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NOTATIONS

To avoid possible confusion, it is usual to insert commas between the components of a
vector or a 1 × n matrix, thus: [5, 2], [1, 11, 1, 111]. L 1

1. GENERAL SYSTEMS OF LINEAR EQUATIONS

1.1. Introduction. The subject of Linear Algebra is based on the study of systems of sim-
ultaneous linear equations. As far as we are concerned there is one basic technique —
that of reducing a matrix to echelon form. I will not assume any prior knowledge of such
reduction nor even of matrices. The subject has ramifications in many areas of science,
engineering etc. We shall look at only a minuscule part of it. We shall have no time for
“real” applications.

Why the name Algebra, by the way?
Very often, in dealing with “real life” problems we find it easier—or even necessary!

—to simplify the problem so that it becomes mathematically tractable. This often means
“linearising” it so that it reduces to a system of (simultaneous) linear equations.

We shall deal with specific systems of linear equations in a moment.

1.2. The different possibilities. There are essentially three different possibilities which
can arise when we solve systems of linear equations. These may be illustrated by the
following example each part of which involves two equations in two unknowns. Since
there are only two unknowns it is more convenient to label them x and y—instead of x1
and x2.

We will solve the following system of linear equations by the method of Gauss elimin-
ation.
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Example 1.1. (i) The first case illustrated by the system:

2x+ 5y = 3(α)
3x− 2y = 14(β)

To solve this system eliminate x from equa-
tion (β) by replacing (β) by 2 · (β) − 3 · (α), that
is

(6x− 4y) − (6x+ 15y) = 28 − 9.

2x+ 5y = 3(α)
0x− 19y = 19(γ)

So the given pair of equations are changed to (α)–
(γ). Equation (γ) shows that y = −1 and then (α)
shows that x = 4. This system is consistent and
has the unique solution.

(ii) The second case:

6.8x+ 10.2y = 2.72(α)
7.8x+ 11.7y = 3.11(β)

Replace here (β) by 6.8 · (β) − 7.8 · (α) gives
the following system:

6.8x+ 10.2y = 2.72(α)
0x+ 0y = 0.068(γ)

Then (γ) shows that there can be no such x
and y, i.e. no solution. This means that sys-
tem is inconsistent.

(iii) The third case:

6.8x+ 10.2y = 2.72(α)
7.8x+ 11.7y = 3.12(β)

Replace here (β) again by 6.8 · (β) − 7.8 · (α)
gives the following system:

6.8x+ 10.2y = 2.72(α)
0x+ 0y = 0(γ)

Here (γ) imposes no restriction on possible
values of x and y, so the given system of
equations reduces to the single equation (α).

Taking y to be any real number you wish, say y = c, then (α) determines a corres-
ponding value of x, namely

x =
2.72 − 10.2 · c

6.8
.

Thus the given system is consistent and has infinitely many solutions.

This three cases could be seen geometrically if we do three drawings:
When there are more than two equations we try to eliminate even more unknowns. A

typical example would proceed as follows:

Example 1.2. (i) We get, successfully, the solution of the following system:

3x+ y− z = 2 (α)
x+ y+ z = 2 (β)

x+ 2y+ 3z = 5 (γ)

3x+ y− z = 2 (α)
0x− 2y− 4z = −4 (δ) = (α) − 3(β)

0x+ y+ 2z = 3 (ϵ) = (γ) − (β)

3x+ y− z = 2 (α)

0x+ y+ 2z = 2 (ζ) = − (δ)
2

0x+ y+ 2z = 3 (ϵ)

3x+ y− z = 2 (α)
0x+ y+ 2z = 2 (ζ)

0x+ 0y+ 0z = 1 (η) = (ϵ) − (ζ)

The last equation η shows that the given system of equations has no solutions. Could you
imagine it graphically in a space?
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FIGURE 1. Three cases of linear systems considered in Example 1.1.
(i) Lines are in generic position and intersect in one point—the unique solu-
tion.
(ii) Lines are parallel and distinct—there is no solution.
(iii) Lines coinside—all points are solutions.

(ii) Let consider the same system but change only the very last number:

3x+ y− z = 2 (α)
x+ y+ z = 2 (β)

x+ 2y+ 3z = 4 (γ)

3x+ y− z = 2 (α)
0x− 2y− 4z = −4 (δ) = (α) − 3(β)

0x+ y+ 2z = 2 (ϵ) = (γ) − (β)

3x+ y− z = 2 (α)

0x+ y+ 2z = 2 (ζ) = − (δ)
2

0x+ y+ 2z = 2 (ϵ)

3x+ y− z = 2 (α)
0x+ y+ 2z = 2 (ζ)

0x+ 0y+ 0z = 0 (η) = (ϵ) − (ζ)

This time equation (η) places no restrictions whatsoever on x,y and z and so can be
ignored. Equation (ζ) tells us that if we take z to have the “arbitrary” value c, say, then
y must take the value 2 − 2z = 2 − 2c and then (β) tells us that x must take the value
2−y−z = 2−(2 − 2c)−c = c. That is, the general solution of the given system of equations
is: x = c,y = 2−2c, z = c, with c being any real number. So solutions include, for example,
(x,y, z) = (1, 0, 1),

(
3,−4, 3

)
, (−7π, 2 − 14π,−7π) , . . .. The method of determining y from

z and then x from y and z is the method of back substitution.
L 2
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The general system of m linear equations in n “unknowns” takes the form:

a11x1 + a12x2 + · · · + a1jxj + · · · + a1nxn = b1
a21x1 + a22x2 + · · · + a2jxj + · · · + a2nxn = b2

...
...

...
...

...
...

...
ai1x1 + ai2x2 + · · · + aijxj + · · · + ainxn = bi

...
...

...
...

...
...

...
am1x1 + am2x2 + · · · + amjxj + · · · + amnxn = bm

(L)

Remark 1.3. (i) The aij and bi are given real numbers and the PROBLEM is to find
all n-tuples (c1, c2, . . . , cj, . . . , cn) of real numbers such that when the c1, c2, . . . , cn
are substituted for the x1, x2, . . . , xn, each of the equalities in (L) is satisfied. Each such
n-tuple is called a solution of (the system) (L).

(ii) If b1 = b2 = . . . = bn = 0 we say that the system (L) is homogeneous.
(iii) Notice the useful double suffix notation in which the symbol aij denotes the

coefficient of xj in the i-th equation.
(iv) In this module the aij and the bj will always be real numbers.
(v) All the equations are linear. That is, in each term aijxj, each xj occurs to the power

exactly 1. (E.g.: no √
xj nor products such as x2

jxk are allowed.)
(vi) It is not assumed that the number of equations is equal to the number of “un-

knowns”.

1.3. Introduction of Matrices. Consider the system of equations 2u+ 5v = 3
3u− 2v = 14 (cf.

Example 1.1(i)). We easily obtain the answer u = 4, v = −1 (cf. x = 4, y = −1 in
Example 1.1(i)).

This shows that it is not important which letters are used for the unknowns.
The important facts are what values the m×n coefficients aij and the m coefficients bj

have. Thus we can abbreviate the equations of Example 1.1(i) to the arrays 2 5 3
3 −2 14

and 2 5 3
0 −19 −19 and those in Example 1.1(ii) to the arrays 6.8 10.2 2.72

7.8 11.7 3.11 and

6.8 10.2 2.72
0 0 0.068 correspondingly.

Any such (rectangular) array (usually enclosed in brackets instead of a box) is called a
matrix. More formally we give the following definition:

http://www-groups.dcs.st-and.ac.uk/~history/Quotations/Khayyam.html
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Definition 1.4. An array A of m×n numbers arranged in m rows and n columns is called
an m by n matrix (written “m× n matrix”).

A =



a1,1 a1,2 a1,3 . . . a1,j . . . a1,n
a2,1 a2,2 a2,3 . . . a2,j . . . a2,n

...
...

...
...

...
ai,1 ai,2 ai,3 . . . ai,j . . . ai,n

...
...

...
...

...
am,1 am,2 am,3 . . . am,j . . . am,n


Remark 1.5. We often write the above matrix A briefly as A = (aij) using only the general
term aij, which is called the (i, j)th entry of A or the element in the (i, j)th position (in
A). Note that the first suffix tells you the row which aij lies in and the second suffix which
column it belongs to. (Cf. Remark 1.3(iii) above.)

Example 1.6.

(
π − 99

23 8.1
0 e2 −700

)
is a 2 × 3 matrix with a1,2 = − 99

23 and a2,1 = 0. What are

a2,3 and a3,2?

1.4. Linear Equations and Matrices. With the system of equations (L) as given above we
associate two matrices:

a11 a12 . . . a1j . . . a1n

a21 a22 . . . a2j . . . a2n
...

...
...

...

ai1 ai2 . . . aij . . . ain

...
...

...
...

am1 am2 . . . amj . . . amn





a11 a12 . . . a1j . . . a1n
... b1

a21 a22 . . . a2j . . . a2n
... b2

...
...

...
...

...
...

ai1 ai2 . . . aij . . . ain

... bn

...
...

...
...

...
...

am1 am2 . . . amj . . . amn

... bm


The first is the coefficient matrix of (the system) (L), the second is the augmented matrix
of (the system) (L).

Example 1.7. We re-solve the system of equations of Example 1.2(i), noting, at each stage
the corresponding augmented matrix.

3x+ y− z = 2
x+ y+ z = 2

x+ 2y+ 3z = 5

3 1 −1 2
1 1 1 2
1 2 3 5

 We passed from this system to
the equivalent by interchanging the
first two equations;

x+ y+ z = 2
3x+ y− z = 2
x+ 2y+ 3z = 5

1 1 1 2
3 1 − 1 2
1 2 3 5


from this system we get the next
by subtracting three times the first
equation from the second and then
the first equation from the third;

x+ y+ z = 2
0x− 2y− 4z = −4

0x+ y+ 2z = 3

1 1 1 2
0 −2 −4 −4
0 1 2 3

 we get the next system by multiply-
ing the second equation by − 1

2 ;



6 INTRODUCTORY LINEAR ALGEBRA

x+ y+ z = 2
0x+ y+ 2z = 2
0x+ y+ 2z = 3

1 1 1 2
0 1 2 2
0 1 2 3

 Finally we get the last system by
subtracting the second equation
from the third.

x+ y+ z = 2
0x+ y+ 2z = 2

0x+ 0y+ 0z = 1

1 1 1 2
0 1 2 2
0 0 0 1

 The last equation again demon-
strates that our system is inconsist-
ent.

1.5. Reduction by Elementary Row Operations to Echelon Form (Equations and Matrices).
Clearly it is possible to operate with just the augmented matrix; we need not retain the
unknowns. Note that in Example 1.7 the augmented matrices were altered by making
corresponding row changes. These types of changes are called elementary row operations.

Definition 1.8. On an m× n matrix an elementary row operation is one of the following
kind:

(i) An interchange of two rows;
(ii) The multiplying of one row by a non-zero real number;

(iii) The adding (subtracting) of a multiple of one row to (from) another.

We do an example to introduce some more notation

Example 1.9. Solve the system of equation:

−x2 + x3 + 2x4 = 2
x1 + 2x3 − x4 = 3

−x1 + 2x2 + 4x3 − 5x4 = 1.

We successfully reduce the augmented matrix: 0 −1 1 2 2
1 0 2 −1 3
−1 2 4 −5 1

 ρ1 ↔ ρ2
We change the first and second
row of the matrix.

 1 0 2 −1 3
0 −1 1 2 2
−1 2 4 − 5 1

 ρ ′
3 = ρ3 + ρ1

The “new” row 3 is the sum of
the “old” row 3 and the “old”
row 1.1 0 2 −1 3

0 −1 1 2 2
0 2 6 − 6 4

 ρ ′
3 = ρ3 + 2ρ2

Now third row is added by the
twice of the second.

1 0 2 −1 3
0 −1 1 2 2
0 0 8 − 2 8

 ρ ′
2 = −ρ2

ρ ′
3 = ρ3/8

Finally we multiple the second
row by −1 and the third by 1/8.
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1 0 2 −1 3
0 1 −1 −2 −2
0 0 1 −1/4 1


This correspond to the system:

x1 + 2x3 − x4 = 3

x2 − x3 − 2x4 = −2

x3 −
1
4
x4 = 1

Here, if we take x3 as having arbitrary value c, say, then we find x4 = 4(c − 1) then
x2 = 9c− 10 and x1 = 2c− 1. Hence the most general solution is

(x1, x2, x3, x4) = (2c− 1, 9c− 10, c, 4c− 4) ,

where c is an arbitrary real number. A variable, such as x3 here, is called a free variable
or, sometimes, a disposable unknown.

L 3

1.6. Echelon Form (of Equations and Matrices). In successively eliminating unknowns
from a system of linear equations we end up with a so-called echelon matrix.

Definition 1.10. An m × n matrix is in echelon form if and only if each of its non-zero
rows begins with more zeros than does any previous row.

Example 1.11. The first two of following two matrices are in echelon form:1 5 13
0 −π −2
0 0 37

 ,


1 2 3 4 5
0 0 0 0 7
0 0 0 0 0
0 0 0 0 0

 , and


1 2 3 4 5
0 0 1 1 7
0 0 3 0 0
0 0 0 0 0


the last matrix is not in echelon form

Exercise∗ 1.12. Prove that if an i-th row of a matrix in echelon form consists only of zeros
then all subsequent rows also consist only of zeros.

SUMMARY In solving a system of simultaneous linear equations
(i) Replace the equations by the corresponding augmented matrix,

(ii) Apply elementary row operations to the matrices in order to reduce the original
matrix to one in echelon form.

(iii) Read off the solution (or lack of one) from the echelon form.

Example 1.13. Solve for x, y, z the system (note: there are 4 equations and only 3 un-
knowns):

x+ 2y+ 3z = 1
2x− y− 9z = 2
x+ y− z = 1
3y+ 10z = 0

First we construct the augmented matrix and
then do the reduction to the echelon form:


1 2 3 1
2 −1 −9 2
1 1 −1 1
0 3 10 0




1 2 3 1
0 −5 −15 0
0 −1 −4 0
0 3 10 0

 ρ ′
2 = ρ2 − 2ρ1
ρ ′

3 = ρ3 − ρ1
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1 2 3 1
0 1 3 0
0 −1 −4 0
0 3 10 0

 ρ ′
2 = −ρ2/5


1 2 3 1
0 1 3 0
0 0 −1 0
0 0 1 0

 ρ ′
3 = ρ3 + ρ2

ρ ′
4 = ρ4 − 3ρ2


1 2 3 1
0 1 3 0
0 0 1 0
0 0 0 0

 ρ ′
3 = −ρ3

ρ ′
4 = ρ4 + ρ3

Then the system
x+ 2y+ 3z = 1

y+ 3z = 0
z = 0

has the solution z = 0, y = 0, x = 1.

Thus equations were not independent, otherwise 4 equation in 3 unknowns does not have
any solution at all.

Example 1.14. Find the full solution (if it has one!) of the system:

2x+ 2y+ z− t = 0
x+ y+ 2z+ 4t = 3

3x+ 3y+ z− 3t = −1
x+ y+ z+ t = 1

The augmented matrix is:
2 2 1 −1 0
1 1 2 4 3
3 3 1 −3 −1
1 1 1 1 1


The successive transformations are:

1 1 1 1 1
1 1 2 4 3
3 3 1 −3 −1
2 2 1 − 1 0

 ρ1 ↔ ρ4


1 1 1 1 1
0 0 1 3 2
0 0 −2 −6 −4
0 0 − 1 − 3 − 2

 ρ ′
2 = ρ2 − ρ1

ρ ′
3 = ρ3 − 3ρ1

ρ ′
4 = ρ4 − 2ρ1


1 1 1 1 1
0 0 1 3 2
0 0 0 0 0
0 0 0 0 0

 ρ ′
3 = ρ3 + 2ρ2
ρ ′

4 = ρ4 + ρ2

so that the original system has been reduced
to the system
x+ y+ z+ t = 1

z+ 3t = 2

with the general solution t = c, z = 2− 3c, y = d, x = 2c−d− 1. Two particular solutions
are (x,y, z, t) = (−4,−1, 8,−2) and (x,y, z, t) =

( 1
3 , 0, 0, 2

3

)
.]

Example 1.15. Discuss the system reducing the augmented matrix

x− y+ z = 2
2x+ 3y− 2z = −1
x− 6y+ 5z = 5

1 −1 1 2
2 3 −2 −1
1 −6 5 5

 1 −1 1 2
0 5 −4 −5
0 −5 4 3


1 −1 1 2

0 5 −4 −5
0 0 0 −2

 Since the last row corresponds to the equation 0x +
0y + 0z = −2, which clearly has no solution, we may
deduce that the original system of equations has no
solution.

L 4
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1.7. Aside on Reduced Echelon Form. The above examples illustrate that every matrix
can, by using row operations, be changed to reduced echelon form. We first make the fol-
lowing

Definition 1.16. In a matrix, the first non-zero element in a non-zero row is called the
pivot of that row.

Now we define a useful variant of echelon form

Definition 1.17. The m× n matrix is in reduced echelon form if and only if
(i) It is in echelon form;

(ii) each pivot is equal to 1;
(iii) each pivot is the only non-zero element of its column.

Example 1.18. Here is only the second matrix in reduced echelon form:
1 0 3 0 11
0 1 −2 0 3
0 0 0 −1 −1
0 0 0 0 0




1 0 3 0 11
0 1 −2 0 3
0 0 0 1 −1
0 0 0 0 0




1 0 3 −4 11
0 1 −2 0 3
0 0 0 1 −1
0 0 0 0 0


Which are in echelon form?

Why the reduced echelon form is useful? A system of equations which gives rise to the
second of the above matrices is equivalent to the system

x+ 3z = 11
y− 2z = 3

t = −1

Note that, if we take z as the free variable, then each of x
and y is immediately expressible (without any extra work)
in terms of z. Indeed we get (immediately) x = 11 − 3z,
y = 3 + 2z, t = −1.

We shall be content to solve systems of equations using the ordinary echelon version.
However reduced echelon form will be used later in the matrix algebra to find inverses.

1.8. Equations with Variable Coefficients. The above example are rather simple and all
are solved in a routine way. In applications it is sometime required to consider more inter-
esting cases of linear systems with variable coefficients. For different values of parameters
we could get all three situations illustrated on Figure 1.

Example 1.19. Find the values of k for which the following system is consistent and solve
the system for these values of

x+ y− 2z = k
2x+ y− 3z = k2

x− 2y+ z = −2

The augmented matrix is1 1 −2 k
2 1 −3 k2

1 −2 1 −2


The successive transformations are:1 1 −2 k

0 −1 1 k2 − 2k
0 −3 3 −2 − k

 1 1 −2 k
0 −1 1 k2 − 2k
0 0 0 − (3k2 − 5k+ 2)


Consequently, for the given system to be consistent we require 3k2 − 5k + 2 to be 0. But
3k2 − 5k+ 2 = (3k− 2) (k− 1). Hence the system is consistent if and only if k = 2

3 or 1.
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In the former case we have(
1 1 −2 2

3
0 −1 1 − 8

9

)
or x+ y− 2z = 2

3
−y+ z = − 8

9

giving y = z+ 8
9 , x = z− 2

3 .
So the general solution is (x,y, z) =

(
c− 2

3 , c+ 8
9 , c
)

for each real number c.
Corresponding to k = 1 we likewise get (x,y, z) = (c, (c+ 1), c) for each real c.
Answer: if k ̸= 2

3 and k ̸= 1 then there is no solution;
if k = 2

3 then (x,y, z) =
(
c− 2

3 , c+ 8
9 , c
)

for each real c;
if k = 1 then (x,y, z) = (c, (c+ 1), c) for each real c.

Example 1.20. Discuss the system with a parameter k:

x+ 2y+ 3z = 1
x− z = 1

8x+ 4y+ kz = 4

The augmented matrix is:1 2 3 1
1 0 −1 1
8 4 k 4


Its successive transformations are:1 2 3 1

0 −2 −4 0
0 −12 k− 24 −4

 1 2 3 1
0 −2 −4 0
0 0 k −4


The final equation, kz = −4, has solution z = − 4

k
provided that k ̸= 0. In that case from the

second equation y = −2z = 8
k

and from the first equation x = 1 − 2y− 3z = 1 − 4
k

.
Answer: If k = 0 then there is no solution;

otherwise (x,y, z) =
(
1 − 4

k
, 8
k

,− 4
k

)
.

Example 1.21. What condition on a, b, c, d makes the followingsystem consistent

x1 + 2x3 − 6x4 − 7x5 = a
2x1 + x2 + x4 = b

x2 − x3 + x4 + 5x5 = c
−x1 − 2x2 + x3 − 6x5 = d

The augment matrix is:
1 0 2 −6 −7 a
2 1 0 1 0 b
0 1 −1 1 5 c
−1 −2 1 0 −6 d


Its transformations are:

1 0 2 −6 −7 a
0 1 −4 13 14 b− 2a
0 1 −1 1 5 c
0 −2 3 −6 −13 d+ a




1 0 2 −6 −7 a
0 1 −4 13 14 b− 2a
0 0 3 −12 −9 c− b+ 2a
0 0 −5 20 15 d− 3a+ 2b




1 0 2 −6 −7 a
0 1 −4 13 14 b− 2a
0 0 1 −4 −3 (c− b+ 2a)/3
0 0 −1 4 3 (d− 3a+ 2b)/5


Omitting the last (obvious) step we see
that the condition for consistency is:
(c− b+ 2a) /3 = −(d− 3a+ 2b) /5
that is,
5(c− b+ 2a) = −3(d− 3a+ 2b),
or a+ b+ 5c+ 3d = 0.
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2. MATRICES AND MATRIX ALGEBRA

Matrices are made out of numbers. In some sense they also are “like number”, i.e.
we could equate, add, and multiply them by number or by other matrix (under certain
assumptions). Shortly we define all algebraic operation on matrices, that is rules of matrix
algebra.

Historically, matrix multiplication appeared first but we begin with a trio of simpler
notions.

2.1. Equality. The most fundamental question one can ask if one is wishing to develop
an arithmetic of matrices is: when should two matrices be regarded as equal? The only (?)
sensible answer seems to be given by

Definition 2.1. Matrices A = [aij]m×n and B = [bkl]r×s are equal if and only if m = r

and n = s and auv = buv for all u, v (1 ⩽ u ⩽ m {= r} , 1 ⩽ v ⩽ n {= s}).
That is, two matrices are equal when and only when they “have the same shape” and

elements in corresponding positions are equal.

Example 2.2. Given matrices A =

(
a b
c d

)
, B =

(
5 13
3 8

)
and C =

(
r s t
u v w

)
we see

that neither A nor B can be equal to C (because C is the “wrong shape”) and that A and B

are equal if, and only if, a = 5, b = 13, c = 3 and d = 8.
L 5

2.2. Addition. How should we define the sum of two matrices? The following has always
seemed most appropriate.

Definition 2.3. Let A = [aij] and B = [bij] both be m × n matrices (so that they have the
same shape). Their sum A⊕ B is the m× n matrix a11 . . . a1n

...
...

am1 . . . amn

⊕

 b11 . . . b1n
...

...
bm1 . . . bmn

 =

 a11 + b11 . . . a1n + b1n
...

...
am1 + bm1 . . . amn + bmn

 .

That is, addition is componentwise.

We use the symbol ⊕ (rather than +) to remind us that, whilst we are not actually
adding numbers, we are doing something very similar — namely, adding arrays of num-
bers.

Example 2.4. We could calculate:2 4 7 −1
0 −3 1 0
1 2 3 1

⊕

 4 1 0 5
−1 2 −5 6
5 6 −7 8

 =

 6 5 7 4
−1 −1 −4 6
6 8 −4 9


Example 2.5. A sum is not defined for the matrices (due to different sizes):2 1 6

1 −3 2
0 31 −7

 and

 3 5
4 9
−1 6
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(5, 2)

(2,−3)

(7,−1)

Figure 2. Vector addition

In particular, the sum of the two 1 × 2
matrices [5, 2] and [2,−3] is the 1 × 2 mat-
rix [7,−1]. The reader who is familiar with
the idea of vectors in the plane will see from
Figure 2 that, in this case, matrix addition co-
incides with the usual parallelogram law for
vector addition of vectors in the plane.

A similar correspondence likewise exists between 1 × 3 matrices and vectors in three-
dimensional space. It then becomes natural to speak of the 1 × n matrix [a1a2 . . .an] as
being a vector in n-dimensional space — even though few of us can “picture” n-dimensional
space geometrically for n ⩾ 4. Thus, for n ⩾ 4, the geometry of n-dimensional space seems
hard but its corresponding algebraic version is equally easy for all n.

Since it is the order in which the components of an n-dimensional vector occur which

is important, we could equally represent such an n-vector by an n × 1 matrix


a1
a2
...
an

 —

rather than (a1a2 . . .an)— and on many occasions we shall do just that. Later, we shall
readily swap between the vector notation v = (a1,a2, . . . ,an) and either of the above
matrix forms, as we see fit and, in particular, usually use bold letters to represent n × 1
and 1 × n matrices.

2.3. Scalar Multiplication. Next we introduce multiplication into matrices. There are
two types. To motivate the first consider the matrix sums A⊕A and A⊕A⊕A where A

is the matrix

a b c d
p q r s
x y z t

. Clearly A⊕ A =

2a 2b 2c 2d
2p 2q 2r 2s
2x 2y 2z 2t

 whilst A⊕ A⊕ A =3a 3b 3c 3d
3p 3q 3r 3s
3x 3y 3z 3t

. If, as is natural, we write the sum A ⊕ A ⊕ · · · ⊕ A of k copies

of A briefly as kA, we see that kA is the matrix each of whose elements is k times the
corresponding element of A. There seems no reason why we shouldn’t extend this to any
rational or even real value of k, as in

Definition 2.6. Scalar Multiplication: If α is a number (in this context often called a scalar)

and if A is the m×n matrix above then αA is defined to be the m×n matrix

 αa11 . . . αa1n
...

...
αam1 . . . αamn


(briefly [αaij]).
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(2, 1)

(4, 2)

(6, 3)

Figure 3. Multiplication by a scalar.

Thus, multiplying a 1×n (or n×1) matrix by
a scalar corresponds, for n = 2 and 3, to the
usual multiplication of a vector by a scalar.
See Figure 3.

L 6
2.4. Multiplication. To motivate the definition of the multiplication of two matrices we
follow the historical path. Indeed, suppose that we have two systems of equations:

z1 = a11y1 + a12y2 + a13y3
z2 = a21y1 + a22y2 + a23y3

and
y1 = b11x1 + b12x2
y2 = b12x1 + b22x2
y3 = b13x1 + b32x2

We associate, with these systems, the matrices of coefficients namely

A =

(
a11 a12 a13
a21 a22 a23

)
and B =

b11 b12
b21 b22
b31 b32


Clearly we may substitute the y’s from the second system of equations into the first

system and obtain the z’s in terms of the x’s. If we do this what matrix of coefficients do

we get? It is fairly easy to check that the resulting matrix is the 2×2 matrix C =

(
c11 c12
c21 c22

)
where, for example, c21 = a21b11 +a22b21 +a23b31—and, generally, cij = ai1b1j +ai2b2j +
ai3b3j where i and j are either of the integers 1 and 2. We call C the product of the matrices
A and B. Notice how, for each i, j, the element cij of C is determined by the elements ai1,
ai2, ai3 of the i-th row of A and those, b1j, b2j, b3j, of the j-th column of B. Notice, too,
how this definition requires that the number of columns of A must be equal to the number
of rows of B and that the number of rows (columns) of C is the same as the number of
rows of A (columns of B).

We adopt the above definition for the product of two general matrices in

Definition 2.7. Multiplication of two matrices: Let A be an m×n matrix and B be an n× p
matrix. (Note the positions of the two ns). Then the product A ⊙ B is the m × p matrix
[cij]m×p where for each i, j, we set cij = ai1b1j + ai2b2j + · · ·+ ainbnj.

It might be worthwhile noting that each “outside” pair of numbers in each product
aikbkj is i, j whereas each “inside” pair is a pair of equal integers ranging from 1 to n. We
remind the reader that the very definition of cij explains why we insist that the number
of columns of A must be equal to the number of rows of B.

Some examples should make things even clearer.

Example 2.8. Let A =

(
3 1 7
2 −5 4

)
; B =

x α
y β
z γ

; C =

( 1
2

1
2

1
2

1
2

)
; D =

(
1 2
3 4

)
. Then

A⊙ B exists and the result
(

3x+ y+ 7z 3α+ β+ 7γ
2x− 5y+ 4z 2α−5β+ 4γ

)
is 2 × 2 matrix.
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Also B⊙A exists, the result,

x3 + α2 x1 + α (−5) x7 + α4
y3 + β2 y1 + β (−5) y7 + β4
z3 + γ2 z1 + γ (−5) z7 + γ4

 being 3 × 3 matrix.

Finally observe that D⊙A is the 2×3 matrix
(

1 · 3 + 2 · 2 1 · 1 + 2 · (−5) 1 · 7 + 2 · 4
3 · 3 + 4 · 2 3 · 1 + 4 · (−5) 3 · 7 + 4 · 4

)
=(

7 −9 15
17 −17 37

)
and yet A⊙D doesn’t exist (since A is 2 × 3 and D is 2 × 2).

We have seen that D⊙ A exists and yet A⊙D doesn’t, and that A⊙ B and B⊙ A both
exist and yet are (very much!) unequal (since they are not even the same shape!)

Example 2.9. Even if both products A⊙B and B⊙A are of the same shape they are likely
to be different, for example:

A =

(
0 1
0 0

)
, B =

(
0 0
1 0

)
, A⊙ B =

(
1 0
0 0

)
, B⊙A =

(
0 0
0 1

)
.

Exercise∗ 2.10. Show that if both products A ⊙ B and B ⊙ A are defined then the both
products A⊙ B and B⊙A are square matrices (but may be of different sizes).

Remark 2.11. Each system of equations is now expressible in form A⊙ x = b.

Indeed, the system

3x+ y− 5z+ 8t = 2
x− 7y− 4t = 2

−4x+ 2y+ 3z− t = 5

can be written in matrix form as 3 1 −5 8
1 −7 0 −4
−4 2 3 −1



x
y
z
t

 =

2
2
5

 ,

that is, as A ⊙ x = b where x =


x
y
z
t

 and b =

2
2
5

. Note that multiplication of 3 × 4

matrix A by 4 × 1 matrix (vector) x gives a 3 × 1 matrix (vector) b.
Question: Could we then solve the above system A ⊙ x = b just by the formula x =

A−1 ⊙ b with some suitable A−1?
Before making some useful observations it is helpful to look at some Comments and

Definitions
(i) Two matrices are equal if both are m× n AND if the elements in corresponding

positions are equal.

Example 2.12. (i)
(

1 2
4 5

)
̸=
(

1 2 3
4 5 6

)
; (ii)

(
1 2 3
4 5 6

)
̸=

1 2
3 4
5 6

.

(iii)
(

1 x
3 −7

)
=

(
y 4
z t

)
if, and only if, x = 4, y = 1, z = 3 and t = −7.

Exercise 2.13. Given that
(

4 x y
t 2 7

)
=

(
x x x
z z w

)
find x, y, z, w and t.

(ii) If m = n then the m× n matrix is said to be square.
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(iii) If we interchange the rows and columns in the m×n matrix A we obtain an n×m

matrix which we call the transpose of A. We denote it by AT or A ′.

Example 2.14. A =

(
1 2 3
4 5 6

)
is 2 × 3 and AT =

1 4
2 5
3 6

 is 3 × 2.Note how the

i-th row of A becomes the i-th column of AT and the j-thcolumn of A becomes the
j-th row of AT .

2.5. Identity Matrices, Matrix Inverses. Let A =


a11 a12 a13 a14
a12 a22 a23 a24
a13 a32 a33 a34
a14 a42 a43 a44

 be any 4 × 4

matrix. Consider the matrix I4,4 =


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1

. The products A ⊙ I4,4 and I4,4 ⊙ A

are both equal to A—as is easily checked. I4,4 is called the 4 × 4 identity matrix. There

is a similar matrix for each “size”. For example I3,3 =

1 0 0
0 1 0
0 0 1

 is the corresponding

3 × 3 matrix. The identity matrices are, to matrix theory, what the number 1 is to number
theory, namely multipliers which don’t change things. And just as the number 7

88 is the
multiplicative inverse of the number 88

7 (since their product 88
7 × 7

88 is equal to 1) so we make
the following definition:

Definition 2.15. Let A and B be two n×n matrices. If A⊙B = B⊙A = In×n (the identity
n × n matrix) then B is said to be the multiplicative inverse of A — and (of course) A is
the multiplicative inverse of B.
Notation: B = A−1 and likewise A = B−1.

Example 2.16.

 2 0 −3
−1 4 −8
0 −5 12

 and

 8 15 12
12 24 19
5 10 8

 are multiplicative inverses.

Remark 2.17. We shall soon replace the rather pompous signs ⊕ and ⊙ by + and ×. Indeed
we may drop the multiplication sign altogether writing AB rather than A⊙B or A×B. In
particular A⊙ x = b becomes Ax = b.

L 7
If an n × n matrix A has a multiplicative inverse we say that A is invertible or non-

singular. Not all matrices are invertible. For example, neither
(

0 0
0 0

)
nor

0 0 0
0 0 0
0 0 0


have multiplicative inverses. This is scarcely surprising since each is a matrix correspond-

ing to the number 0. But neither has

−1 1 2
−1 1 2
3 7 9

 a (mult.) inverse. Later we shall give

tests for determining which matrices have inverses and which do not. First we give a
method of determining whether or not a given (square) matrix has a (multiplicative) in-
verse and, if it has, of finding it.
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Example 2.18. Determine if the matrix A =

1 0 3
2 4 1
1 3 0

 has an inverse — and if it has,

find it.

METHOD Form the 3 × 6 matrix B =

1 0 3 1 0 0
2 4 1 0 1 0
1 3 0 0 0 1

 in which the given matrix A

is followed by the 3 × 3 identity matrix I3,3. We now apply row operations to change B
into reduced echelon form. We therefore obtain1 0 3 1 0 0

2 4 1 0 1 0
1 3 0 0 0 1

→

1 0 3 1 0 0
0 4 −5 −2 1 0
0 3 −3 −1 0 1

→

1 0 3 1 0 0
0 1 −2 −1 1 −1
0 3 −3 −1 0 1


→

1 0 3 1 0 0
0 1 −2 −1 1 −1
0 0 3 2 −3 4

→

1 0 0 −1 3 −4
0 1 0 1/3 −1 5/3
0 0 3 2 −3 4

→

1 0 0 −1 3 −4
0 1 0 1/3 −1 5/3
0 0 1 2/3 −1 4/3

.

Note that the “left hand half” of thus matrix is I3,3. It turns out that

−1 3 −4
1/3 −1 5/3
2/3 −1 4/3

 is

the required (multiplicative) inverse of A, check this yourself!

Example 2.19. Find the multiplicative inverse of C =

 1 2 3
−1 −1 1
−1 −1 1

.

METHOD Form the 3 × 6 matrix

 1 2 3 1 0 0
−1 −1 1 0 1 0
−1 −1 1 0 0 1

 and aim to row reduce it.

We get 1 2 3 1 0 0
−1 −1 1 0 1 0
−1 −1 1 0 0 1

→

1 2 3 1 0 0
0 1 4 1 1 0
0 1 4 1 0 1

→

1 2 3 1 0 0
0 1 4 1 1 0
0 0 0 0 −1 1

.

There is clearly no way in which the “left hand half” of this matrix will be I3,3 when we
have row reduced it. Accordingly C does not have a multiplicative inverse.

The same method applies to (square) matrices of any size:

Example 2.20. Find the multiplicative inverse of A =

(
7 8
−2 3

)
(if it exists!)

METHOD Form B =

(
7 8 1 0
−2 3 0 1

)
.Row operations ρ ′

1 = ρ1+3ρ2 change B to
(

1 17 1 3
−2 3 0 1

)
,

then by ρ ′
2 = ρ2 + 2ρ1 to

(
1 17 1 3
0 37 2 7

)
,by ρ ′

2 = ρ2/37 to
(

1 17 1 3
0 1 2/37 7/37

)
and,

finally by ρ ′
1 = ρ1 −17ρ2 to

(
1 0 3/37 −8/37
0 1 2/37 7/37

)
. In fact, if

(
a b
c d

)
has a multiplicative

then it is 1
ad−bc

(
d −b
−c a

)
, as you may easily check!

The question arises as to why this works! To explain it we need a definition.
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Definition 2.21. Any matrix obtained from an identity matrix by means of one elementary
row operation is called an elementary matrix.

Example 2.22. (i)


0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

, (ii)

1 0 0
0 1 0
0 0 −(1/3π)

, (iii)


1 0 0 0
0 1 0 π/31
0 0 1 0
0 0 0 1

 are ele-

mentary and

(iv)


0 0 1 0
0 −1 0 0
1 0 0 0
0 0 0 1

, (v)

1 2 0
0 1 0
0 0 −(1/3π)

, (vi)


1 0 0 0
0 1 0 π/31
0 0 1 0
4 0 0 1

 are not.

Remark 2.23. Each elementary matrix has an inverse. The inverses of (i), (ii), (iii) are
0 0 1 0
0 1 0 0
1 0 0 0
0 0 0 1

,

1 0 0
0 1 0
0 0 −3π

, and


1 0 0 0
0 1 0 −π/31
0 0 1 0
0 0 0 1

 respectively. Each “undoes”

the effect of the corresponding matrix in the previous Example.

We can (but will not) prove

Theorem 2.24. Let E be an elementary n×n matrix and let A be any n×r matrix. Put B = EA.
Then B is the n× r matrix obtained from A by applying exactly the same row operation which
produced E from In×n.

We omit the proof, but here is an example.

Example 2.25.

1 0 0
0 1 5/3
0 0 1

a b c d
j k l m
w x y z

 =

 a b c d
j+ (5/3)w k+ (5/3) x l+ (5/3)y m+ (5/3) z

w x y z

 .

We now use Theorem 2.24 repeatedly. Suppose that the n×n matrix A can be reduced
to In×n by a succession of elementary row operations e1, e2, . . . , en, say. Let E1,E2, . . . ,En

be the n×n elementary matrices corresponding to e1, e2, . . . , en. Then In×n = EnEn−1 . . .E2E1A

(note the order of matrices!). It follows that A−1 = EnEn−1 . . .E2E1 is the multiplicative
inverse for A, since A−1A = In×n. In other words, we have

Theorem 2.26. If A is an invertible matrix then A−1 is obtained from In×n by applying exactly
the same sequence of elementary row operations which will convert A into In×n.

So if we place A and In×n side by side and apply the same elementary transformations
which convert A to In×n they make A−1 out of In×n.

Example 2.27. Find, if it exists, the inverse of A =


1 0 0 1
0 1 0 2
2 0 0 1
0 0 −1 0

.

SOLUTION Form B =


1 0 0 1 1 0 0 0
0 1 0 2 0 1 0 0
2 0 0 1 0 0 1 0
0 0 −1 0 0 0 0 1

. Row reduction successively

gives
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1 0 0 1 1 0 0 0
0 1 0 2 0 1 0 0
0 0 0 −1 −2 0 1 0
0 0 −1 0 0 0 0 1

→


1 0 0 1 1 0 0 0
0 1 0 2 0 1 0 0
0 0 1 0 0 0 0 −1
0 0 0 1 2 0 −1 0

→


1 0 0 0 −1 0 1 0
0 1 0 0 −4 1 2 0
0 0 1 0 0 0 0 −1
0 0 0 1 2 0 −1 0

.

Hence A is invertible and A−1 =


−1 0 1 0
−4 1 2 0
0 0 0 −1
2 0 −1 0

 (as you may CHECK!!! ALWAYS in-

corporate a CHECK into your solutions.)

Remark 2.28 (Historic). (i) The concept of matrix inverses was introduced in Western
mathematics by Arthur Cayley in 1855.

(ii) Matrix algebra was rediscovered around 1925 by physicists working on Quantum
Mechanics.

3. DETERMINANTS

Determinants used to be central to equation solving. Nowadays somewhat peripheral
in that context—but important in other areas.

Solving a11x1 + a12x2 = b1
a21x1 + a22x2 = b2

we get x1 = b1a22−b2a12
a11a22−a21a12

and x2 = a11b2−a21b1
a11a22−a21a12

, provided

a11a22 − a12a21 ̸= 0. So this denominator is an important number. To remind us where
it has come from, namely the matrix of coefficients of the given system of equations, we

denote it by
∣∣∣∣a11 a12
a21 a22

∣∣∣∣.
We call this NUMBER the determinant of A where A is the matrix

(
a11 a12
a21 a22

)
. We also

denote it by |A| and by det(A).

Example 3.1.
∣∣∣∣7 8
9 10

∣∣∣∣ = 7 · 10 − 9 · 8 = −2. The system 7x+ 8y = −1
9x+ 10y = 2 has solution

x =

∣∣∣∣∣∣−1 8
2 10

∣∣∣∣∣∣∣∣∣∣∣∣7 8
9 10

∣∣∣∣∣∣
, y =

∣∣∣∣∣∣7 −1
9 2

∣∣∣∣∣∣∣∣∣∣∣∣7 8
9 10

∣∣∣∣∣∣
, i.e. x =

−26
−2

, y =
23
−2

.

For each n × n system of equations there is a similar formula. In the case of the 3 × 3
system
a11x1 + a12x2 + a13x3 = b1
a21x1 + a22x2 + a23x3 = b2
a31x1 + a32x2 + a33x3 = b3

we find that x1 =
b1G11 − b2G21 + b3G31

a11G11 − a21G21 + a31G31
etc.[provided

that a11G11 − a21G21 + a31G31 ̸= 0] where G11 =

∣∣∣∣a22 a23
a32 a33

∣∣∣∣, G21 =

∣∣∣∣a12 a13
a32 a33

∣∣∣∣, G31 =∣∣∣∣a12 a13
a22 a23

∣∣∣∣.

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Cayley.html
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Note that each Gi1 is the 2×2 determinant obtained from the 3×3 matrix

a11 a12 a13
a21 a22 a23
a31 a32 a33


by striking out the row and column in which ai1 (the multiplier of Gi1) lies. It can be
shown that

a11G11 − a21G21 + a31G31 = −a12G12 + a22G22 − a32G32 = a13G13 − a23G23 + a33G33

and that these are also all equal to

a11G11 − a12G12 + a13G13 = −a21G21 + a22G22 − a23G23 = a31G31 − a32G32 + a33G33.

This common value of these six sums is the determinant of the matrix

A =

a11 a12 a13
a21 a22 a23
a31 a32 a33

, which we denote by

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣, by detA, or by |A|.

Example 3.2.

∣∣∣∣∣∣
2 7 6
9 5 1
4 3 8

∣∣∣∣∣∣ = 2·37−9·38+4·(−23) = −360. Use the (chessboard!) mnemonic+ − +
− + −
+ − +

 to memorise which sign + or − to use.

TO SUMMARISE
(i) We know how to evaluate determinants of order 2.

(ii) We have defined determinants of order 3 in terms of determinants of order 2. L 8

3.1. Definition by expansion. We define determinants of order n in terms of determin-
ants of order n − 1 as follows. Given the n × n matrix A = (aij) the minor Mij of the
element aij is the determinant of the (n− 1)× (n− 1) matrix obtained from A by deleting
both the ith row and the jth column of A. The cofactor of aij is (−1)i+j Mij.

The basic method of evaluating detA is as follows. Choose any one row or column —
usually with as many zeros as possible to make evaluation easy! Multiply each element
in that row (or column) by its corresponding cofactor. Add these results together to get
detA.

Example 3.3. Evaluate

∣∣∣∣∣∣∣∣
1 −4 5 −1
−2 3 −8 4
1 6 0 −2
0 7 0 9

∣∣∣∣∣∣∣∣. Column 3 has two 0s in it so let us expand

down column 3. We get

D = 5 ·

∣∣∣∣∣∣
−2 3 4
1 6 −2
0 7 9

∣∣∣∣∣∣− (−8) ·

∣∣∣∣∣∣
1 −4 −1
1 6 −2
0 7 9

∣∣∣∣∣∣+ 0 ·

∣∣∣∣∣∣
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∣∣∣∣∣∣− 0 ·

∣∣∣∣∣∣
∗ ∗ ∗
∗ ∗ ∗
∗ ∗ ∗

∣∣∣∣∣∣
We know how to evaluate 3 × 3 determinants, so could finish calculation easily. How-

ever there exist rules which ease calculation even further.
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3.2. Effect of elementary operations, evaluation. The following rules for determinants
apply equally to columns as to rows. They are related to elementary row operations.

Rule 3.4. (i) If one row (or column) of A is full of zeros then detA = 0. Demonstration
for 3 × 3 matrices:∣∣∣∣∣∣

a11 a12 a13
0 0 0
a31 a32 a33

∣∣∣∣∣∣ = −0 ·
∣∣∣∣∗ ∗
∗ ∗

∣∣∣∣+ 0 ·
∣∣∣∣∗ ∗
∗ ∗

∣∣∣∣− 0 ·
∣∣∣∣∗ ∗
∗ ∗

∣∣∣∣
(ii) If one row (or column) of A is multiplied by a constant α then so is detA. Demonstra-

tion for 3 × 3 matrices:∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
αa31 αa32 αa33

∣∣∣∣∣∣ = αa31 ·
∣∣∣∣∗ ∗
∗ ∗

∣∣∣∣− αa32 ·
∣∣∣∣∗ ∗
∗ ∗

∣∣∣∣+ αa33 ·
∣∣∣∣∗ ∗
∗ ∗

∣∣∣∣ = αdetA.

Example 3.5.
∣∣∣∣77 12
91 14

∣∣∣∣ = ∣∣∣∣7 · 11 2 · 6
7 · 13 2 · 7

∣∣∣∣ = 7 · 2 ·
∣∣∣∣11 6
13 7

∣∣∣∣ = 7 · 2 · (77 − 78) = −14.

Remark 3.6. Beware: If A is n × n matrix then αA means that all entry (i.e. each
row) is multiplied by α and then det(αA) = αn det(A).

(iii) If two rows of the matrix are interchanged then the value of determinant is multiplied by
−1. Demonstration:

2 × 2 case:
∣∣∣∣a b
c d

∣∣∣∣ = ad − bc,
∣∣∣∣c d
a b

∣∣∣∣ = cb − da. This is used to demonstrate the

3 × 3 case:∣∣∣∣∣∣
a11 a12 a13
a31 a32 a33
a21 a22 a23

∣∣∣∣∣∣ = a11

∣∣∣∣a32 a33
a22 a23

∣∣∣∣− a12

∣∣∣∣a31 a33
a21 a23

∣∣∣∣+ a13

∣∣∣∣a32 a33
a22 a23

∣∣∣∣
= −

(
a11

∣∣∣∣a22 a23
a32 a33

∣∣∣∣− a12

∣∣∣∣a21 a23
a31 a33

∣∣∣∣+ a13

∣∣∣∣a22 a23
a32 a33

∣∣∣∣) = −detA
L 9

(iv) If two rows (or columns) of a matrix are identical then its determinant is 0.
Proof: if two rows of A are identical then interchanging them we got the same
matrix A. But the previous rule tells that detA = −detA, thus detA = 0.

Example 3.7.

∣∣∣∣∣∣∣∣
1 1 2 2
3 6 8 12
−4 7 8 14
5 3 7 6

∣∣∣∣∣∣∣∣ = 2

∣∣∣∣∣∣∣∣
1 1 2 1
3 6 8 6
−4 7 8 7
5 3 7 3

∣∣∣∣∣∣∣∣ = 2 · 0 = 0.

Remark 3.8 (Historic). In Western mathematics determinants was introduced by
a great philosopher and mathematician Gottfried Wilhelm von Leibniz (1646–
1716). At the same time a similar quantities were used by Japanese Takakazu
Seki (1642–1708).

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Leibniz.html
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(v) If a multiple of one row is added to another the value of a determinant is unchanged.
Demonstration:∣∣∣∣∣∣

a11 a12 a13
a21 + αa31 a22 + αa32 a23 + αa33

a31 a32 a33

∣∣∣∣∣∣ = −(a21 + αa31) |X|+ (a22 + αa32) |Y|− (a23 + αa33) |Z|

= −a21 |X|+ a22 |Y|− a23 |Z|+ α(−a31 |X|+ a32 |Y|− a33 |Z|)

=

∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣+ α

∣∣∣∣∣∣
a11 a12 a13
a31 a32 a33
a31 a32 a33

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a11 a12 a13
a21 a22 a23
a31 a32 a33

∣∣∣∣∣∣+ α · 0

Remark 3.9. Thus our aim is: in evaluating a determinant try by elementary row
operations to get as many zeros as possible in some row or column and then
expand over that row or column.

But before providing examples for this program we list few more useful rules.
(vi) The determinant of a triangular matrix is the product of its diagonal elements. Demon-

stration:∣∣∣∣∣∣
a11 a12 a13
0 a22 a23
0 0 a33

∣∣∣∣∣∣ = a11 ·
∣∣∣∣a22 a23

0 a33

∣∣∣∣ = a11 · a22 · a33, similarly

∣∣∣∣∣∣
a11 0 0
a21 a22 0
a31 a32 a33

∣∣∣∣∣∣ =
a11 · a22 · a33.

(vii) If A and B are n × n matrices then det(AB) = det(A)det(B).On the first glance
this is not obvious even for 2× 2 matrices however there is a geometrical explan-

ation. Any 2 × 2 matrix transform vectors by multiplication:
(
a b
c d

)(
x
y

)
=(

ax+ by
cx+ dy

)
. For any figure under such transformation we have:

Area of the image = Area of the figure ×
∣∣∣∣a b
c d

∣∣∣∣

a b

c

d

ab

d

c

Figure 4. Area of the image.

Particularly for the image of the unit square
with vertexes (0, 0), (1, 0), (0, 1), (1, 1) we have
(see Figure 4):
(a+ b)(c+ d) − 2bc− ac− bd = ad− bc.

Two such subsequent transformations with matrices A and B give the single
transformation with matrix AB. Then property of determinants follows from the
above formula for area. For 3 × 3 matrices we may consider volumes of solids in
the space.

(viii) The transpose matrix has the same determinant det(A) = det(AT ).This is easy to see
for 2 × 2 matrices and could be extended for all matrices since we could equally
expand determinants both by columns and rows.
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Example 3.10. Evaluate

∣∣∣∣∣∣
4 0 2
3 2 1
7 5 1

∣∣∣∣∣∣. We have a12 = 0 and κ ′
1 = κ1 − 2κ3 makes a11 = 0 as

well, then:

∣∣∣∣∣∣
0 0 2
1 2 1
5 5 1

∣∣∣∣∣∣ = 2 ·
∣∣∣∣1 2
5 5

∣∣∣∣ = −10.Another example of application of the Rule 3.8(v)

about addition:∣∣∣∣∣∣∣∣
1 −1 −1 5
2 0 1 4
−3 2 7 3
4 1 4 6

∣∣∣∣∣∣∣∣ =

∣∣∣∣∣∣∣∣
1 −1 −1 5
2 0 1 4
−1 0 5 13
5 0 3 11

∣∣∣∣∣∣∣∣ = −(−1) ·

∣∣∣∣∣∣
2 1 4
−1 5 13
5 3 11

∣∣∣∣∣∣ =
∣∣∣∣∣∣

0 1 0
−11 5 − 7
−1 3 − 1

∣∣∣∣∣∣ = −1 ·

∣∣∣∣−11 −7
− 1 − 1

∣∣∣∣ = −4. The interchanging of rows or columns (Rule 3.6(iii)) might also be use-

ful: ∣∣∣∣∣∣∣∣
1 1 1 1
2 2 2 3
3 3 4 5
4 5 6 7

∣∣∣∣∣∣∣∣ =
∣∣∣∣∣∣∣∣
1 1 1 1
0 0 0 1
0 0 1 2
0 1 2 3

∣∣∣∣∣∣∣∣ = −

∣∣∣∣∣∣∣∣
1 1 1 1
0 1 2 3
0 0 1 2
0 0 0 1

∣∣∣∣∣∣∣∣ = −1 · 1 · 1 · 1.

L 10
3.3. Some Applications.

Example 3.11. Find all x such that

∣∣∣∣∣∣
0 − x 2 3

2 2 − x 4
3 4 4 − x

∣∣∣∣∣∣ = 0. A direct expansion yields

a cubic equation. To factorise it we observe that x = −1 implies

∣∣∣∣∣∣
1 2 3
2 3 4
3 4 5

∣∣∣∣∣∣ =
∣∣∣∣∣∣
1 1 1
2 1 1
3 1 1

∣∣∣∣∣∣ =
0, thus x + 1 is a factor. Alternatively by ρ ′

1 = ρ1 + ρ3 − 2ρ2:

∣∣∣∣∣∣
0 − x 2 3

2 2 − x 4
3 4 4 − x

∣∣∣∣∣∣ =

∣∣∣∣∣∣
−1 − x 2 + 2x −1 − x

2 2 − x 4
3 4 4 − x

∣∣∣∣∣∣ =(1 + x)

∣∣∣∣∣∣
−1 2 −1
2 2 − x 4
3 4 4 − x

∣∣∣∣∣∣ = (1 + x)

∣∣∣∣∣∣
−1 0 0
2 6 − x 2
3 10 1 − x

∣∣∣∣∣∣ =

−(1 + x)

∣∣∣∣6 − x 2
10 1 − x

∣∣∣∣= −(1 + x) ((6 − x)(1 − x) − 2 · 10) = −(1 + x)(x2 − 7x− 14).

The last quadratic expression could be easily factorised.

Example 3.12. Find all values of λ which makes

∣∣∣∣∣∣
3 − λ 2 2

1 4 − λ 1
−2 −2 −1 − λ

∣∣∣∣∣∣ = 0.

The direct evaluation of determinants gives −λ3+6λ2−9λ+4. To factorise it we spot λ = 1

produces

∣∣∣∣∣∣
2 2 2
1 3 1
− 2 − 2 − 2

∣∣∣∣∣∣ = 0 (why?), i.e. λ−1 is a factor which reduces the above cubic
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expression to quadratic. Alternatively by ρ ′
1 = ρ1 + ρ3 we have:

∣∣∣∣∣∣
3 − λ 2 2

1 4 − λ 1
−2 −2 −1 − λ

∣∣∣∣∣∣ =∣∣∣∣∣∣
1 − λ 0 1 − λ

1 4 − λ 1
−2 −2 −1 − λ

∣∣∣∣∣∣= (1 − λ)

∣∣∣∣∣∣
1 0 1
1 4 − λ 1
−2 −2 −1 − λ

∣∣∣∣∣∣ = (1 − λ)

∣∣∣∣∣∣
1 0 0
1 4 − λ 0
−2 −2 1 − λ

∣∣∣∣∣∣= (1 −

λ)(4 − λ)(1 − λ).

Remark 3.13. The last two determinants have the form det(A − λI) for constant valued
matrix A, indeed:3 − λ 2 2

1 4 − λ 1
−2 −2 −1 − λ

 =

 3 2 2
1 4 1
−2 −2 −1

− λ

1 0 0
0 1 0
0 0 1

 .

We will use them later to study eigenvalues of matrices.

Example 3.14. Factorise the determinant:∣∣∣∣∣∣
x x3 x5

y y3 y5

z z3 z5

∣∣∣∣∣∣ = xyz

∣∣∣∣∣∣
1 x2 x4

1 y2 y4

1 z2 z4

∣∣∣∣∣∣ = xyz

∣∣∣∣∣∣
1 x2 x4

0 y2 − x2 y4 − x4

0 z2 − x2 z4 − x4

∣∣∣∣∣∣= xyz

∣∣∣∣y2 − x2 (y2 − x2)(y2 + x2)
z2 − x2 (z2 − x2)(z2 + x2)

∣∣∣∣
= xyz(y2−x2)(z2−x2)

∣∣∣∣1 y2 + x2

1 z2 + x2

∣∣∣∣= xyz(y2−x2)(z2−x2)

∣∣∣∣1 y2 + x2

0 z2 − y2

∣∣∣∣ = xyz(y2−x2)(z2−

x2)(z2 − y2).
If we swap any two columns in our matrices, then according to the Rule 3.6(iii) the de-
terminant changes it sign. Could you see itfrom the last expression?

Example 3.15. Let us take an fancy approach to the well-known elementary result x2 −
y2 = (x− y)(x+ y) through determinants:

x2 − y2 =

∣∣∣∣x y
y x

∣∣∣∣ = ∣∣∣∣x+ y y+ x
y x

∣∣∣∣ = (x+ y)

∣∣∣∣1 1
y x

∣∣∣∣ = (x+ y)

∣∣∣∣1 0
y x− y

∣∣∣∣ = (x+ y)(x− y).

We may use this approach to factorise x3 + y3 + z3 − 3xyz, indeed:

x3+y3+z3−3xyz =

∣∣∣∣∣∣
x y z
z x y
y z x

∣∣∣∣∣∣ =
∣∣∣∣∣∣
x+ y+ z y+ z+ x z+ x+ y

z x y
y z x

∣∣∣∣∣∣= (x+y+z)

∣∣∣∣∣∣
1 1 1
z x y
y z x

∣∣∣∣∣∣
= (x+ y+ z)

∣∣∣∣∣∣
1 0 0
z x− z y− z
y z− y x− y

∣∣∣∣∣∣ = (x+ y+ z)

∣∣∣∣x− z y− z
z− y x− y

∣∣∣∣= (x+ y+ z)((x− z)(x− y) −

(y− z)(z− y))

= (x+ y+ z)(x2 + y2 + z2 − xy− yz− zx).

Example 3.16. Show that a non-degenerate quadratic equation px2 +qx+ r = 0 could not
have three different roots.
First restate the problem to make it linear: for given a, b, c find such p, q, r that we
simultaneously have:

pa2 + qa+ r = 0,
pb2 + qb+ r = 0,
pc2 + qc+ r = 0.
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That system has a non-zero solution only if its determinant is zero, but:∣∣∣∣∣∣
a2 a 1
b2 b 1
c2 c 1

∣∣∣∣∣∣ =
∣∣∣∣∣∣
a2 − c2 a− c 0
b2 − c2 b− c 0

c2 c 1

∣∣∣∣∣∣ = −

∣∣∣∣a2 − c2 a− c
b2 − c2 b− c

∣∣∣∣ = −

∣∣∣∣(a− c)(a+ c) a− c
(b− c)(b+ c) b− c

∣∣∣∣
= −(a − c)(b − c)

∣∣∣∣a+ c 1
b+ c 1

∣∣∣∣ = (a − c)(b − c)(b − a). Thus the non-zero p, q, r could be

found only if there at least two equal between numbers a, b, c.

Example 3.17. Let us evaluate the determinant of the special form:∣∣∣∣∣∣
i j k
a1 a2 a3
b1 b2 b3

∣∣∣∣∣∣ = i(a2b3 − b2a3) − j(a1b3 − b1a3) + k(a1b2 − b1a2). This is the well known

vector product: (ia1 + ja2 + ka3)∧ (ib1 + jb2 + kb3) in three dimensional Euclidean space.
L 11

4. REAL VECTOR SPACES AND SUBSPACES

4.1. Examples and Definition. There are many different objects in mathematics which
have properties similar to vectors in R2 and R3.

Example 4.1. (i) Solutions (w, x,y, z) of the homogeneous system of linear equations,

for example:
w+ 3x+ 2y− z = 0

2w+ x+ 4y+ 3z = 0
w+ x+ 2y+ z = 0

.

(ii) Functions which satisfy the homogeneous differential equation
d2y

dx2 +4
dy

dx
+3y = 0.

(iii) The set M3×4(R) of all 3 × 4 matrices.
(iv) A real arithmetic progression, i.e. a sequence of numbers a1, a2, a3, . . . , an, . . . with

the constant difference an − an−1 for all n.
(v) A real 3× 3 magic squares, i.e. a 3× 3 array of real numbers such that the numbers

in every row, every column and both diagonals add up to the same constant.
(vi) The set of all n-tuples of real numbers. The pairs of real numbers correspond to

points on plane R2 and triples—to points in the space R3. The higher dimension
vector spaces can be considered analytically and sometimes even visualised!

Vectors could be added and multiplied by a scalar according to the following rules,
which are common for the all above (and many other) examples.

Axiom 4.2. We have the following properties of vector addition:
(i) a + b ∈ V , i.e. the sum of a and b is in V .

(ii) a + b = b + a, i.e. the commutative law holds for the addition.
(iii) a + (b + c) = (a + b) + c, i.e. the associative law holds for the addition.
(iv) There is a special null vector 0 ∈ V (sometimes denoted by z as well) such that

a + 0 = a, i.e. V contains zero vector.
(v) For any vector a there exists the inverse vector −a ∈ V such that a + (−a) = 0, i.e.

each element in V has an additive inverse or negative.

Axiom 4.3. There are the following properties involving multiplication by a scalar:
(i) λ · a ∈ V , i.e. scalar multiples are in V .

(ii) λ · (a + b) = λ · a + λ · b, i.e. the distributive law holds for the vector addition.

http://commons.wikimedia.org/wiki/Image:Tesseract.gif
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(iii) (λ+ µ) · a = λ · a + µ · a, i.e. the distributive law holds for the scalar addition.
(iv) (λµ) · a = λ · (µ · a) = µ · (λ · a), i.e. the associative law holds for multiplication by

a scalar.
(v) 1 · a = a, i.e. the multiplication by 1 acts trivially as usual.

Remark 4.4. Although the above properties looks very simple and familiar we should not
underestimate them. There is no any other ground to build up our theory: all further
result should not be taken granted. Instead we should provide a proof for each statement
based only on the above properties or other statements already proved in this way.

Because we need to avoid “chicken–egg” uncertainty some statements should be ac-
cepted without proof. They are called axioms. The axioms should be simple statements
which

• do not contradict each other, more precisely we could not derive from them both
a statement and its negation.

• be independent, i.e. any of them could not be derived from the rest.
Yet they should be sufficient for derivation of interesting theorems.

The famous example is the Fifth Euclidean postulate about parallel lines. It could be
replaced by its negations and results in the beautiful non-Euclidean geometry (read about
Lobachevsky and Gauss).
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To demonstrate that choice of axioms is a delicate matter we will consider examples

which violet these “obvious” properties.
On the set R2 of ordered pairs (x,y) define + as usual, i.e. (x,y)+(u, v) = (x+u,y+v),

but define the multiplication by scalar as λ · (x,y) = (x, 0).
Since the addition is defined in the usual way we could easily check all corresponding

axioms:
(i) a + b ∈ V .

(ii) a + b = b + a.
(iii) a + (b + c) = (a + b) + c.
(iv) a + 0 = a, where 0 = (0, 0).
(v) For any vector a = (x,y) there is −a = (−x,−y) such that a + (−a) = 0.

However for our strange multiplication λ · (x,y) = (x, 0) we should be more careful:
(i) λ · a ∈ V .

(ii) λ · (a + b) = λ · a + λ · b, becauseλ · ((x,y) + (u, v)) = λ · (x + u,y + v) =

(x+ u, 0)λ · (x,y) + λ · (u, v) = (x, 0) + (u, 0) = (x+ u, 0).
(iii) (λ+µ) ·a ̸= λ ·a+µ ·a, because(λ+µ) ·(x,y) = (x, 0)however λ ·(x,y)+µ ·(x,y) =

(x, 0) + (x, 0) = (2x, 0).
(iv) (λµ) · a = λ(µ · a) = µ(λ · a), i.e. the associative law holds (why?)
(v) 1 · a ̸= a (why?)

This demonstrate that the failing axioms could not be derived from the rest, i.e they are
independent.

Consider how some consequences can be derived from the axioms:

Theorem 4.5. Let V be any vector space and let v ∈ V and t ∈ R, then:
(i) The null vector 0 is unique in any vector space;

(ii) For any vector a there is the unique inverse vector −a;

http://commons.wikimedia.org/wiki/Image:Hyperbolic_triangle.svg
http://mathworld.wolfram.com/PoincareHyperbolicDisk.html
http://commons.wikimedia.org/wiki/Image:Euclidian_and_non_euclidian_geometry.png
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Lobachevsky.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Gauss.html
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(iii) If a + x = a + y then x = y in V .
(iv) 0 · a = 0;
(v) t · 0 = 0;

(vi) (−t) · v = −(t · v);
(vii) If t · v = 0 then either t = 0 or v = 0.

Proof. We demonstrate the 4.5(i), assume there are two null vectors 01 and 02 then: 01 =
01 + 02 = 02.

Similarly we demonstrate the 4.5(ii), assume that for a vector a there are two inverses
vectors −a1 and −a2 then: − a1 = (−a1) + a + (−a2) = −a2. □

4.2. Subspaces. Consider again the vector space R4 of all 4-tuples (w, x,y, z) from the Ex-
ample 4.1(vi). The vector space H of all solutions (w, x,y, z) to a system of homogeneous
equations from Example 4.1(vi) is a smaller subset of R4 since not all such 4-tuple are
solutions. So we have one vector space H inside another R4.

Definition 4.6. Let V be a real vector space. Let S be a non-empty subset of V . If S itself a
vector space (using the same operations of addition and multiplication by scalars as in V)
then S is a subspace of V .

Theorem 4.7. Let S be a subset of the vector space V . S will be a subspace of V (and hence a
vector space on its own right) if and only if

(i) S is not the empty set.
(ii) For every pair u, v ∈ S we have u + v ∈ S.

(iii) For every u ∈ S and every λ ∈ R we have λ · u ∈ S.

Example 4.8. Let V = R3 and S = {(x,y, z), x + 2y − 3z = 0}. Then S is a subspace of V .
Demonstration:

(i) S is not empty (why not?)
(ii) Suppose u = (a,b, c) and v = (d, e, f) are in S. Then u+v = (a+d,b+e, c+f) and

u+v is in S if (a+d)+2(b+e)−3(c+f) = 0.We know a+2b−3c = 0 (why?) and
d+ 2e− 3f = 0 (why?). Then adding them we get (a+d)+ 2(b+ e)− 3(c+ f) = 0
i.e. u + v is in S.

(iii) Similarly we could check thatλ ·u = (λa, λb, λc) ∈ S, because λa+ 2λb− 3λc = 0.

Example 4.9. Let V = R3 and S = {(x,y, z), x + 2y − 3z = 1}. Is S a subspace of V?
Demonstration:

(i) S is not empty, so we continue our check. . .
(ii) Suppose u = (a,b, c) and v = (d, e, f) are in S. Then as before u + v = (a+ d,b+

e, c+ f) and u+ v is in S only if (a+ d) + 2(b+ e) − 3(c+ f) = 1. We again know
a+2b−3c = 1 (why?) and d+2e−3f = 1 (why?). But now we could not deduce
(a + d) + 2(b + e) − 3(c + f) = 1 from that! To disprove the statement we have
to give a specific counterexample.

(1, 0, 0) ∈ S (0, 2, 1) ∈ S but (1, 2, 1) ̸∈ S.

(iii) There is no point to verify the third condition since the previous already fails!
L 13
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Remark 4.10. (i) The null vector 0 should belong to any subspace. Thus the n-tuple
(0, 0, . . . , 0) should lie in every subspace of Rn. If (0, 0, . . . , 0) does not belong to S
(as in the above example, then S is not a subspace.

(ii) Geometrically: In R2 all subspaces correspond to straight lines coming through the
origin (0, 0), see Figure 5;
In R3 subspaces correspond to planes containing the origin (0, 0, 0). Otherwise

(i)

~a

~b~a+ ~b

S

(ii)

~a

~b

~a+ ~b

S

FIGURE 5. (i) A straight line coming through the origin is a subspace of
the plane R2;
(ii) otherwise it is not a subspace;

they are not a subspaces of R3.

Example 4.11. Let V = R4 and S = {(x,y, z, t) : x is any integer}. Is S a subspace of V?

(i) Is it non-empty? (give an example!);
(ii) Is any sum u + v in S if both u, v in S? (explain!); Yes, the sum of two vectors

(x,y, z, t) and (x ′,y ′, z ′, t ′) with x and x ′ being integers is the vector (x + x ′,y +
y ′, z+ z ′, t+ t ′) with x+ x ′ being integer.

(iii) Is any product t · v in S if v in S and t ∈ R? No, specific counterexample: v =

(1, 0, 0, 0) and t = 1
2 .

Conclusion: this is not a subspace.

Example 4.12. Let V = R3 and S = {(x,y, z) : xyz = 0}.
(i) Is it non-empty? (give an example!)

(ii) Is any sum u + v in S if both u, v in S? (explain!) No, the specific counterexample:
let u = (1, 0, 1) ∈ S and v = (0, 1, 1) ∈ S then u + v = (1, 1, 2) ̸∈ S (check!).

(iii) There is no need to verify the third condition!
Conclusion: this is not a subspace.

Example 4.13. Let V is the set of all 3 × 3 real matrices and S is the subset of symmetric

matrices

a b c
b d e
c e f

.

(i) Is it non-empty? (give an example!)
(ii) Is any sum u + v in S if both u, v in S? (explain!) Yes, the sum of any two such

symmetric matrices is a symmetric matrix again (check!).

a-subspace1.avi
not-a-subspace.avi
not-a-subspace.avi
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(iii) Is any product t · v in S if v in S and t ∈ R? Yes, a product of a symmetric matrix
with a scalar is a symmetric matrix again (check!).

Conclusion: this is a subspace.

4.3. Definitions of span and linear combination.

Definition 4.14. Let v1, v2, . . . , vk be vectors in V . A vector in the form

v = λ1v1 + λ2v2 + · · ·+ λkvk

is called linear combination of vectors v1, v2, . . . , vk.
The collection S of all vectors in V which are linear combinations of v1, v2, . . . , vk is

called linear span of v1, v2, . . . , vk and denoted by sp {v1, v2, . . . , vk}.
We also say S is spanned by the set {v1, v2, . . . , vk} of vectors.

Example 4.15. (i) Vector z = (−2.01, 0.95,−0.07) is a linear combination of x =
(8.6, 9.1,−7.3) and y = (6.1, 5.8,−4.8) since z = 3.1 · x − 4.7 · y.

(ii) (2,−53, 11) = 23 · (4,−1, 7) − 30 · (3, 1, 5).

Exercise 4.16. Does (1, 27, 29) belongs to sp {(2,−1, 3), (−1, 6, 4)}?
Yes, provided there exist α and β such that (1, 27, 29) = α · (2,−1, 3)+β · (−1, 6, 4). That

means that:
2α− β = 1,

−α+ 6β = 27,
3α+ 4β = 29,

which has a solutions α = 3 and β = 5.

The last example and its question does a vector belong to a linear span bring us to the
important notion which we are going to study now.

4.4. Linear Dependence and Independence.

Definition 4.17. A set {v1, v2, . . . , vn} of vectors in a vector space V is said to be linearly
dependent (LD) if there are real numbers λ1, λ2, . . . , λn not all zero such that:

λ1v1 + λ2v2 + · · ·+ λnvn = 0.

A set {v1, v2, . . . , vn} of vectors in a vector space V is said to be linearly independent (LI)
if the only real numbers λ1, λ2, . . . , λn such that:

λ1v1 + λ2v2 + · · ·+ λnvn = 0,

are all zero λ1 = λ2 = · · · = λn = 0.

Example 4.18. (i) Set {(2, 1,−4), (2, 5, 4), (1, 1, 3), (1, 4, 5)} is linearly dependent since

3 · (2, 1,−4) − 7 · (2, 5, 4) + 0 · (1, 1, 3) + 8 · (1, 4, 5) = (0, 0, 0).

Note: some coefficients could be equal to zero but not all of them!
(ii) Is set {(−1, 1, 1), (1,−1, 1), (1, 1,−1)} linearly independent in R3?

Yes, provided α(−1, 1, 1)+β(1,−1, 1)+γ(1, 1−1) = (0, 0, 0) implies α = β = γ = 0.
This is indeed true since

α(−1, 1, 1) + β(1,−1, 1) + γ(1, 1 − 1) = (−α+ β+ γ,α− β+ γ,α+ β− γ)
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Then we got a linear system

−α+ β+ γ = 0, (i)
α− β+ γ = 0, (ii)
α+ β− γ = 0. (iii)

Then (i)+(ii) gives 2γ = 0. Similarly 2β = 2α = 0.
(iii) The set {( , , , ), ( , , , ), (0, 0, 0, 0)} is always linearly dependent since

0 · ( , , , ) + 0 · ( , , , ) + 1 · (0, 0, 0, 0) = (0, 0, 0, 0).

Here there are some non-zero coefficients!

Corollary 4.19. Any set containing a null vector is linearly dependent.
L 14

(iv) Is the set {(4, 7,−1), (3, 4, 1), (−1, 2,−5)} linearly independent?
Solution: Look at the equation

α · (4, 7,−1) + β · (3, 4, 1) + γ · (−1, 2,−5) = (0, 0, 0).

Equating the corresponding coordinates we get the system:

4α+ 3β− γ = 0
7α+ 4β+ 2γ = 0
−α+ β− 5γ = 0

Solving by the Gauss Eliminations gives γ = c, β = 3c, α = − 2c. For c = 1 we
get

− 2 · (4, 7,−1) + 3 · (3, 4, 1) + 1 · (−1, 2,−5) = (0, 0, 0),
thus vectors are linearly dependent.
We will describe an easier way to do that later.

Here is a more abstract example.

Example 4.20. Let {u, v, w} be a linearly independent set of vectors in some vector space
V . Show that the set {u + v, v + w, w + u} is linearly independent as well.

Proof. It is given that α · u + β · v + γ · w = 0 implies α = β = γ = 0.
Suppose a(u + v) + b(v + w) + c(w + u) = 0 then

(a+ c)u + (a+ b)v + (b+ c)w = 0.

Then a+ c = 0, a+ b = 0, and b+ c = 0. This implies that a = b = c = 0.
Conclusion: the set {u + v, v + w, w + u} is linearly independent. □

A condition for linear dependence in term of the linear combination is given by

Theorem 4.21. The set {v1, v2, . . . , vn} is linearly dependent if and only if one of the vk is a linear
combination of the of its predecessors.

Proof. If the set {v1, v2, . . . , vn} is linearly dependent then there such λ1, λ2, . . . , λn such
that:

λ1v1 + λ2v2 + · · ·+ λnvn = 0.
Let λk be the non-zero number with the biggest subindex k, then

λ1v1 + λ2v2 + · · ·+ λkvk = 0 (why?)
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But then vk = −
λ1

λk
v1 −

λ2

λk
v2 − · · ·− λk−1

λk
vk−1 (why?)

Conversely, if for some k the vector vk is a linear combination vk = λ1v1 + λ2v2 + · · ·+
λk−1vk−1 then λ1v1 +λ2v2 + · · ·+λk−1vk−1 −1 ·vk+0 ·vk+1 +0 ·vn = 0 (why?), i.e. vectors
are linearly dependent (why?). □

Example 4.22. Considering again Example 4.18(i) the set of vectors {u = (2, 1,−4), v =
(2, 5, 4),
w = (1, 4, 5)} is linearly dependent.

But v is not a linear combination of u, but w is a linear combination of u and v, indeed

(1, 4, 5) = −
3
8
(2, 1 − 4) +

7
8
(2, 5, 4).

Theorem 4.23. Let A and B be row equivalent m × n matrices—that is, each can be obtained
from the other by the use of a sequence of elementary row operations. Then, regarding the Rows of
A as vectors on Rn

(i) The set of rows (vectors) of A is linearly independent if and only if the set of rows
(vectors) of B is linearly independent;

(ii) The set of rows (vectors) of A is linearly dependent if and only if the set of rows (vectors)
of B is linearly dependent;

(iii) The rows of A span exactly the same subspace of Rn as do the rows of B.

Definition 4.24. In the 4.23(iii) above the subspace of Rn spanned by the rows of A (and
B!) is called row space of A (and B!).

Remark 4.25. So Theorem 4.23(iii) says: if A and B are row equivalent m×n matrices then
A and B have same row space.

L 15
Example 4.26. Is the set of vectors {(1, 3, 4,−2, 1), (2, 5, 6,−1, 2), (0,−1,−2, 3, 0), (1, 1, 1, 3,−1)}
linearly independent or linearly dependent?

Solution: Form the 4×5 matrix A using vectors as its rows: A =


1 3 4 −2 1
2 5 6 −1 2
0 −1 −2 3 0
1 1 1 3 − 1

,

then

A →


1 3 4 −2 1
0 −1 −2 3 0
0 −1 −2 3 0
0 −2 −3 5 − 2

→


1 3 4 −2 1
0 −1 −2 3 0
0 0 0 0 0
0 0 1 −1 −2

→


1 3 4 −2 1
0 −1 −2 3 0
0 0 1 −1 −2
0 0 0 0 0

 =

B
The set of rows vectors of B is linearly dependent in R4 (why?)
Hence the given set of vectors is linearly dependent as well.

Similarly we could solve the following question.

Example 4.27. Is the set of vectors {(1, 2, 3, 4), (5, 6, 7, 8), (1, 3, 6, 10)} linearly independent
or linearly dependent?

Solution: Form a 3 × 4 matrix A using the vectors as rows: A =

1 2 3 4
5 6 7 8
1 3 6 10

, then
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A →

1 2 3 4
0 −4 −8 −12
0 1 3 6

→

1 2 3 4
0 1 2 3
0 1 3 6

→

1 2 3 4
0 1 2 3
0 0 1 2

 = B.

Rows of B form a linearly independent set in R3 (why?)
Form a linear combination of its rows with arbitrary coefficients:
α · (1, 2, 3, 4) + β · (0, 1, 2, 3, ) + γ · (0, 0, 1, 3) = (0, 0, 0, 0), then
(α, 2α+ β, 3α + 2β + γ, 4α + 3β + 3γ) = (0, 0, 0, 0). From the equality of first coordinates
α = 0, then from the equality of second coordinates β = 0, and then from the equality of
third coordinates γ = 0.
Conclusion: rows of B are linearly independent and so are rows of A.

The above example illustrates a more general statement:

Theorem 4.28 (about dependence and zero rows). (i) The rows of a matrix in the ech-
elon form are linearly dependent if there is a row full of zeros.

(ii) The rows of a matrix in the echelon form are linearly independent if there is not a row
full of zeros.

Proof. The first statement just follows from the Corollary 4.19 and we could prove the
second in a way similar to the solution of Example 4.27. □

We could also easily derive the following consequence of the above theorem.

Corollary 4.29. In a matrix having echelon form any non-zero rows form a linearly independent
set.

Summing up: To study linear dependence of a set of vector:
(i) Make a matrix using vectors as rows;

(ii) Reduce it to the echelon form;
(iii) Made a conclusion based on the presence or absence of the null vector.

Exercise 4.30. Show that a set of m vectors in Rn is always linearly dependent if m > n.

4.5. Basis and dimensions of a vector space. Let us revise the Example 4.27. We demon-
strate that the identity α · (1, 2, 3, 4) + β · (0, 1, 2, 3, ) + γ · (0, 0, 1, 3) = (0, 0, 0, 0) implies
that α = β = γ = 0. However the same reasons shows that an attempt of equality
α · (1, 2, 3, 4) + β · (0, 1, 2, 3, ) + γ · (0, 0, 1, 3) = (0, 0, 0, 1) requires that α = β = γ = 0, and
thus is impossible (why?). We conclude that row vectors of the initial matrix A do not
span the whole space R4. Yet if we add to the all non-zero rows of B the vector (0, 0, 0, 1)
itself then they span together the whole R4 (why?). Then by the Theorem 4.23 the rows of
A and the vector (0, 0, 0, 1) span R4 as well.

Similarly solving the homogeneous system
3x+ 2y− 2z+ 2t = 0

2x+ 3y− z+ t = 0
5x− 4z+ 4t = 0

, we find a gen-

eral solution of the form of the span of two vectors:

(x,y, z, t) =
(
−

4c
5

+
4d
5

,
c

5
−

d

5
,d, c

)
= c ·

(
−

4
5

,
1
5

, 0, 1
)
+ d ·

(
4
5

,−
1
5

, 1, 0
)

.
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The similarity in the above examples is that to describe a vector space we may provide a
small set of vectors (without linearly dependent), which span the whole space. It deserves
to give the following

Definition 4.31. The set B = {v1, v2, . . . , vn} of vectors in the vector space V is basis for V
if the both

(i) B is linearly independent;
(ii) B spans V .

Remark 4.32. (i) From the second part of the definition: any vector in V is a linear
combination of v1, v2, . . . , vn.

(ii) If we adjoin more vectors to a basis B then this bigger set still spans V , but now
the set will be linearly dependent.

(iii) If we remove some vectors from a basis B then the smaller set still be linearly
independent, but it will not span V any more.

(iv) A basis contain a smallest possible number of vectors needed to span V .

Remark 4.33. In this course we always assume that a basis B for a vector space V contain a
finite number of vectors, then V is said to be finite dimensional vector space. However there
are objects which represent a infinite dimensional vector space. Such spaces are studied for
example in the course on Hilbert Spaces.

Example 4.34. All polynomials obviously form a vector space P. There is no possibility to
find a finite number of vectors from P (i.e. polynomials) which span the entire P (why?).
However any polynomial is a linear combinations of the monomials 1, x, x2, . . . , xk, . . . .
Moreover the monomials are linearly independent. Thus we could regard them as a basis
of P.

L 16

Example 4.35. (i) The set B = {(1, 0), (0, 1)} is a basis for R2 (called the natural basis
of R2). Indeed
(a) B is linearly independent because . . .
(b) B spans R2 because . . .

Particularly R2 is finite dimensional and has infinitely many other bases. For
example
{( , ), ( , )}, or {( , ), ( , )}.

(ii) Similarly the B = {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), (0, 0, 1, . . . , 0), . . . , (0, 0, 0, . . . , 1)} of
n n-tuples is a basis for Rn.
(a) B is linearly independent because . . .

α(1, 0, 0, . . . , 0) +β(0, 1, 0, . . . , 0) + γ(0, 0, 1, . . . , 0) + · · ·+ω(0, 0, 0, . . . , 1) = (α,β,γ, . . . ,ω).

(b) B spans R2 because . . .
(iii) The set {(1, 1, 0), (2,−1, 3), (−1, 2,−3)} is not a basis for R3 because 1 1 0

2 −1 3
−1 2 −3

→

1 1 0
0 − 3 3
0 3 −3

→

1 1 0
0 −3 3
0 0 0

 ,

i.e. the set is linearly dependent.

http://v-v-kisil.scienceontheweb.net/courses/math3263.html
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(iv) The set {(1, 2, 1), (2, 4, 5), (3, 7, 9), (1, 0, 4)} is not a basis for R3 since it is linearly
dependent:

1 2 1
2 4 5
3 7 9
1 0 4

→


1 2 1
0 −2 3
0 −2 6
0 −3 3

→


1 2 1
0 −2 3
0 0 3

0 0
3
2

→


1 2 1
0 −2 3
0 0 3
0 0 0

 (why?),

(v) {(1, 1, 2, 3), (−1, 2, 1,−2), (4, 1, 5, 6)} is not a basis for R4, it is linearly independent: 1 1 2 3
−1 2 1 −2
4 1 5 6

→

1 1 2 3
0 3 3 1
0 −3 −3 − 6

→

1 1 2 3
0 3 3 1
0 0 0 − 5

 ,

but does not span R4, because the vector (0, 0, 1, 0) is not in the row space (why?),
because it is obviously linearly independent from other three vectors (why?)

Remark 4.36. The last two examples suggests that
(i) No set of four or more vectors can be a basis for R3 since it must be a linearly

independent set.
(ii) No set of three or less vectors can be a basis for R4 since they cannot span R4.

In fact we can prove the important

Theorem 4.37 (about dimension of bases). Let V be a finite dimensional vector space. If one
basis B for V has k elements, then all basis for V have k elements.

The proof of this theorem relies on the following another important results.

Theorem 4.38 (about spanning and independent sets). Let V be a vector space. If V can be
spanned by a set S = {v1, v2, . . . , vs} and if I = {w1, w2, . . . , wr} is a linearly independent subset
of V then r ⩽ s.

Proof of the Theorem 4.37. (Easy) Let B be the given basis with k elements and let C be any
other basis with, say, l elements.

• Then k ⩽ l (why?) by the previous Theorem, since C span V and B is a linearly
independent set in V ;

• Then l ⩽ k (why?) by the previous Theorem, since B span V and C is a linearly
independent set in V ;

Consequently k = l. □

Idea of a proof of Theorem 4.38. Clearly we could assume (why?) that none of v1, v2, . . . , vs

is the null vector. Then we see that

sp {w1, w2, . . . , wr} ⊆ sp {v1, v2, . . . , vs} = V .

Now the set {w1, v1, v2, . . . , vs} is linearly dependent (why?), then by the Theorem on lin-
ear dependence one of vi is a linear combinations of preceding vectors {w1, v1, v2, . . . , vi−1},
thus the linear span of the set {w1, v1, v2, . . . , vs} without vi is still the entire space V .
We could continue this procedure for following w2, w3, w4, . . . . Each time we could kick
out one vector, which could not be any wk (why?), i.e. should be some vj, then s could
not be less than r. □
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Definition 4.39. The common number k of elements in every basis of V is called the di-
mension of V .

Example 4.40. The Euclidean space Rn is n-dimensional (i.e. has the dimension n), since
its natural basis {(1, 0, 0, . . . , 0), (0, 1, 0, . . . , 0), (0, 0, 1, . . . , 0), . . . , (0, 0, 0, . . . , 1)} has n ele-
ments in it.

L 17
There are some important consequences of the previous Theorems.

Theorem 4.41. Let V be a vector space of dimension n. Then
(i) Every set of n+ 1 (or more) vectors in V is linearly dependent.

(ii) No set of n− 1 (or fewer) vectors in V can span V .
(iii) Each linearly independent set of n vectors in V must also span V and hence forms a basis

of V ;
(iv) Each of n vectors which spans V must also be linearly independent and hence forms a

basis of V ;

Proof of 4.41(iv) only. Let S = {v1, v2, . . . , vn} spans V . Then S must be a linearly inde-
pendent set (why?) because if not then, by the Theorem about condition for linear de-
pendence at least one of the vi is a linear combination of its predecessors and could be
omitted without change of the span. Hence V could be spanned by less than n vectors—
contradiction to the Theorem about dimension of basis. □

(i) Vectors {( , , ), ( , , ), ( , , ), ( , , )} is linearly dependent in R3;
(ii) Vectors {( , , , , ), ( , , , , ), ( , , , , ), ( , , , , )}

cannot span R5;
(iii) If you somehow know that S = {(1, 1, 2, 3), (−1, 2, 1,−2), (0, 0, 1, 0), (4, 1, 5, 6)} is

linearly independent subset of R4 (if you are not sure look at Example 4.35(v))
then you may conclude that it also necessarily, span R4—and so is a basis for R4.

Example 4.42. Let

A =


1 2 3 3 13
2 0 6 −2 6
0 1 0 2 5
2 −1 6 −4 1


(i) Find a basis for the rows space of A, then

find a second basis.
(ii) State the dimension of the row space of

A;
(iii) Find a basis for the solution space of

Ax = 0 and find its dimension.

Solution:

(i) A =


1 2 3 3 13
2 0 6 −2 6
0 1 0 2 5
2 −1 6 −4 1

→


1 2 3 3 13
0 1 0 2 5
0 0 0 0 0
0 0 0 0 0

 = B.

By the Theorem about dependence and zero rows the set {(1, 2, 3, 3, 13), (0, 1, 0, 2, 5)}
forms a linearly independent set and by Theorem 4.23(iii) it spans the same sub-
space of R5 as do the four given vectors. Another basis is {(1, 3, 3, 5, 18), (0, 1, 0, 2, 5)}
(how do we obtain it?), and another is . . . .

(ii) The dimension of the row space of A is, therefore, 2 (why?)
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(iii) Let x =


x
y
z
w
t

 and 0 =


0
0
0
0
0

. Then solving Ax = 0 is exactly the same as solving

Bx = 0. Now the general solution of the homogeneous system:

x+ 2y+ 3x+ 3w+ 13t = 0
y+ 2w+ 5t = 0

is given by putting, for example, t = α, w = β, so y = − 5α − 2β, then z = γ (so
that x = −13α− 3β− 3γ− 2(−5α− 2β) = − 3α+β− 3γ. So the general solution
is

x =


x
y
z
w
t

 =


−3α+ β− 3γ
−5α− 2β

γ
β
α

 = α


−3
−5
0
0
1

+ β


1
−2
0
1
0

+ γ


−3
0
1
0
0

 .

Hence the set S =




−3
−5
0
0
1

 ,


1
−2
0
1
0

 ,


− 3
0
1
0
0


 spans the solutions space of Ax =

0. It is also not difficult to see that S is also linearly independent (why?) Hence
the solution space of Ax = 0 has the dimension 3.

Example 4.43. Find 3 solutions of Ax = 0 for which y = 1.
Solution: This could be achieved as follows: α = − 1

5 , β = γ = 0 (actually γ could be
any number); α = 0, β = − 1

2 , γ = 0 (actually γ could be any number); α = 1, β = −3,
γ = 0 (actually γ could be any number);

Remark 4.44. In the above case 2 + 3 = 5, i.e. the dimension of row space of A plus the
dimension of the solution space of Ax = 0 is equal to the dimension of the whole space
R5. This is true in general as well.

L 18
4.6. Row Rank of a Matrix. From the Theorem 4.37 about dimension of bases we can
deduce:
In reducing a matrix A to echelon form we always get the same number of non-zero rows
(why?), because that number is the dimension of the row space of A.

Definition 4.45. The dimension of the row space of a matrix A is called row rank of the
matrix A.

The dimension of the column space of a matrix A is called column rank of the matrix A.

Remark 4.46. If A is m× n matrix then
(i) the raw space of A is a subspace of Rn.

(ii) the column space of A is a subspace of Rm.

Thus it is remarkable that
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Proposition 4.47. The column rank of a matrix is equal to its row rank. This common number is
called rank of A.

Example 4.48. An illustration:1 3 3 1
3 1 5 11
1 1 2 3

→

1 3 3 1
0 −8 −4 8
0 −2 −1 2

→

1 3 3 1
0 −8 −4 8
0 0 0 0

 .

Thus row rank is 2.1 3 3 1
3 1 5 11
1 1 2 3

→

1 0 0 0
3 −8 −4 8
1 −2 −1 2

→

1 0 0 0
3 −8 0 0
1 −2 0 0


Thus column rank is 2.

We skip the proof of the last theorem and will state the another important result.

Theorem 4.49. The n rows of an n × n matrix A form a linearly independent set if and only if
and only if detA ̸= 0.

Equivalently, the n rows of an n× n matrix A form a linearly dependent set if and only if and
only if detA = 0.

Proof. Let B be the echelon form of the matrix A obtained by the elementary row op-
erations. Then by Theorem 4.23 both A and B have either linearly dependent or linearly
independent sets of rows at the same time. The Rules 3.4 of evaluation of determinants also
guarantee that both detA and detB are zero or non-zero at the same time. For the matrix B
we clearly have the following alternative:

• All rows of B are non-zero, then all diagonal elements of B are equal to 1. In this
case rows of B are linearly independent and detB = 1.

• At least the last row of B is zero. In this case rows of B are linearly dependent
and detB = 0.

As pointed above the linear dependence of rows A and B and non-zero value of their
determinants are simultaneous. Thus we also have these alternatives for the matrix A.

• Rows of A are linearly independent and detA ̸= 0.
• Rows of A are linearly dependent and detA = 0.

This finishes the proof. □

5. EIGENVALUES AND EIGENVECTORS

The following objects are very important in both theoretical and applied aspects. Let
us consider the following example.

5.1. Use for Solving Differential Equations.

Example 5.1. Consider a differential equation like Ẋ(t) = kX(t), where Ẋ(t) denote the
derivative of X(t) with respect to t and k is a constant. The variable t is oftenly associated
with a time parameter. The differential equation is easy to solve, indeed:

dX(t)

dt
= kX(t) ≡ dX(t)

X(t)
= kdt ≡

∫
dX(t)

X(t)
=

∫
kdt,
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hence logX(t) = kt+ c and X(t) = ekt+c = ecekt = Cekt, where C = ec is some constant.

A more interesting example is provided by a pair of differential equations:

Example 5.2. Consider a system

(5.1)
{

ẋ1 = 7x1 + 6x2
ẋ2 = −9x1 − 8x2

If a change of variables (x1, x2) → (X1,X2) could convert this system to a system like

(5.2)
{

Ẋ1 = qX1 + 0 · X2
Ẋ2 = 0 · X1 + rX2,

then we could solve it in a ways similar to the previous Example and thus provide a
solution for the original system. Let us consider such a change of coordinates. Let u =(
x1
x2

)
and v =

(
X1
X2

)
, then let u̇ =

(
ẋ1
ẋ2

)
and v̇ =

(
Ẋ1
Ẋ2

)
. We also introduce matrices

A =

(
7 6
−9 −8

)
and D =

(
q 0
0 r

)
—being a diagonal matrix.

Then systems (5.1) and (5.2) became correspondingly

(5.3) u̇ = Au and v̇ = Dv.

If we assume that
{

x1 = αX1 + βX2
x2 = γX1 + δX2

, i.e. u = Pv where P =

(
α β
γ δ

)
then we may

write (provided P has a multiplicative inverse!) v = P−1u and then

(5.4) v̇ = P−1u̇ = P−1APv.

Comparing the systems (5.4) and (5.3) we see that we can get v̇ = Dv provided D = P−1AP
for some suitable invertible matrix P.

Definition 5.3. If we can find such a P such that D = P−1AP for a diagonal matrix D we
say that we can diagonalise matrix A.

If A and B such a matrices that P−1AP = B then A = PBP−1 and A and B are called
similar matrices. L 19

5.2. Characteristic polynomial for eigenvalues. Problem: Given a matrix A how could
we find such a P which diagonalises A? Solution: from D = P−1AP we get PD = AP. In
our example (

7 6
−9 −8

)(
α β
γ δ

)
=

(
α β
γ δ

)(
q 0
0 r

)
=

(
αq βr
γq δr

)
.

We could split the last identity into two vector equations:(
7 6
−9 −8

)(
α
γ

)
=

(
αq
γq

)
=

(
q 0
0 q

)(
α
γ

)
and

(
7 6
−9 −8

)(
β
δ

)
=

(
βr
δr

)
=

(
r 0
0 r

)(
β
δ

)
.

In turn we could write them as(
7 − q 6
−9 −8 − q

)(
α
γ

)
=

(
0
0

)
and

(
7 − r 6
−9 −8 − r

)(
β
δ

)
=

(
0
0

)
.
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The last two equation are actually identical (apart of letters used in them) and represent
a pair of simultaneous homogeneous linear equations. They have a non zero-solution

provided
∣∣∣∣7 − q 6
−9 −8 − q

∣∣∣∣ = 0.

Thus to find P we should fist to find possible values for q (and r), which motivate the
following definition.

Definition 5.4. Let A be an n× n matrix and let x ̸= 0 be a non-zero column vector such
that Ax = λx (i.e. Ax = λIx, i.e (A− λI)x = 0) for some real number λ. Then λ is called an
eigenvalue for A and x is called an eigenvector for A corresponding to the eigenvalue λ.

Remark 5.5. (i) Note that the identity Ax = λx does not implies that A = λ, since the
later identity means Ay = λy for any vector y.

(ii) If x is an eigenvector of A with an eigenvalue λ then for any real number t ̸= 0
the vector tx is also eigenvector of A with the eigenvalue λ. Indeed:

A(tx) = t(Ax) = t(λx) = λ(tx).

Therefore to determine the eigenvalues for A we just solve the equation

det(A− λI) = det


a11 − λ a12 . . . a1n
a21 a12 − λ . . . a1n

...
...

. . .
...

an1 an2 . . . ann − λ

 = 0

Definition 5.6. The expression det(A − λI) a polynomial of degree n in indeterminate λ,
it is called the characteristic polynomial of A.

Remark 5.7. Both terms eigenvalue and eigenvector come from the following German word:
eigen—(Germ.) own, peculiar, peculiarly, to own.

Example 5.8. Consider matrix A =

( 5
3 − 1

3
1
2

1
2

)
. It has two eigenvectors (1, 3) and (2, 1)

with corresponding eigenvalues 2
3 and 1.5. See Figure 6 for illustration of this.

Example 5.9. A =

(
7 6
−9 −8

)
has eigenvalues given by solving

∣∣∣∣7 − λ 6
−9 −8 − λ

∣∣∣∣ = 0, i.e.

(7 − λ)(−8 − λ) − (−9)6 = 0, i.e. λ2 + λ − 2 = 0, i.e. λ = 1,−2. To find an eigenvector
corresponding to λ = 1 we must solve(

7 − 1 6
−9 −8 − 1

)(
α
γ

)
=

(
0
0

)
, i.e.

{
6α+ 6γ = 0

−9α− 9γ = 0 with solution α = − γ.

Thus corresponding to the eigenvalue λ = 1 the eigenvectors are
(
α
γ

)
=

(
α
−α

)
=

α

(
1
− 1

)
for any non-zero real number α. For λ = −2:(

7 − (−2) 6
−9 −8 − (−2)

)(
β
δ

)
=

(
0
0

)
, i.e. 9β+ 6δ = 0

−9β− 6δ = 0 with solution 2δ = − 3β.
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(1,3)

(2,1)

(1,3)

(2,1)

FIGURE 6. Eigenvalues and Eigenvectors

Thus corresponding to the eigenvalueλ = −2 the eigenvectors are 2
(
β
δ

)
=

(
2β
−3β

)
=

β

(
2
− 3

)
, with any real number β ̸= 0.

Example 5.10. We can complete Example 5.2. Given A =

(
7 6
−9 −8

)
we found eigenval-

ues λ = 1,−2. Then the transformation matrix P =

(
α β
γ δ

)
=

(
1 2
−1 − 3

)
is made out

of the eigenvectors
(

1
−1

)
and

(
2
−3

)
. We found its inverse P−1 =

(
3 2
− 1 − 1

)
and the

matrix D =

(
1 0
0 − 2

)
has eigenvalues on the diagonal. They related by D = P−1AP.

Then from equation v̇ = Dv (5.3) we get
{

Ẋ1 = 1 · X1 + 0 · X2
Ẋ2 = 0 · X1 − 2 · X2

implying X1 = c1e
t

and X2 = c2e
−2t. Then from the identity u = Pv (5.4) we get the solution

 x1 = 1c1e
t + 2c2e

−2t

x2 = (−1)c1e
t + (−3)c2e

−2t
.

L 20
The above methods works in general. Indeed let A be n× n matrix with λ1, λ2, . . . , λn

its eigenvalues. Assume there exists corresponding eigenvectors e1, e2, . . . , en forming a
linearly independent set in Rn, which has to be a basis of Rn.
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Then on putting P = (e1, e2, . . . , en) and D =


λ1 0 . . . 0
0 λ2 . . . 0
...

...
. . .

...
0 0 . . . λn

we find that P−1AP =

D.
If no such set of eigenvectors corresponding to λ1, λ2, . . . , λn exists then A cannot be

diagonalised.

Remark 5.11. Let A be n × n matrix. If u, v are eigenvectors of A corresponding to the
same eigenvalue λ then u + v and tu (for any t ̸= 0) are eigenvectors of A corresponding
to λ (check!). Hence the set of all eigenvectors corresponding to λ—together with the zero
vector—is a subspace of Rn called the eigenspace corresponding to eigenvalue λ.

Example 5.12. Find the eigenvalues and to each eigenvalues the full set of eigenvectors

of the matrix A =

3 11 −11
1 3 −2
1 5 −4

.

Solution: first we solve

∣∣∣∣∣∣
3 − λ 11 −11

1 3 − λ −2
1 5 −4 − λ

∣∣∣∣∣∣ = 0. Evaluating determinant:

∣∣∣∣∣∣
3 − λ 11 −11

1 3 − λ −2
1 5 −4 − λ

∣∣∣∣∣∣
=

∣∣∣∣∣∣
3 − λ 11 0

1 3 − λ 1 − λ
1 5 1 − λ

∣∣∣∣∣∣ = (1 − λ)

∣∣∣∣∣∣
3 − λ 11 0

1 3 − λ 1
1 5 1

∣∣∣∣∣∣ = (1 − λ)

∣∣∣∣∣∣
3 − λ 11 0

0 −2 − λ 0
1 5 1

∣∣∣∣∣∣ = (1 −

λ) ((3 − λ)(−2 − λ)).

Thus eigenvalues are λ = 1, or −2, or 3.

For λ = 1 we solve
2x+ 11y− 11z = 0

x+ 2y− 2z = 0
x+ 5y− 5z = 0

and find x = 0, y = z = α, i.e. eigenvectors

are

x
y
z

 = α

0
1
1

where α ̸= 0.

For λ = −2 from
5x+ 11y− 11z = 0

x+ 5y− 2z = 0
x+ 5y− 2z = 0

eigenvectors are

x
y
z

 = β

 33
− 1
14

, where

β ̸= 0.

For λ = 3 from
0x+ 11y− 11z = 0

x+ 0y− 2z = 0
x+ 5y− 7z = 0

eigenvectors are

x
y
z

 = γ

2
1
1

, where γ ̸= 0.
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Now the set


0

1
1

 ,

33
−1
14

 ,

2
1
1

 is linearly independent in R3 (how do we know?

see the next subsection!). So if we put P =

0 33 2
1 −1 1
1 14 1

 and D =

1 0 0
0 − 2 0
0 0 3

we have

P−1AP = D.

In particular the general solution of the of linear equations
ẋ(t) = 3x+ 11y− 11z
ẏ(t) = x+ 3y− 2z
ż(t) = x+ 5y− 4z

is given by
x(t) = 0c1e

t + 33c2e
−2t + 2c3e

3t

y(t) = 1c1e
t − 1c2e

−2t + 1c3e
3t

z(t) = 1c1e
t + 14c2e

−2t + 1c3e
3t

.

Summing Up:
To solve linear system of n equations we do the following steps:

(i) Form a matrix A from its coefficients.
(ii) Evaluate characteristic polynomial of A, i.e. det(A− λI).

(iii) Find all eigenvalues λ1,. . . , λn of A which are roots of the characteristic polyno-
mial.

(iv) For all eigenvalues s find corresponding eigenvectors e1, . . . , en.
(v) Produce solutions c1e

λ1t, . . . , cneλnt of the diagonalised system of differential
equations.

(vi) Make a matrix P using eigenvectors e1, . . . , en as its columns.
(vii) Find the general solution of the initial system of differential equations in the form

of product P

 c1e
λ1t

...
cne

λnt

.

L 21
5.3. Linear independence of eigenvectors for different eigenvalues.

Theorem 5.13. If A is a n × n matrix and if A has n distinct eigenvalues λ1, λ2, . . . , λn then
any corresponding set {e1, e2, . . . , en} of eigenvectors will be a linearly independent set in Rn.

Proof. By mathematical induction. The base n = 1: any non-zero vector e1 form a linearly
independent set.

The step: let any k-tuple of eigenvectors e1, e2, . . . , ek with different eigenvalues λ1, λ2,
. . . , λk are linearly independent, but there is ek+1 such that:
ek+1 = a1e1 + a2e2 + · · ·+ akek with some non-zero ai. Then by linearity
Aek+1 = A(a1e1 + a2e2 + · · ·+ akek) = λ1a1e1 + λ2a2e2 + · · ·+ λkakek.
Since Aek+1 = λk+1ek+1 we have two different expressions for ek+1

a1e1 + a2e2 + · · ·+ akek = ek+1 =
λ1

λk+1
a1e1 +

λ2

λk+1
a2e2 + · · ·+ λn

λk+1
akek, thus(

1 −
λ1

λk+1

)
a1e1 +

(
1 −

λ2

λk+1

)
a2e2 + · · ·+

(
1 −

λn

λk+1

)
akek = 0. However this contra-

dicts to the linear independence of e1, e2, . . . , ek. □
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Example 5.14. Find eigenvalues and corresponding eigenvectors for the matrix A =

3 1 1
2 4 2
1 1 3

.

Is there an invertible matrix P and a diagonal matrix D such that P−1AP = D.

Solution: To find the eigenvalues of A we solve 0 =

∣∣∣∣∣∣
3 − λ 1 1

2 4 − λ 2
1 1 3 − λ

∣∣∣∣∣∣ =
∣∣∣∣∣∣
3 − λ 0 1

2 2 − λ 2
1 − 2 + λ 3 − λ

∣∣∣∣∣∣
= (2 − λ)

∣∣∣∣∣∣
3 − λ 0 1

2 1 2
1 − 1 3 − λ

∣∣∣∣∣∣ = (2 − λ)

∣∣∣∣∣∣
3 − λ 0 1

2 1 2
3 0 5 − λ

∣∣∣∣∣∣ = (2 − λ) ((3 − λ)(5 − λ) − 3)

= (2−λ)(λ−2)(λ−6). Hence eigenvalues are 2, 2, 6, i.e. eigenvalue 2 has the multiplicity.

For λ = 6 we must solve
−3x+ y+ z = 0
2x− 2y+ 2z = 0
x+ y− 3z = 0

, and get

x
y
z

 = α

1
2
1

, α ̸= 0.

For λ = 2 we must solve
x+ y+ z = 0

2x+ 2y+ 2z = 0
x+ y+ z = 0

, which leads to

x
y
z

 =

−β− γ
γ
β

 =

β

− 1
0
1

+ γ

− 1
1
0

, β and γ are not both zero.

We see that all three eigenvectors


1

2
1

 ,

−1
0
1

 ,

−1
1
0

 form a linearly independ-

ent set in R3 and thus is a basis. Consequently setting P =

1 −1 −1
2 0 1
1 1 0

 and D =6 0 0
0 2 0
0 0 2

we get P−1AP = D.

However if an eigenvalue has a multiplicity, the situation could be different.

Example 5.15. Can A =

3 6 2
0 −3 −8
1 0 −4

 be diagonalised? (i.e. does there exists an invert-

ible matrix P and a diagonal D such that P−1AP = D).
Solution:A has the characteristic equation −λ3 − 4λ2 + 11λ − 6 = 0 with eigenvalues

λ = 1, 1, and − 6.

Corresponding to λ = −6 we get eigenvectors α

− 6
8
3

, where α ̸= 0.
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Corresponding to λ = 1 we must solve
2x+ 6y+ 2z = 0

−4y− 8z = 0
x− 5z = 0

giving

x
y
z

 = β

 5
− 2
1

,

where β ̸= 0. So only a single eigenvector spans the eigenspace corresponding to the
double eigenvalue λ = 1, 1. Hence there do not exists matrices P, D as desired.

5.4. Use in computing powers of matrix. In many problems it is required to calculate a
higher power of a matrix A. Eigenvectors provide an efficient way to do that.

If we can write A = PDP−1 and then Ak = PDkP−1 since

Ak = PDP−1 · PDP−1 · · · · · PDP−1 = PDIDI · · · IDP−1 = PDkP−1.

Coming back to the matrix A from Exercise 5.14 we found:

A =

3 1 1
2 4 2
1 1 3

 , P =

1 −1 −1
2 0 1
1 1 0

 , D =

6 0 0
0 2 0
0 0 2

, and P−1 = 1
4

−1 −1 3
−2 2 −2
1 1 1

 .

Then powers of A calculated by the formula Ak = PDkP−1 are:

Ak =
1
4

1 −1 −1
2 0 1
1 1 0

6k 0 0
0 2k 0
0 0 2k

−1 −1 3
−2 2 −2
1 1 1


=

1
4

 3 · 2k + 6k −2k + 6k −2k + 6k

−2 · 2k + 2 · 6k 2 · 2k + 2 · 6k −2 · 2k + 2 · 6k

− 2k + 6k − 2k + 6k 3 · 2k + 6k.


Example 5.16. Find the element in the (1, 2)-th place of Bn where B =

(
2 1
5 6

)
.

Solution: Equation
∣∣∣∣2 − λ 1

5 6 − λ

∣∣∣∣ = 0 yelds λ2 − 8λ + 12 − 5 = (λ − 1)(λ − 7) = 0, so

λ = 1, 7.

For λ = 1 we solve x+ y = 0
5x+ 5y = 0 giving eigenvectors c

(
1
− 1

)
, where c ̸= 0.

For λ = 7 we solve −5x+ y = 0
5x− y = 0 giving eigenvectors d

(
1
5

)
, where d ̸= 0.

So Bn = PDnP−1 =

(
1 1
−1 5

)(
1n 0
0 7n

)
1
6

(
5 −1
1 1

)
=

1
6

(
? 7n − 1
? ?

)
. Thus the

answer is
7n − 1

6
.

APPENDIX A. ADDITIONAL INFORMATION

Remark A.1. The material of this Appendix is not in the syllabus of this course and is not
examinable. But it worth to be known anyway!

A.1. Why Algebra? (A historic Note). It came from the Middle East together with Arabic
numbers 1, 2, . . . (known, however from India). The name is formed from al-jabr, Arabic for
“restoration,” itself a transliteration of a Latin term, and just one of many contributions of
Arab mathematicians.
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Al-Khwarizmi (c.780-c.850), the chief librarian of the observatory, research center and
library called the House of Wisdom in Baghdad produced the fundamental treatise, “Hisab
al-jabr w’al-muqabala” (“Calculation by Restoration and Reduction”: widely used up to the
17th century), which covers linear and quadratic equations, was to solve trade imbal-
ances, inheritance questions and problems arising from land surveyance and allocation—
all practical needs raised by the civilisation!

Al-Karaji of Baghdad (953-c.1029), founder of a highly influential school of algebraic
thought, defined higher powers and their reciprocals in his ”al-Fakhri” and showed how
to find their products. He also looked at polynomials and gave the rule for expanding a
binomial, anticipating Pascal’s triangle by more than six centuries.

Arab syntheses of Babylonian, Indian and Greek concepts also led to important de-
velopments in arithmetic, trigonometry and spherical geometry. The word algorithm, for
instance, is derived from the name of al-Khwarizmi.

Another Arabic algebraist Omar Khayyam is also widely known for his poetry:
Those who pursue the scientific way
In a different language display
Their ignorance and the way they pray.
They too one day shall be dust and clay.

Exercise A.2. Why then bother to study anything?
Give your reasons!

A.2. Linearisation of Natural Laws. The almost any physical law studied at school is a
linearised simplification of an (infinitely!) more complicated real process. Just few ex-
amples:

• Hook’s law: Restoring force F of a spring is proportional to displacement x, i.e.
F = −kx. (Untrue beyond elastisity)

• Newton’s Second Law: Force F⃗ is proportional to caused acceleration a⃗ times (con-
stant) mass m, i.e F⃗ = ma⃗. (Untrue for high speeds in relativity)

• Ohm’s law: Voltage V is proportional to current I times resistance R, i.e. V = I×R.
(Untrue for huge voltages—cause fire!)

• Economics: Profit from a mass production is proportional to the profit from a unit.
(Untrue at a big scale, sparkle “globalisation”) All these examples are manifesta-
tion of the same fundamental principle of mathematical analysis.

• Analysis: Increment y − y0 of a function y = f(x) is proportional to increment of
x − x0 times the derivative, i.e. y = y0 + f ′(x0)(x − x0). (Untrue for not-so-small
x− x0—require higher derivatives!)

A.3. Matrix Mechanics. In the beginning of XXth century physicists tried to understand
line spectrum of hydrogen atom. The revolutionary idea was that the electron may occupy
fixed orbits only and it emits a photon during a spontaneous transition from one orbit to
another.

S1 S2 S3 . . .
S1 f11 f21 f31 . . .
S2 f12 f22 f32 . . .
S3 f13 f23 f33 . . .
. . . . . . . . . . . . . . .

http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Al-Khwarizmi.html
http://members.aol.com/bbyars1/algebra.html
http://members.aol.com/bbyars1/algebra.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Al-Karaji.html
http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Arabic_mathematics.html
http://www-groups.dcs.st-and.ac.uk/~history/HistTopics/Arabic_mathematics.html
http://www-groups.dcs.st-and.ac.uk/~history/Mathematicians/Khayyam.html
http://www.okonlife.com/
ttp://www.okonlife.com/poems/page6.htm
http://www.ac.wwu.edu/~vawter/PhysicsNet/Topics/SHM/HookesLaw.html
http://www.ac.wwu.edu/~vawter/PhysicsNet/QTMovies/Oscilations/HooksLawMain.html
http://www.citycollegiate.com/matterb.htm
http://www.grc.nasa.gov/WWW/K-12/airplane/newton2.html
http://id.mind.net/~zona/mstm/physics/mechanics/forces/newton/newtonLaw2.html
http://www.grc.nasa.gov/WWW/K-12/Sample_Projects/Ohms_Law/ohmslaw.html
http://www.cnde.iastate.edu/ncce/EC_CC/Sec.2.1/Sec.2.1.html
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y

xx0 x

y0

y

y′

FIGURE 7. Linear part of a function increment gives a good approxima-
tion only for small x− x0.

Heisenberg started out simply by tabulating the electron states of the hydrogen atom and
the frequencies of photons that would be emitted by transitions between them, as shown
above.

He went from this table of frequencies to develop corresponding tables of amplitudes,
positions, and momenta, and began to painfully work out ways of performing calcula-
tions with them. He published a paper on it in July 1925, and also of course showed his
work to his boss Born before leaving for Copenhagen to rejoin Bohr and his group. Born
quickly saw the merit of Heisenberg’s ideas and worked with one of his students, Pascual
Jordan (1902:1980), to establish them on a more formal basis. Having two such transition
matrices [fij] and [gij] we can calculate their composition according to the following rules,
see Fig. 8:

(i) A resulting transition Si → Sj can occur through any intermediate state Sk, e.g.
Si → S1 → Sj, Si → S2 → Sj, etc.

(ii) The probability of a transition Si → Sk → Sj is fikgkj.
(iii) Probability should be summed over all possible paths: (fg)ik = fi1g1j + fi2g2j +

· · ·+ fikgkj + . . .
Born realized that Heisenberg’s sets of numbers could be represented as a square or

rectangular grid of numbers known as a ”matrix”. Matrix math was already an estab-
lished branch of mathematics, though it was not well known at the time, and in fact Born
was one of the few physicists who understood it. Sets of matrix operations, including ad-
dition, subtraction, and multiplication, had been defined; Born and Jordan found that the
rules of matrix mathematics could be directly applied to Heisenberg’s ideas. Heisenberg
was not familiar with matrix math, but it is not a particularly complicated tool to learn
how to use, and Heisenberg picked it up. Read more. . .

http://www.vectorsite.net/tpqm_02.html#m3
http://www.vectorsite.net/tpqm_02.html
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S1

S2

Si

Sj

...

...

...

S1

S2

Si

Sj

...

...

...

S1

S2

Si

Sj

...

...

...

fi1

g1jfi2

g2j

fij

gjj

FIGURE 8. Transition amplitutdes and matrix multiplication
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