every), 35
arg (argument), 18
∃ (exists), 35
i (base quaternion), 58
∈ (in, belongs to the set), 6∞ (infinity), 34
j (base quaternion), 58
k (base quaternion), 58
lim (limit), 34
n
√ (n-th complex root), 25
⊂ (subset), 11∑

(sum), 6

absolutely
convergent series, 48

Achilles and the Tortoise, 44
addition

quaternion, 59
algebraic

equation, 15
algebraically closed, 15
alternating

harmonic series, 53
series, 52
test, 53

altitude of triangle, 64
Argand diagram, 16

argument, 18
arithmetic

mean, 32
operation, 5
progression, 31

associativity, 6
axiom, 6

base
of natural logarithm, 24
quaternion, 58

binary operation, 5
Bolzano–Weierstrass

theorem, 42
bounded

above sequence, 33
below sequence, 33
sequence, 33

Cartesian
coordinates, 16
equation

plane, 71
closed

algebraically, 15
commutativity, 6
comparison test, 49
complex

n-th root, 25
conjugate, 14
number

exponential form, 24
polar form, 19

numbers, 14
plane, 16

conjugate
complex, 14
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quaternion, 59
constant

Euler’s, see also Euler’s number
continuous

function, 41
contradiction

proof, by, 12
convergence

theorem on monotone convergence, 42
convergent

absolutely, infinite series, 48
infinite series, 44
sequence, 34

coordinates
Cartesian, 16
polar, 18
rectangular, 16

cosine, 18
cross product, see also vector product

D’Alembert’s test, see also ration test
De Moivre’s theorem, 21
decreasing

sequence, 34
diagram

Argand, 16
distributive law, 6
divergent

infinite series, 44
sequence, 35
to (minus) infinity

sequence, 35
dot product, see also scalar product

equation, 11
algebraic, 15
plane

Cartesian, 71
parametric, 70

solution (root), 11
sphere, 73
straight line

parametric, 68
proportion, 69

Euler’s
constant, see also Euler’s number
formula, 24, 56
identity, 24

visualised, 56
number, 24, 40, 42, 56

exponential form of complex numbers, 24

Fibonacci numbers, 31
formula

Euler’s, 24, 56
function

continuous, 41
Fundamental Theorem of Algebra, 29

geometric
mean, 33
progression, 9, 31
series, 44

harmonic
series, 46

alternating, 53

imaginary
number, 14
part, 14

imaginary part
quaternion, 59

imaginary unit, 14
increasing

sequence, 33
indirect proof, 12
induction

mathematical, 6
inequality

triangle, 18, 36
infinite

series, 44
alternating, 52
convergent, 44
divergent, 44

infinity, 34
integer numbers, 11
interval of convergence of power series, 55
irrational numbers, 12

law
distributive, 6
of exponents, 23

Leibniz’s test, see also alternating test
limit

arithmetics, of, 36
of a sequence, 34

line
equation

parametric, 68
proportion, 69

logically defined sequence, 33
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magnitude of vector, 58
mathematical induction, 6
mean

arithmetic, 32
geometric, 33

modulus, 15
monotone

convergence theorem, 42
sequence, 34

natural logarithm
base of, 24

natural numbers, 5
norm

unit, 63
vector, 62

normal vector for a plane, 72
number

complex, 14
Euler’s, 24, 40, 42, 56
imaginary, 14
integer, 11
irrational, 12
natural, 5
rational, 11
real, 13
transcendental, 24

numbers
Fibonacci, 31

operation
arithmetic, 5
binary, 5

orthocenter of triangle, 64

paradox
Zeno’s, 44

parametric
equation

plane, 70
straight line, 68

part
imaginary, 14

quaternion, 59
real, 14

quaternion, 59
scalar of quaternion, see also real part of

quaternion
vector

quaternion, see also imaginary part of
quaternion

partial

sum of an infinite series, 44
plane

complex, 16
equation

Cartesian, 71
parametric, 70

normal vector, 72
polar

coordinates, 18
form of complex numbers, 19

position vector, 60
power

series, 54
interval of convergence, 55
radius of convergence, 55

product
cross, see also vector product
dot, see also scalar product
scalar, 63
vector, 66

progression
arithmetic, 31
geometric, 9, 31

proof, 6
by contradiction, 12
by induction, 6
indirect, 12

quaternion, 59
addition, 59
base, 58
conjugate, 59
imaginary part, 59
real part, 59
scalar part, see also real part of quaternion
vector part, see also imaginary part of

quaternion

radius of convergence of power series, 55
ratio

test, 51
rational numbers, 11
real numbers, 13

sequence, of, 30
real part, 14

quaternion, 59
rectangular

coordinates, 16
recursive sequence, 31
right-hand rule, 67
root
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(solution of equation), 11
complex, 25

rule
right-hand, 67
squeeze rule, 38
squeeze, 38

squeeze rule, 38
scalar, 58, 63
scalar part quaternion, see also real part of

quaternion
scalar product, 63
sequence, 30

bounded, 33
above, 33
below, 33

convergent, 34
decreasing, 34

strictly, 34
divergent, 35

to (minus) infinity, 35
explicitly defined, 30
implicitly defined, see also recursive

sequence
increasing, 33

strictly, 33
limit, of, 34
logically defined, 33
monotone, 34

strictly, 34
of real numbers, 30
recursively defined, 31
tends to, 34

(minus) infinity, 35
series

alternating, 52
harmonic, 53

convergent, 44
absolutely, 48

divergent, 44
geometric, 44
harmonic, 46

alternating, 53
infinite, 44
power, 54

interval of convergence, 55
radius of convergence, 55

tail, 51
telescopic, 50

set, 5
sine, 18

sphere, 73
equation, 73

squeeze rule, 38
strictly

decreasing
sequence, 34

increasing
sequence, 33

monotone
sequence, 34

sum
partial, of an infinite series, 44

tail
of series, 51

telescopic
series, 50

test
alternating, 53
comparison, 49
D’Alembert’s, see also ration test
Leibniz’s, see also alternating test
ratio, 51
vanishing, 47, 53

theorem
Bolzano–Weierstrass, 42
De Moivre’s, 21
Fundamental of Algebra, 29
monotone convergence, 42

transcendental number, 24
triangle

altitude, 64
inequality, 18, 36
orthocenter, 64

unimodular, 18
unit

imaginary, 14
norm, 63

vanishing test, 47, 53
vector, 58

cross product, see also vector product
magnitude, 58
norm, 62
normal for a plane, 72
position, 60
product, 66

dot, see also scalar product
scalar, 63

vector part
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quaternion, see also imaginary part of
quaternion

Zeno
paradoxes, 44

79



Bibliography

[1] V.I. Arnold, Lectures and problems: A gift to young mathematicians, MSRI Mathematical Circles Library,
AMS, Providence, 2015. ↑15, 58

[2] F.M. Hart, Guide to analysis, Macmillan Mathematical Guides Series, Palgrave, 2001. ↑39
[3] Georg Polya, How to solve it, Doubleday Anchor Books, New York, 1957. ↑

80


	List of Figures
	Chapter 1. Numbers
	1. Natural numbers and integers
	2. Proof by induction
	3. Extending natural numbers: integers, rationals, reals
	4. Complex numbers
	5. Geometry of complex numbers
	6. Complex roots

	Chapter 2. Sequences and Series
	1. Sequences of real numbers
	2. Limits
	3. Infinite Series
	4. Power series

	Chapter 3. Vectors
	1. Introduction
	2. Quaternions and vectors
	3. Scalar product and vector product
	4. Lines, Planes and Spheres

	Index
	Bibliography

