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CHAPTER 1

General Information

This is an online manual is designed for students. The manual
is available at the moment in HTML with frames (for easier navig-
ation), HTML without frames and PDF formats. Each from these
formats has its own advantages. Please select one better suit your
needs.

There is on-line information on the following courses:
• Calculus I.
• Calculus II.
• Geometry.

1. Web page

There is a Web page which contains this course description as
well as other information related to this course. Point your Web
browser to

http://v-v-kisil.scienceontheweb.net/courses/math152.html
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3. Warnings and Disclaimers

Before proceeding with this interactive manual we stress the fol-
lowing:

• These Web pages are designed in order to help students as a
source of additional information. They are NOT an obligatory
part of the course.

• The main material introduced during lectures and is con-
tained in Textbook. This interactive manual is NOT a substi-
tution for any part of those primary sources of information.

• It is NOT required to be familiar with these pages in order
to pass the examination.
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• The entire contents of these pages is continuously improved
and updated. Even for material of lectures took place weeks
or months ago changes are made.
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CHAPTER 9

Infinite Series

5. A brief review of series

We refer to the chapter Infinite Series of the course Calculus I for
the review of the following topics.

(i) Sequences of numbers
(ii) Convergent and Divergent Series

(iii) Positive Term Series
(iv) Ratio and Root Test
(v) Alternating Series and Absolute Convergence

6. Power Series

It is well known that polynomials are simplest functions, par-
ticularly it is easy to differentiate and integrate polynomials. It is
desirable to use them for investigation of other functions. Infinite
series reviewed in the previous sections are very important because
they allow to represent functions by means of power series, which
are similar to polynomials in many respects. An example of such
representations is harmonic series∞∑

n=0

rn =
1

1− r
.

DEFINITION 6.1. Let x be a variable. A power series in x is a series
of the form∞∑

n=0

bnx
n = b0 + b1x+ b2x

2 + · · ·+ bnx
n + · · · ,

where each bk is real number.

A power series turns to be infinite (constant term) series if we
will substitute a constant c instead of the variable x. Such series
could converge or diverge. All power series converge for x = 0. The
convergence of power series described by the following theorem.

THEOREM 6.2. (i) If a power series
∑

bnx
n converges for a

nonzero number c, then it is absolutely convergent whenever
|x| < |c|.

(ii) If a power series
∑

bnx
n diverges for a nonzero number d, then

it diverges whenever |x| > |d|.
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10 9. INFINITE SERIES

PROOF. The proof follows from the Basic Comparison Test of the
power series for |x| and convergent geometric series with r =

∣∣x
c

∣∣. □

From this theorem we could conclude that

THEOREM 6.3. If
∑

bnx
n is a power series, then exactly one of the

following true:
(i) The series converges only if x = 0.

(ii) The series is absolutely convergent for every x.
(iii) There is a number r such that the series is absolutely convergent

if x is in open interval (−r, r) and divergent if x < −r or x > r.

The number r from the above theorem is called radius of conver-
gence. The totality of numbers for which a power series converges is
called its interval of convergence. The interval of convergence may be
any of the following four types: [−r, r], [−r, r), (−r, r], (−r, r).

There is a more general type of power series

DEFINITION 6.4. Let b be a real number and x is a variable. A
power series in x− d is a series of the form∞∑
n=0

bn(x−d)n = b0+b1(x−d)+b2(x−d)2+ · · ·+bn(x−d)n+ · · · ,

where each bn is a real number.

This power series is obtained from the series in Definition 6.1 by
replacement of x by x − d. We could obtain a description of conver-
gence of this series by replacement of x by x− d in Theorem 6.3.

The following exercises should be solved in the following way:
(i) Determine the radius r of convergence, usually using Ratio

test or Root Test.
(ii) If the radius r is finite and nonzero determine if the series

is convergent at points x = −r, x = r. Note that the series
could be alternating at one of them and apply Alternating
Test.

EXERCISE 6.5. Find the interval of convergence of the power series:∑ 1

n2 + 4
xn;

∑ 1

ln(n+ 1)
xn;∑ 10n+1

32n
xn;

∑ (3n)!

(2n)!
xn;∑ 10n

n!
xn;

∑ 1

2n+ 1
(x+ 3)n;∑ n

32n−1
(x− 1)2n;

∑ 1√
3n+ 4

(3x+ 4)n;
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7. Functional Sequences and Series, Uniform Convergence

Power series are a particular example of a wider concept.

DEFINITION 7.1. Let us consider an infinite sequence of functions
or functional sequence {fn(x)} with a common domain D:

f1(x), f2(x), f3(x), . . . , fn(x), . . . .

The functional sequence {fn(x)} for each particular value x0 ∈ D
defines a sequence of numbers {fn(x0)}.

DEFINITION 7.2. Let for any x0 ∈ D the sequence of numbers
{fn(x0)} be convergent and have a limit denoted by f(x0), then the
the function f(x) on D is called the limit of functional sequence. We
write it as

f(x) = lim
n→∞ fn(x) or fn(x) → f(x),n → ∞.

Although a convergence fn(x) → f(x) implies all convergences
fn(x0) → f(x0) for any x0 ∈ D, the rate of convergence of numerical
sequences fn(x0) may vary at different points. Thus the following
notion plays an important rôle:

DEFINITION 7.3. We say that a function f(x) is a uniform limit of
a functional sequence fn(x) on a domain D, or equivalently a func-
tional sequence fn(x) uniformly converges to f(x) on a domain D if for
any ϵ > 0 there is such N ∈ N that

|fn(x0) − f(x0)| < ϵ for all n > N and x0 ∈ D.

In the opposite case:

DEFINITION 7.4. A function f(x) = limn→∞ fn(x) is a non-uniform
limit of a functional sequence fn(x) if there is ϵ > 0 such that for any
N ∈ N there exist x0 ∈ D and n > N such that

|fn(x0) − f(x0)| ⩾ ϵ.

EXAMPLE 7.5. The functional sequences

fn(x) =
1

1+ n2x2
and gn(x) =

nx

1+ n2x2

both converge to the function f(x) ≡ 0 on the interval [0, 1]. However
fn(x) uniformly converges and gn(x) converges in a non-uniform way
(prove it!)

Similarly we can define these notions for series.

DEFINITION 7.6. Let a series have functions fn(x) as its terms:∞∑
n=1

fn(x) = f1(x) + f2(x) + · · ·+ fn(x) + · · · ,

then it is called functional series.
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DEFINITION 7.7. A functional series
∑∞

n=1 fn(x) is called conver-
gent if the functional sequence Sk(x) =

∑k
n=1 fn(x) of its partial sum

is convergent.

DEFINITION 7.8. A functional series
∑∞

n=1 fn(x) is called uniformly
convergent if the functional sequence Sk(x) =

∑k
n=1 fn(x) of its par-

tial sum is uniformly convergent.

EXAMPLE 7.9. (i) Any power series
∑∞

1 anx
n converges uni-

formly within the interval of convergence.
(ii) The series ∞∑

1

sinnx

n!

uniformly converges on R (prove it!).
(iii) The series ∞∑

n=1

xn(1− xn)

converges on {[0,1]} in non-uniform way.

8. Power Series Representations of Functions

As we have seen in the previous section a power series
∑

bnx
n

could define a convergent infinite series
∑

bnc
n for all c ∈ (−r, r)

which has a sum f(c). Thus the power series define a function f(x) =∑
bnx

n with domain (−r, r). We call it the power series representation
of f(x). Power series are used in calculators and computers.

EXAMPLE 8.1. Find function represented by
∑

(−1)kxk.

The following theorem shows that integration and differentiations
could be done with power series as easy as with polynomials:

THEOREM 8.2. Suppose that a power series
∑

bnx
n has a radius of

convergence r > 0, and let f be defined by

f(x) =

∞∑
n=0

bnx
n = b0 + b1x+ b2x

2 + · · ·+ bnx
n + · · ·

for every x ∈ (−r, r). Then for −r < x < r

f ′(x) = b1 + b2x+ b3x
2 + · · ·+ nbnx

n−1 + · · ·(8.1)

=

∞∑
n=1

nbnx
n−1;∫x

0

f(t)dt = b0x+ b1
x2

2
+ b2

x3

3
+ · · ·+ bn

xn+1

n+ 1
+ · · ·(8.2)

=

∞∑
n=0

bn

n+ 1
xn+1.
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EXAMPLE 8.3. Find power representation for
(i) 1

(1+x)2
.

(ii) ln(1+ x) and calculate ln(1.1) to five decimal places.
(iii) arctan x.

THEOREM 8.4. If x is any real number,

ex = 1+
x

1
+

x2

2!
+

x3

3!
+ · · · =

∞∑
n=0

xn

n!
.

PROOF. The proof follows from observation that the power series
f(x) =

∑
xn

n!
satisfies to the equation f ′(x) = f(x) and the only solu-

tion to this equation with initial condition f(0) = 1 is f(x) = ex. □

COROLLARY 8.5.

e = 1+
1

1!
+

1

2!
+

1

3!
+ · · · .

EXAMPLE 8.6. Find a power series representation for sinh x, xe−2x.

EXERCISE 8.7. Find a power series representation for f(x), f ′(x),∫x

0
f(t)dt.

f(x) =
1

1+ 5x
; f(x) =

1

3− 2x
.

EXERCISE 8.8. Find a power series representation and specify the
radius of convergence for:

x

1− x4
;

x2 − 3

x− 2
.

EXERCISE 8.9. Find a power series representation for

f(x) = x2e(x
2); f(x) = x4 arctan(x4).

9. Maclaurin and Taylor Series

We find several power series representation of functions in the
previous section by a variety of different tools. Could it be done in a
regular fashion? Two following theorem give the answer.

THEOREM 9.1. If a function f has a power series representation

f(x) =

∞∑
k=0

bnx
n

with radius of convergence r > 0, then f(k)(0) exists for every positive
integer k and

f(x) = f(0)+
f ′(0)

1!
x+

f ′′(0)

2!
x2 + · · ·+ f(n)(0)

n!
xn + · · · =

∞∑
n=0

f(n)(0)

n!
xn
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THEOREM 9.2. If a function f has a power series representation

f(x) =

∞∑
k=0

bn(x− d)n

with radius of convergence r > 0, then f(k)(d) exists for every positive
integer k and

f(x) = f(d)+
f ′(d)

1!
(x−d)+

f ′′(d)

2!
(x−d)2+· · ·+f(n)(d)

n!
(x−d)n+· · · =

∞∑
n=0

f(n)(d)

n!
(x−d)n

EXERCISE 9.3. Find Maclaurin series for:

f(x) = sin 2x; f(x) =
1

1− 2x
.

REMARK 9.4. It is easy to see that linear approximation formula
is just the Taylor polynomial Pn(x) for n = 1.

The last formula could be split to two parts: the nth-degree Taylor
polynomial Pn(x) of f at d:

Pn(x) = f(d) +
f ′(d)

1!
(x− d) +

f ′′(d)

2!
(x− d)2 + · · ·+ f(n)(d)

n!
(x− d)n

and the Taylor remainder

Rn(x) =
f(n+1)(z)

(n+ 1)!
(x− d)n+1,

where z ∈ (d, x). Then we could formulate a sufficient condition for
the existence of power series representation of f.

THEOREM 9.5. Let f have derivatives of all orders throughout an in-
terval containing d, and let Rn(x) be the Taylor remainder of f at d. If

lim
n→∞Rn(x) = 0

for every x in the interval, then f(x) is represented by the Taylor series for
f(x) at d.

EXAMPLE 9.6. Let f be the function defined by

f(x) =

{
e−1/x2 if x ̸= 0;
0 if x = 0,

then f cannot be represented by a Maclaurin series.

EXERCISE 9.7. Show that for function f(x) = e−x

lim
n→∞Rn(x) = 0

and find the Maclaurin series.
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The important Maclaurin series are:
Function Maclaurin series Convergence

ex
∑∞

n=0
xn

n!
(−∞,∞)

ln(1+ x)
∑∞

n=0
(−1)nxn+1

n+1
(−1, 1]

sin x
∑∞

n=0
(−1)nx2n+1

(2n+1)!
(−∞,∞)

cos x
∑∞

n=0
(−1)nx2n

(2n)!
(−∞,∞)

sinh x
∑∞

n=0
x2n+1

(2n+1)!
(−∞,∞)

cosh x
∑∞

n=0
x2n

(2n)!
(−∞,∞)

arctan x
∑∞

n=0
(−1)nx2n+1

2n+1
[−1, 1]

EXERCISE 9.8. Find Maclaurin series for sin2 x.

EXERCISE 9.9. Find a series representation of ln x in powers of
x− 1.

EXERCISE 9.10. Find first three terms of the Taylor series for f at
d:

f(x) = arctan x, d = 1; f(x) = csc x, d = π/3.

10. Applications of Taylor Polynomials

We could use the Taylor polynomial Pn(x) for an approximation
of a function f(x) in a neighborhood of point x0. The important ob-
servation is: to keep amount of calculation on a low level we prefer
to consider polynomials Pn(x) with small n. But for such n the ob-
tained accuracy is tolerable only for a small neighborhood of x0. If
x is remote from x0 to obtain a reasonably good approximation with
Pn(0) for a small n we need to take the Taylor expansion in another
point x ′

0 which is closer to x.

EXERCISE 10.1. Find the Maclaurin polynomials P1(x), P2(x), P3(x)
for f(x), sketch their graphs. Approximate f(a) to four decimal places
by means of P3(x) and estimate R3(x) to estimate the error.

f(x) = ln(x+ 1) a = 0.9.

EXERCISE 10.2. Find the Taylor formula with remainder for the
given f(x), d and n.

f(x) = e−1; d = 1, n = 3.

f(x) = 3
√
x; d = −8, n = 3.





CHAPTER 11

Vectors and Surfaces

2. Vectors in Three Dimensions

Similarly to Cartesian coordinates on the Euclidean plane we could
introduce rectangular coordinate system or xyz-coordinate system in three
dimensions. The origin is usually denoted by O and three axises are
OX, OY, OZ. The positive directions are selected in the way to form
the right-handed coordinate system. In this system the coordinate of a
point is an ordered triple of real numbers (a1,a2,a3). Points with all
three coordinates being positive form the first octant.

Similarly to two dimensional case we have the following formu-
las

THEOREM 2.1. (i) The distance between P1(x1,y1, z1) and P2(x2,y2, z2)
is

d(P1,P2) =
√

(x1 − x2)2 + (y1 − y2)2 + (z1 − z2)2.

(ii) The midpoint of the line segment P1(x1,y1, z1) to P2(x2,y2, z2)
is (

x1 + x2

2
,
y1 + y2

2
,
z1 + z2

2

)
(iii) An equation of a sphere of radius r and center P0(x0,y0, z0) is

(x− x0)
2 + (y− y0)

2 + (z− z0)
2 = r2.

We define vector a = (a1,a2,a3) in the three dimensional case as
a transformation which maps point (x,y, z) to (x+a1,y+a2, z+ z3).
Vectors could be added and multiplied by a scalar according to the
rules:

a+ b = (a1 + b1,a2 + b2,a3 + b3);

ca = (ca1, ca2, ca3);

There is a special null vector 0 = (0, 0, 0) and inverse vector −a =
(−a1,−a2,−a3) for any vector a.

We have the following properties:
(i) a+ b = b+ a.

(ii) a+ (b+ c) = (a+ b) + c.
(iii) a+ 0 = a.
(iv) a+−a = 0.
(v) c(a+ b) = ca+ ab.

17
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(vi) (c+ d)a = ca+ da.
(vii) (cd)a = c(da) = d(ca).

(viii) 1a = a.
(ix) 0a = 0 = c0.

We define subtraction of vectors (or difference of vectors) by the rule:

a− b = a+ (−b).

DEFINITION 2.2. Nonzero vectors a and b have
(i) the same direction if b = ca for some scalar c > 0.

(ii) the opposite direction if b = ca for some scalar c < 0.

DEFINITION 2.3. We define vectors:

i = (1, 0, 0), j = (0, 1, 0), k = (0, 0, 1).

It is obvious that

a = (a1,a2,a3) = a1i+ a2j+ a3k.

The magnitude of vector is defined to be

∥a∥ =
√
a2
1 + a2

2 + a2
3.

3. Dot Product

Besides addition of vectors and multiplication by the scalar there
two different operation which allows to multiply vectors.

DEFINITION 3.1. The dot product (or scalar product, or inner product)
a · b is

a · b = a1b1 + a2b2 + a3b3.

THEOREM 3.2. Properties of the dot product are:
(i) a · a = ∥a∥2.

(ii) a · b = b · a.
(iii) a · (b+ c) = a · b+ a · c.
(iv) (ma) · b = ma · b = a · (mb).
(v) 0 · a = 0.

DEFINITION 3.3. Let a and b be nonzero vectors.
(i) If b ̸= ca then angle θ between a and b is the angle of triangle

defined by them.
(ii) If b = ca then θ = 0 if c > 0 and θ = π if c < 0.

Vectors are orthogonal or perpendicular if θ = π/2. By a convention
0 is orthogonal and parallel to any vector.

THEOREM 3.4. For nonzero a and b:

a · b = ∥a∥ ∥b∥ cos θ.
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COROLLARY 3.5. For nonzero a and b:

cos θ =
a · b

∥a∥ ∥b∥
.

COROLLARY 3.6. Two vectors a and b are orthogonal if and only if
ab = 0.

COROLLARY 3.7 (Cauchy-Schwartz-Bunyakovskii Inequality).

|a · b| ⩽ ∥a∥ ∥b∥

THEOREM 3.8 (Triangle Inequality).

∥a+ b∥ ⩽ ∥a∥+ ∥b∥ .

We define component of a along b

compba = a · 1

∥b∥
b

DEFINITION 3.9. The work done by a constant force a as its point of
application moves along the vector b is a · b.

4. Vector Product

DEFINITION 4.1. A determinant of order 2 is defined by∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ = a1b2 − a2b1.

A determinant of order 3 is defined by∣∣∣∣∣∣
c1 c2 c3
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣ =
∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ c1 − ∣∣∣∣ a1 a3

b1 b3

∣∣∣∣ c2 + ∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ c1.
DEFINITION 4.2. The vector product (or cross product) a× b is

a× b =

∣∣∣∣∣∣
i j k
a1 a2 a3

b1 b2 b3

∣∣∣∣∣∣
=

∣∣∣∣ a2 a3

b2 b3

∣∣∣∣ i− ∣∣∣∣ a1 a3

b1 b3

∣∣∣∣ j+ ∣∣∣∣ a1 a2

b1 b2

∣∣∣∣ k.
THEOREM 4.3. The vector a× b is orthogonal to both a and b.

THEOREM 4.4. If θ is the angle between nonzero vectors a and b, then

∥a× b∥ = ∥a∥ ∥b∥ sin θ.

COROLLARY 4.5. Two vectors a and b are parallel if and only if a×b =

0⃗.

EXERCISE 4.6. Compile the multiplication table for vectors i, j, k.
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Be careful, because:

i× j ̸= j× i

(i× j)× j ̸= i× (j× j).

THEOREM 4.7. Properties of the vector product are
(i) a× b = −(b× a).

(ii) (ma)× b = m(a× b) = a× (mb).
(iii) a× (b+ c) = a× b+ a× c.
(iv) (a+ b)× c = a× c+ b× c.
(v) (a× b) · c = a · (b× c).

(vi) a× (b× c) = (a · c)b− (a · b)c.

Dot and vector products related to geometric properties.

EXERCISE 4.8. Prove that the distance from a point R to a line l is
given by

d =

∥∥∥P⃗Q× P⃗R
∥∥∥∥∥∥P⃗Q∥∥∥ .

EXERCISE 4.9. Prove that the volume of the oblique box spanned
by three vectors a, b, c is |(a× b) · c|.

5. Lines and Planes

THEOREM 5.1. Parametric equation for the line through P1(x1,y1, z1)
parallel to a = (a1,a2,a3) are

x = x1 + a1t, y = y1 + a2t, z = z1 + a3t; t ∈ R.

Note that we obtain the same line if we use any vector b = ca,
c ̸= 0.

COROLLARY 5.2. Parametric equation for the line through P1(x1,y1, z1)
and P2(x2,y2, z2) are

x = x1+(x2−x1)t, y = y1+(y2−y1)t, z = z1+(z2−z1)t; t ∈ R.

EXERCISE 5.3. Find equations of the lines:
(i) P(1, 2, 3); a = i+ 2j+ 3k.

(ii) P1(2,−2, 4), P2(2,−2,−3).

EXERCISE 5.4. Determine whether the lines intersect: x = 2 − 5t,
y = 6+ 2t, z = −3− 2t; x = 4− 3v, y = 7+ 5v, z = 1+ 4v.

DEFINITION 5.5. Let θ be the angle between nonzero vectors a
and b and let l1 and l2 be lines that are parallel to the position vectors
of a and b.

(i) The angles between lines l1 and l2 are θ and π− theta.
(ii) The lines l1 and l2 are parallel iff b = ca for c ∈ R.
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(iii) The lines l1 and l2 are orthogonal iff a · b = 0 for c ∈ R.

The plane through P1 with normal vector ⃗P1P2 is the set of all
points P such that P⃗1P is orthogonal to ⃗P1P2.

THEOREM 5.6. An equation of the plane through P1(x1,y1, z1) with
normal vector a = (a1,a2,a3) is

a1(x− x1) + a2(y− y1) + a3(z− z1) = 0.

THEOREM 5.7. The graph of every linear equation ax+by+cz+d = 0
is a plane with normal vector (a,b, c).

EXERCISE 5.8. Find an equation of the plane through P(4, 2,−6)

and normal vector O⃗P.

EXERCISE 5.9. Sketch the graph of the equation
(i) y = −2;

(ii) 3x− 2z− 24 = 0;

DEFINITION 5.10. Two planes with normal vectors a and b are
(i) parallel if a and b are parallel;

(ii) orthogonal if a and b are orthogonal;

EXERCISE 5.11. Find an equation of the plane through P(3,−2, 4)
parallel to −2x+ 3y− z+ 5 = 0.

THEOREM 5.12 (Symmetric Form for a Line).
x− x1

a1

=
y− y1

a2

=
z− z1

a3

.

EXERCISE 5.13. Show that distance from a point P0(x0,y0, z0) to
the plane ax+ by+ cz+ d = 0 is

h =
∣∣∣compn

⃗P0P1

∣∣∣ ,
where n = (a,b, c) and P1—any point on the plane.

EXERCISE 5.14. Show that planes 3x + 12y − 6z = −2 and 5x +
20y− 10z = 7 are parallel and find distance between them.

EXERCISE 5.15. Find an equation of the plane that contains the
point P(4,−3, 0) and line x = t+ 5, y = 2t− 1, z = −t+ 7.

EXERCISE 5.16. Show that distance between two lines defined by
points P1, Q1 and P2, Q2 is given by the formula

d =
∣∣∣compn

⃗P1P2

∣∣∣ , n =
⃗P1Q1 × ⃗P2Q2∥∥∥ ⃗P1Q1 × ⃗P2Q2

∥∥∥ .
EXERCISE 5.17. Find the distance between point P(3, 1,−1) and

line x = 1+ 4t, y = 3− t, z = 3t.
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6. Surfaces

It is important to represent different surfaces (not only planes)
from 3d space into our two dimensional drawing. Some useful tech-
nique is given by trace on a surface S in a plane, namely by intersection
of S an the plane.

There are several classic important types of surfaces. To follows
given examples you need to remember equations of conics in Cartesian
coordinates.

EXAMPLE 6.1. z = x2 + y2 define circular paraboloid or paraboloid
of revolution.

DEFINITION 6.2. Let C be a curve in a plane, and let l be a line
that is not in a parallel plane. The set of points on all lines that are
parallel to l and intersect C is a cylinder. The curve C called is called
directrix of the cylinder.

EXAMPLE 6.3. The right circular cylinder is given by the equation
x2 + y2 = r2.

Similarly to quadratic equations equations defining conics the
equation

Ax2 + By2 + cz2 +Dxy+ Exz+ Fyz+Gx+Hy+ Iz+ J = 0

defines quadric surface. We consider simplest cases with D = E = F =
G = H = I = 0.

DEFINITION 6.4. Ellipsoid:

x2

a2
+

y2

b2
+

z2

c2
= 1.

DEFINITION 6.5. The hyperboloid of one sheet:

x2

a2
+

y2

b2
−

z2

c2
= 1.

DEFINITION 6.6. The hyperboloid of two sheets:

−
x2

a2
−

y2

b2
+

z2

c2
= 1.

DEFINITION 6.7. The cone:
x2

a2
+

y2

b2
−

z2

c2
= 0.

DEFINITION 6.8. The paraboloid:

x2

a2
+

y2

b2
= cz.

DEFINITION 6.9. The hyperbolic paraboloid:

y2

b2
−

x2

a2
= cz.



CHAPTER 12

Vector-Valued Functions

DEFINITION 0.1. Let D be a set of real numbers. A vector-valued
function r with domain D is a correspondence that assigns to each
number t in D exactly one vector r(t) in R3.

THEOREM 0.2. If D is a set of real numbers, then r is a vector-valued
function with domain D if and only if there are scalar function f, g, and h
such that

r(t) = f(t) i+ g(t) j+ h(t) k.

EXERCISE 0.3. Sketch the two vectors

r(t) = t i+ 3 sin tj+ 3 cos t k, r(0), r(π/2).

Set of endpoints of all vectors O⃗P = r(t) define a space curve C. A
parameter equation of the curve C is

x = f(t), y = g(t), z = z(t).

The orientation of C is the direction determined by increasing values
of t.

EXERCISE 0.4. Sketch the curve and indicate orientation:

r(t) = t3 i+ t2 j+ 3 k; 0 ⩽ t ⩽ 4.

The following theorem is completely analogous to arc length of a
plane curve:

THEOREM 0.5. If a curve C has a smooth parameterization

x = f(t), y = g(t), z = z(t), a ⩽ t ⩽ b

and if C does not intersect itself, except possibly for t = a and t = b, then
the length L of C is

L =

∫b

a

√
[f ′(t)]2 + [g ′(t)]2 + [h ′(t)]2 dt.

EXERCISE 0.6. Find the arc length:

x = et cos t, y = et, z = et sin t; 0 ⩽ t ⩽ 2π;

x = 2t, y = 4 sin 3t, z = 4 cos 3t; 0 ⩽ t ⩽ 2π;

23
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1. Limits, Derivatives and Integrals of Vector-valued Functions

All definitions and results in this section are in close relation with
the theory of scalar-valued function Calculus I. We advise to refresh
Chapters on Limits and Derivative from Calculus I course.

DEFINITION 1.1. Let r(t) = f(t)i + g(t)j + h(t)k. The limit r(t) as
t approaches a is

lim
t→a

r(t) =
[
lim
t→a

f(t)
]
i+

[
lim
t→a

g(t)
]
j+

[
lim
t→a

h(t)
]
k.

provides f, g, and h have limits as t approaches a.

The next definition coincides with definition of continuity for
scalar-valued function:

DEFINITION 1.2. A vector valued function r is continuous at a if

lim
t→a

r(t) = r(a).

Particularly r(t) is continuous iff f(t), g(t), and h(t) are continu-
ous. Similarly we define derivative

DEFINITION 1.3. Let r be a vector-valued function. The derivative
is the vector-valued function r ′ defined by

r ′(t) = lim
∆t→0

1

∆t
[r(t+ ∆t) − r(t)]

for every t such that the limit exists.

EXERCISE 1.4. Find the domain, first and second derivatives of
the functions:

r(t) =
3
√
t i+

1

t
j+ e−t k;

r(t) = ln(1− t) i+ sin t j+ t2 k.

THEOREM 1.5. Let r(t) = f(t)i + g(t)j + h(t)k and f, g, and h are
differentiable, then

r ′(t) = f ′(t) i+ g ′(t) j+ h ′(t) k.

The geometric meaning is as expected—this is tangent vector to the
curve defined by r.

EXERCISE 1.6. Find parameter equation for the tangent line to C
at P:

x = et, y = tet, z = t2 + 4; P(1, 0, 4).

The properties of the derivative are as follows:

THEOREM 1.7. If u and v are differentiable vector-valued functions
and c is a scalar, then

(i) [u(t) + v(t)] ′ = u ′(t) + v ′(t);
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(ii) [cu(t)] ′ = cu ′(t);
(iii) [u(t) · v(t)] ′ = u ′(t) · v(t) + u(t) · v ′(t);
(iv) [u(t)× v(t)] ′ = u ′(t)× v(t) + u(t)× v ′(t);

As a consequence of these properties we could easily prove the
following

THEOREM 1.8. If r is differentiable and ∥r∥ is constant, then r ′ is or-
thogonal to r ′(t) for every t in the domain of r ′.

Finally we define integrals of vector-valued functions using in-
tegrals of scalar-valued functions:

DEFINITION 1.9. Let r(t) = f(t)i + g(t)j + h(t)k and f, g, and h
are integrable, then∫b

a

r(t)dt =

[∫b

a

f(t)dt

]
i+

[∫b

a

g(t)dt

]
j+

[∫b

a

h(t)dt

]
k.

If R ′(t) = r(t), then R(t) is an antiderivative of r(t).

THEOREM 1.10. If R(t) is an antiderivative of r(t) on [a,b], then∫b

a

r(t)dt = R(t)]ba = R(b) −R(a).

EXERCISE 1.11. Find r(t) subject to the given conditions:

r ′(t) = 2i− 4t3 j+ 6
√
tk, r(0) = i+ 5j+ 3k.





CHAPTER 13

Partial Differentiation

1. Functions of Several Variables

It is common that real-world quantities depend from many dif-
ferent parameters. Mathematically we describe them as functions of
several variables. We start from definition of functions of two vari-
ables.

DEFINITION 1.1. Let D be a set of ordered pairs of real numbers.
A function of two variables f is a correspondence that assigns to each
pair (x,y) in D exactly one real number, denoted by f(x,y). The set
D is the domain of f. The range of f consists of all real numbers f(x,y),
where (x,y) ∈ D.

EXERCISE 1.2. Describe domain of f and find its values:

f(r, s) =
√
1− r− er/s; f(1, 1), f(0, 4), f(−3, 3)

f(x,y, z) = 2+ tan x+ y tan z; f(π/4, 4,π/6), f(0, 0, 0).

EXERCISE 1.3. Sketch graph of f:

f(x,y) =
√
2− 2x− x2 − y2, f(x,y) = 3− x− 3y.

EXERCISE 1.4. Sketch the level curves for f:

f(x,y) = xy, k = −4, 1, 4.

EXERCISE 1.5. (i) Find the equation of level surface of f that
contains the point P.

f(x,y, z) = z2y+ x; P(1, 4,−2).

(ii) Describe the level surface of f for given k:

f(x,y, z) = z+ x2 + 4y2, k = −6, 6, 12.

2. Limits and Continuity

The fundamental notion of limit could be introduced for a func-
tion of two variables as follows

DEFINITION 2.1. Let a function f of two variables be defined through-
out the interior of a circle with center (a,b), except possibly at (a,b)
itself. The statement

lim
(x,y)→(a,b)

f(x,y) = L or f(x,y) → L as (x,y) → (a,b)

27



28 13. PARTIAL DIFFERENTIATION

means that for every ϵ > 0 there is a δ > 0 such that if

0 <
√
(x− a)2 + (y− b)2 < δ, then |f(x,y) − L| < ϵ.

EXERCISE 2.2. Find limits

lim
(x,y)→(2,1)

4+ x

2− y
, lim

(x,y)→(−1,3)

y2 + x

(x− 1)(y+ 2)
.

THEOREM 2.3 (Two-Path Rule). If two different paths to a point P(a,b)
produce two different limiting values for f, then lim(x,y)→(a,b) f(x,y) does
not exist.

EXERCISE 2.4. Show that the limit does not exist

lim
(x,y)→(0,0)

x2 − 2xy+ 5y2

3x2 + 4y2
, lim

(x,y)→(0,0)

3xy

5x4 + 2y4
.

DEFINITION 2.5. A function f of two variables is continuous at an
interior point (a,b) of its domain if

lim
(x,y)→(a,b)

f(x,y) = f(a,b).

EXERCISE 2.6. Describe the set of all points at which f is continu-
ous

f(x,y) =
xy

x2 − y2
, f(x,y) =

√
xy tan z.

DEFINITION 2.7. Let a function f of two variables be defined through-
out the interior of a circle with center (a,b, c), except possibly at
(a,b, c) itself. The statement

lim
(x,y,z)→(a,b,c)

f(x,y, z) = L or f(x,y, z) → L as (x,y, z) → (a,b, c)

means that for every ϵ > 0 there is a δ > 0 such that if

0 <
√

(x− a)2 + (y− b)2 + (z− c)2 < δ, then |f(x,y, z) − L| < ϵ.

THEOREM 2.8 (Composition of Continuous Functions). If a func-
tion f of two variables is continuous at (a,b) and a function g of one vari-
ables is continuous at f(a,b), then the function h(x,y) = g(f(x,y)) is
continuous at (a,b).

EXERCISE 2.9. Use Theorem on Composition of Continuous Func-
tions to determine where h is continuous.

f(x,y) = 3x+ 2y− 4, g(t) = ln(t+ 5).

3. Partial Derivatives

For functions of several variables the concept of derivative could
modified as follows:
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DEFINITION 3.1. Let f be a function of two variables. The first
partial derivatives of f with respect to x and y are functions f ′x and f ′y
such that

∂

∂x
f(x,y) = f ′x(x,y) = lim

h→0

f(x+ h,y) − f(x,y)

h
,

∂

∂x
f(x,y) = f ′x(x,y) = lim

h→0

f(x,y+ h) − f(x,y)

h
.

EXERCISE 3.2. Find first partial derivatives of f

f(x,y) = (x3 − y2)5; f(x,y) = ex ln xy;

f(r, s, v,p) = r3 tan s+
√
se(v

2) − v cos 2p; f(x,y, z) = xyz exyz.

This notion has a geometrical meaning which is very close to geo-
metrical meaning of usual derivative derivative.

THEOREM 3.3. Let S be the graph of z = f(x,y), and let P(a,b, f(a,b))
be a point on S at which f ′x and f ′y exists. Let C1 and C2 be the traces of
S on the planes x = a and y = b, respectively, and let l1 and l2 be the
tangent lines to C1 and C2 at P.

(i) The slope of l1 in the plane x = a is f ′y(a,b).
(ii) The slope of l1 in the plane y = b is f ′x(a,b).

We could define second partial derivatives by repetition. There are
four of them:

f ′′xx =
∂2f

∂x2
=

∂

∂x

(
∂f

∂x

)
;

f ′′yy =
∂2f

∂y2
=

∂

∂y

(
∂f

∂y

)
;

f ′′xy =
∂2f

∂y∂x
=

∂

∂y

(
∂f

∂x

)
;

f ′′yx =
∂2f

∂x∂y
=

∂

∂x

(
∂f

∂y

)
.

EXERCISE 3.4. If v = y ln(x2 + z2), find v ′′′
zzy.

THEOREM 3.5. Let f be a function of two variables x and y. If f, f ′x, f ′y,
f ′′xy, and f ′′yx are continuous on an open region R, then f ′′xy = f ′′yx through
R.

EXERCISE 3.6. Verify that f ′′xy = f ′′yx.

f(x,y) =
x2

x+ y
; f(x,y) =

√
x2 + y2 + z2.
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Review

EXERCISE 3.7. Find the interval of convergence of the power series:∑
(−1)n

3n

n!
(x− 4)n;

∑
(−1)n

en+1

nn
(x− 1)n.

EXERCISE 3.8. Obtain a power series representation for the func-
tion

f(x) = x2 ln(1+ x2); f(x) = arctan
√
x.

EXERCISE 3.9. Find all values of c such that a and b are ortho-
gonal a = 4i+ 2j+ ck, and b = i+ 22j− 3ck.

EXERCISE 3.10. Find the volume of the box having adjacent sides
AB, AC, AD: A(2, 1,−1), B(3, 0, 2), C(4,−2, 1), D(5,−3, 0).

EXERCISE 3.11. Find an equation of the plane through P(−4, 1, 6)
and having the same trace in xz-plane as the plane x+ 4y− 5z = 8.

EXERCISE 3.12. Find arc length of the curve: x = 2t, y = 4 sin 3t,
z = 4 cos 3t; 0 ⩽ t ⩽ 2π.

EXERCISE 3.13. Find a parametric Al equation of the tangent line
to curve x = t sin t, y = t cos t, z = t; at P(π/2, 0,π/2).

EXERCISE 3.14. Show that limit does not exist.

lim
(x,y,z)→(2,0,0)

(x− 2)yz2

(x− 2)4 + y4
.

4. Increments and Differentials

DEFINITION 4.1. Let w = f(x,y), and let ∆x and ∆ be increments
of x and y, respectively. The increment of function w is

∆w = f(x+ ∆x,y+ ∆y) − f(x,y).

THEOREM 4.2. Let w = f(x,y), where the function f is defined on a
rectangular region R = {(x,y) : a < x < b, c < y < d}. Suppose f ′x and
f ′y exist throughout R and are continuous at (x0,y0). Then

∆w = f ′x(x0,y0)∆x+ f ′y(x0,y0)∆y+ ϵ1∆x+ ϵ2∆y.

A function w is differentiable if its increment could be represented
as above.

DEFINITION 4.3. The differential of function w is

dw = f ′x(x0,y0)∆x+ f ′y(x0,y0)∆x.
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5. Chain Rules

Among different rules of derivation most powerful is the

THEOREM 5.1 (Chain rules). If w = f(u, v), with u = g(x,y), v =
h(x,y), and if f, g, and h are differentiable, then

∂w

∂x
=

∂w

∂u

∂u

∂x
+

∂w

∂v

∂v

∂x
;

∂w

∂y
=

∂w

∂u

∂u

∂y
+

∂w

∂v

∂v

∂y
.

PROOF. It follows from the Theorem on Increment. □

This formulas could be better understood and remembered if we
will draw a tree representing dependence of variables.

EXERCISE 5.2. Find ∂w/∂x, ∂wpartialy if w = uv + v2, u =
x siny, v = y sin x.

Similar formulas are true for different number of variables

EXERCISE 5.3. Find ∂z/∂x, ∂z/∂y if z = pq + qw, p = 2x − y,
q = x− 2y, w = −2x+ 2y.

Chain rules could be used to derive already known formulas in a
new way.

EXERCISE 5.4. Derive formula (uv) ′ = u ′v+uv ′ using chain rules.

EXERCISE 5.5. Derive from chain rules the following formula for
implicit derivatives of y defined by F(x,y) = 0:

y ′ = −
F ′
x(x,y)

F ′
y(x,y)

.

6. Directional Derivatives

We could give a definition generalizing partial derivatives.

DEFINITION 6.1. Let w = f(x,y) and u = u1i+u2j be a unit vector.
The directional derivative of f at P(x,y) in the direction u, denoted
Duf(x,y), is

Du = lim
s→0

f(x+ su1,y+ su2) − f(x,y)

s
.

Partial derivatives are particular cases of directional derivatives:
∂/∂x = Di and ∂/∂y = Dj. It is interesting that we could calculate
any directional derivative if we know only partial ones.

THEOREM 6.2. If f is a differentiable function of two variables, then

Duf(x,y) = f ′x(x,y)u1 + f ′y(x,y)u2.

PROOF. It is follows from the Chain Rules. □
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EXERCISE 6.3. Find directional derivative

f(x,y) = x3 − 3x2y− y3, P(1,−2), u =
1

2
(−i+

√
3j).

DEFINITION 6.4. Let f be a function of two variables. The gradient
of f is the vector valued function

∇f(x,y) = f ′x(x,y)i+ f ′y(x,y)j.

Directional derivative in gradient form is

Duf(x,y) = ∇f(x,y) · u.
EXERCISE 6.5. Find gradient

f(x,y) = e3x tany, P(0,π/4).

From gradient form of directional derivative easily follows the
following theorem:

THEOREM 6.6. Let f be a function of two variables that is differentiable
at the point P(x,y).

(i) The maximum value of Du is ∥∇f(x,y)∥.
(ii) The maximum rate of increase of f(x,y) occurs in direction of

∇f(x,y).
(iii) The minimum value of Du is − ∥∇f(x,y)∥.
(iv) The minimum rate of increase of f(x,y) occurs in direction of

−∇f(x,y).

Similarly directional derivatives and gradients could be defined
for functions of three variables.

EXERCISE 6.7. Find directional derivative at P in the direction to
Q. Find directions of maximal and minimal increase of f.

f(x,y, z) =
x

y
−

y

z
, P(0,−1, 2), Q(3, 1,−4).

7. Tangent Planes and Normal Lines

THEOREM 7.1. Suppose that F(x,y, z) has continuous first partial de-
rivatives and that S is the graph of F(x,y, z) = 0. If P0 is a point on S
and if F ′

x, F ′
y, F ′

z are not all 0 at P0, then the vector ∇F]P0
is normal to the

tangent plane to S at P0. And equation of the tangent plane is

F ′
x(x0,y0, z0)(x−x0)+F ′

y(x0,y0, z0)(y−y0)+F ′
z(x0,y0, z0)(z−z0) = 0.

THEOREM 7.2. An equation for the tangent plane to the graph of z =
f(x,y) at the point (x0,y0, z0) is

z− z0 = f ′x(x0,y0)(x− x0) + f ′y(x0,y0)(y− y0)

EXERCISE 7.3. Find equation for the tangent plane and normal
line to the graph.

9x2 − 4y2 − 25z2 = 40; P(4, 1,−2).
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8. Extrema of Functions of Several Variables

The definition of local maximum, local minimum, which are local
extrema, are the same as for function of one variable.

DEFINITION 8.1. Let f be a function of two variables. A pair (a,b)
is a critical point of f if either

(i) f ′x(a,b) = 0 and f ′y(a,b) = 0, or
(ii) f ′x(a,b) or f ′y(a,b) does not exist.

DEFINITION 8.2. Let f be a function of two variables that has con-
tinuous second partial derivatives. The discriminant D of f is given
by

D(x,y) = f ′′xxf
′′
yy − [f ′′xy]

2 =

∣∣∣∣ f ′′xx f ′′xy
f ′′yx f ′′yy

∣∣∣∣ .
The following result is similar to Second Derivative Test.

TEST 8.3 (Test for Local Extrema). Let f be a function of two vari-
ables that has continuous second partial derivatives throughout an
open disk R containing a critical point (a,b). If D(a,b) > 0, then
f(a,b) is

(i) a local maximum of f if f ′′xx(a,b) < 0.
(ii) a local minimum of f if f ′′xx(a,b) > 0.

If a critical point with existent partial derivatives is not a local
extrema then it is called saddle point. We could determine them by
determinant:

THEOREM 8.4. Let f have continuous second partial derivatives through-
out an open disk R containing an critical point (a,b) with existent deriv-
atives. If D(a,b) is negative, then (a,b) is a saddle point.

EXERCISE 8.5. Find extrema and saddle points.

f(x,y) = x2 − 2x+ y2 − 6y+ 12

f(x,y) = −2x2 − 2xy−
3

2
y2 − 14x− 5y

f(x,y) = −
1

3
x3 + xy+

1

2
y2 − 12y.

EXERCISE 8.6. Find the max and min of f in R.

f(x,y) = x2 − 3xy− y2 + 2y− 6x; R = {(x,y)| |x| ⩽ 3, |y| ⩽ 2}.

EXERCISE 8.7. Find three positive real numbers whose sum is
1000 and whose product is a maximum.
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9. Lagrange Multipliers

THEOREM 9.1. Suppose that f and g are functions of two variables
having continuous first partial derivatives and that ∇g ̸= 0 throughout a
region. If f has an extremum f(x0,y0) subject to the constraint g(x,y) = 0,
then there is a real number λ such that

∇f(x0,y0) = λ∇g(x0,y0).

By other words they are among solution of the system f ′x(x,y) = λg ′
x(x,y)

f ′y(x,y) = λg ′
y(x,y)

g(x,y) = 0
.

EXERCISE 9.2. Find the extrema of f subject to the stated con-
strains

f(x,y) = 2x2 + xy− y2 + y; 2x+ 3y = 1.



CHAPTER 14

Multiply Integrals

We consider the next fundamental operation of calculus for func-
tions of several variables.

1. Double Integrals

The definite integral of a function of one variable was defined us-
ing using Riemann sum. We could apply the same idea for definition
of definite integral for a function of several variables.

DEFINITION 1.1. Let f be a function of two variables that is defined
on a region R. The double integral of f over R, is∫∫

R

f(x,y)dA = lim
∥P∥→0

∑
k

f(xk,yk)∆A,

provided the limit exists for the norm of the partition tensing to 0.

The following is similar to geometrical meaning of definite integ-
ral

DEFINITION 1.2 (Geometrical Meaning of Double Integral). Let
f be a continuous function of two variables such that f(x,y) is non-
negative for every (x,y) in a region R. The volume V of the solid that
lies under the graph of z = f(x,y) and over R is

V =

∫∫
R

f(x,y)dA.

Double integral has the following properties (see one variable
case).

THEOREM 1.3. (i)∫∫
R

cf(x,y)dA = c

∫∫
R

f(x,y)dA.

(ii)∫∫
R

[f(x,y) + g(x,y)]dA =

∫∫
R

f(x,y)dA+

∫∫
R

g(x,y)dA

(iii) If R = R1 ∪ R2 and R1 ∩ R2 = ∅∫∫
R

f(x,y)dA =

∫∫
R1

f(x,y)dA+

∫∫
R2

f(x,y)dA

35
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(iv) If (x,y) ⩾ 0 throughout R, then
∫∫

R
f(x,y)dA ⩾ 0.

Practically double integrals evaluated by means of iterated integ-
rals as follows:

THEOREM 1.4. Let R be a region of Rx type. If f is continuous on R,
then ∫∫

R

f(x,y)dA =

∫b

a

∫g2(x)

g1(x)

f(x,y)dydx.

EXERCISE 1.5. Evaluate∫ 3

0

∫−1

−2

(4xy3 + y)dxdy

∫ 1

−1

∫x+1

x3

(3x+ 2y)dydx.

EXERCISE 1.6. Evaluate
∫∫

R
ex/y dA if R bounded by y = 2x, y =

−x, y = 4.

EXERCISE 1.7. Sketch the region x = 2
√
y,

√
3x =

√
y, y = 2x + 5

and express the double integral as iterated one.

EXERCISE 1.8. Sketch the region of integration for the iterated
integral ∫ 2

−1

∫x−2

x2−4

f(x,y)dydx.

EXERCISE 1.9. Reverse the order of integration and evaluate∫e

1

∫ lnx

0

ydydx.

2. Area and Volume

From geometric meaning of double integrals we see that they are
usable for finding volumes (and areas).

EXERCISE 2.1. Describe surface and region related to∫ 1

0

∫ 1−x2

3−x

(x2 + y2)dydx.

EXERCISE 2.2. Find volume under the graph z = x2 + 4y2 over
triangle with vertices (0, 0), (1, 0), (1, 2).

EXERCISE 2.3. Sketch the solid in the first octant and find its
volume z = y3, y = x3, x = 0, z = 0, y = 1.

3. Polar Coordinates, Double Integrals in Polar Coordinates

Besides the Cartesian coordinates we could describe a point of
the plain by the distance to the preselected point O (origin or pole)
and angle to the ray at origin (polar axis). This description is called
polar coordinates. Here are some interesting curves and their equation
in polar coordinates.
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(i) circle (O,R): r = R.
(ii) circle (a,a): r = 2a sin θ.

(iii) cardioid: r = a(1+ cos θ).
(iv) limaçons: r = a+ b cos θ.
(v) n-leafed rose: r = a sinnθ.

(vi) spiral of Archimedes: r = aθ.

EXERCISE∗ 3.1. Find equation of a straight line in polar coordin-
ates.

Connection between the Cartesian coordinates and polar coordin-
ates is as follows:

THEOREM 3.2. The rectangular coordinates (x,y) and polar coordin-
ates (r, θ) of a point P are related as follows:

(i) x = r cos θ, y = r sin θ;
(ii) r2 = x2 + y2, tan θ = y/x if x ̸= 0.

THEOREM 3.3 (Test for Symmetry). (i) The graph of r = f(θ)
is symmetric with respect to the polar axis if f(−θ) = f(θ).

(ii) The graph of r = f(θ) is symmetric with respect to the vertical
line if f(π− θ) = f(θ) or f(−θ) = −f(θ).

(iii) The graph of r = f(θ) is symmetric with respect to the pole if
f(π+ θ) = f(θ).

THEOREM 3.4. The slope m of the tangent line to the graph of r = f(θ)
at the point P(r, θ) is

m =
dr
dθ

sin θ+ r cos θ
dr
dθ

cos θ− r sin θ

The element of area in polar coordinates equal to ∆A = 1
2
(r22 −

r21)∆θ = r̄∆r∆θ, where r̄ = 1
2
(r2 − r1). Thus double integral in polar

coordinates could be presented by iterated integral as follows:∫∫
R

f(r, θ)dA =

∫β

α

∫g2(θ)

g1(θ)

f(r, θ)r dr dθ.

=

∫β

α

∫h2(r)

h1(r)

f(r, θ)r dθdr.

EXERCISE 3.5. Use double integral to find the area inside r = 2−
2 cos θ and outside r = 3.

EXERCISE 3.6. Use polar coordinates to evaluate the integral∫∫
R

x2(x2 + y2)3 dA

R is bounded by semicircle y =
√
1− x2 and the x-axis.
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EXERCISE 3.7. Evaluate∫a

0

∫√
a2−x2

0

(x2 + y2)3/2 dydx.

EXERCISE 3.8. Find volume bounded by paraboloid z = 4x2+4y2,
the cylinder x2 + y2 = 3y, and plane z = 0.

4. Surface Area

THEOREM 4.1. The surface area of the graph z = f(x,y) over the re-
gion R is given by

A =

∫∫
R

√
[f ′x(x,y)]

2 + [f ′y(x,y)]
2 + 1dA.

EXERCISE 4.2. Setup a double integral for the surface area of the
graph x2 − y2 + z2 = 1 over the square with vertices (0, 1), (1, 0),
(−1, 0), (0,−1).

EXERCISE 4.3. Find the area of the surface z = y2 over the triangle
with vertices (0, 0), (0, 2), (2, 2).

EXERCISE 4.4. Find the area of the first-octant part of hyperbolic
paraboloid z = x2 − y2 that is inside the cylinder x2 + y2 = 1.

5. Triple Integrals

There is no any principal differences to introduce triple integral, it
could be done using ideas on definite integrals and double integrals.

DEFINITION 5.1. Triple integral of f over 3d-region Q is defined
by Riemann sums:∫∫∫

Q

f(x,y, z)dV = lim
∥P∥→0

∑
k

f(xk,yk, zk)∆Vk.

To evaluate triple integrals we reduce them by iteration to double
integrals:

THEOREM 5.2.∫∫∫
Q

f(x,y, z)dV =

∫∫
R

[∫k2(x,y)

k1(x,y)

f(x,y, z)dz

]
dA

=

∫b

a

∫h2(x)

h1(x)

∫k2(x,y)

k1(x,y)

f(x,y, z)dzdydz.

EXERCISE 5.3. Evaluate the iterated integral∫ 1

0

∫ 2

−1

∫ 3

1

(6x2z+ 5xy2)dzdxdy;

∫ 2

−1

∫z2

1

∫x−z

x+z

z dydxdz.
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EXERCISE 5.4. Describe region represented by integrals∫ 1

0

∫√
z

z3

∫ 4−x

0

dydxdz,

∫ 1

0

∫ 3x

x

∫xy

0

dzdydx.

Physical meaning of triple integrals is given by

THEOREM 5.5. Mass of a solid with a mass density δ(x,y, z) is given
by

m =

∫∫∫
Q

δ(x,y, z)dV

THEOREM 5.6. Mass of a lamina with an area mass density δ(x,y) is
given by

m =

∫∫∫
R

δ(x,y)dA

EXERCISE 5.7. Using triple integrals find volume bounded by
(i) x2 + z2 = 4, y2 + z2 = 4.

(ii) z = x2 + y2, y+ z = 2.

7. Cylindrical Coordinates

The cylindrical coordinates of a point P is the triple of numbers
(r, θ, z), where (r, θ) are the polar coordinates of the projection of P
on xy-plane and z is defined as in rectangular coordinates.

THEOREM 7.1. The rectangular coordinates (x,y, z) and the cylindrical
coordinates (r, θ, z) of a point are related as follows:

x = r cos θ, y = r sin θ, z = z,

r2 = x2 + y2, tanθ =
x

y
.

EXERCISE 7.2. Describe the graph in cylindrical ccordinates:
(i) r = −3 sec θ.

(ii) z = 2r.

EXERCISE 7.3. Change the equation to cylindrical coordinates:
(i) x2 + y2 = 4z.

(ii) x2 + z2 = 9.

THEOREM 7.4. Evaluation of triple integral in cylindrical coordinates:∫∫∫
Q

f(r, θ, z)dV =

∫β

α

∫g2(θ)

g1(θ)

∫k2(r,θ)

k1(r,θ)

f(r, θ, z)dzdr dθ.

EXERCISE 7.5. A solid is bounded by the cone z =
√
x2 + y2, the

cylinder x2 + y2 = 4, and the xy-plane. Find its volume.
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8. Spherical Coordinates

The spherical coordinates of a point is the triple (ρ,ϕ, θ).

THEOREM 8.1. The rectangular coordinates (x,y, z) and the spherical
coordinates (ρ,ϕ, θ) of a point related as follows:

x = ρ sinϕ cos θ, x = ρ sinϕ sin θ, z = ρ cos θ

ρ2 = x2 + y2 + z2.

EXERCISE 8.2. Change coordinates
(i) spherical (1, 3π/4, 2π/3) to rectangular and cylindrical.

(ii) rectangular (1,
√
3, 0) to spherical and cylindrical.

EXERCISE 8.3. Describe graphs
(i) ρ = 5.

(ii) ϕ = 2π/3.
(iii) θ = π/4.

EXERCISE 8.4. Change the equation to spherical coordinates.

x2 + y2 = 4z; x2 + (y− 2)2 = 4; x2 + z2 = 9.

THEOREM 8.5 (Evaluation theorem).∫∫∫
Q

f(ρ,ϕ, θ)dV =

∫n

m

∫d

c

∫b

a

f(ρ,ϕ, θ)ρ2 sinϕdρdϕdθ.

EXERCISE 8.6. Find volume of the solid that lies outside the cone
z2 = x2 + y2 and inside the sphere x2 + y2 + z2 = 1.

EXERCISE 8.7. Evaluate integral in spherical coordinates:∫√
2

0

∫√4−y2

y

∫√4−x2−y2

0

√
x2 + y2 + z2 dzdxdy.



CHAPTER 15

Vector Calculus

1. Vector Fields

We could make one more step after vector valued functions and
function of several variables.

DEFINITION 1.1. A vector field in three dimensions is a function F
whose domain D is a subset of R3 and whose range is is a subset of
V3. If (x,y, z) is in D, then

F(x,y, z) = M(x,y, z)i+N(x,y, z)j+ P(x,y, z)k.

where M, N, and P are scalar functions.

EXERCISE 1.2. Plot the vector field F(x,y) = −yi+ xj.

Example of vector field is as follows:

DEFINITION 1.3. Let r = xi+yj+ zk. A vector field F is an inverse
square field if

F(x,y, z) =
c

∥r∥3
r.

Examples of inverse square field are given by Newton’s law of
gravitation and Coulom’s law of charge interaction.

DEFINITION 1.4. A vector filed F is conservative if

F(x,y, z) = ∇f(x,y, z)

for some scalar function f. Then f is potential function and its value
f(x,y, z) is potential in (x,y, z).

EXERCISE 1.5. Find a vector field with potential f(x,y, z) = sin(x2+
y2 + z2).

THEOREM 1.6. Every inverse square vector filed is conservative.

PROOF. The potential is given by f(r) = c
r
. □

41



42 15. VECTOR CALCULUS

DEFINITION 1.7. Let F(x,y, z) = M(x,y, z)i+N(x,y, z)j+P(x,y, z)k.
The curl of F is given by

curlF = ∇× F

=

∣∣∣∣∣∣
i j k
∂
∂x

∂
∂y

∂
∂z

M N P

∣∣∣∣∣∣
=

(
∂P

∂y
−

∂N

∂z

)
i+

(
∂M

∂z
−

∂P

∂x

)
j

(
∂N

∂x
−

∂M

∂y

)
k

DEFINITION 1.8. Let F(x,y, z) = M(x,y, z)i+N(x,y, z)j+P(x,y, z)k.
The divergence of F is given by

divF = ∇ · F =
∂M

∂x
+

∂N

∂y
+

∂P

∂z
.

EXERCISE 1.9. Find curlF and divF for

F(x,y, z) = (3x+ y)i+ xy2zj+ xz2k.

EXERCISE 1.10. Prove that for a constant vector a
(i) curl (a× r) = 2a;

(ii) ÷(a× r) = 0.

EXERCISE 1.11. Verify the identities:

curl (F+G) = curlF+ curlG;

div (F+G) = divF+ divG;

curl (fF) = f(curlF) + (∇f)× F;

2. Line Integral

We could introduce a new type of integrals for functions of sev-
eral variables.

DEFINITION 2.1. The line integrals along a curve C with respect to
s, x, y, respectively are∫

C

f(x,y)ds = lim
∥P∥→0

∑
k

f(uk,uk)∆sk∫
C

f(x,y)dx = lim
∥P∥→0

∑
k

f(uk,uk)∆xk∫
C

f(x,y)dy = lim
∥P∥→0

∑
k

f(uk,uk)∆yk

Let a curve C be given parametrically by x = g(t) and y = h(t).
Because

dx = g ′(t)dt, dy = h ′(t)dt,

ds =
√

(dx)2 + (dy)2 =
√

(g ′(t))2 + (h ′(t))2 dt.
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we obtain

THEOREM 2.2 (Evaluation formula for line integrals). If a smooth
curve C is given byx = g(t) and y = h(t); a ⩽ t ⩽ b and f(x,y) is
continuous in a region containing C, then∫

C

f(x,y)ds =

∫
C

f(g(t),h(t))
√
(g ′(t))2 + (h ′(t))2 dt∫

C

f(x,y)dx =

∫
C

f(g(t),h(t))(g ′(t)dt∫
C

f(x,y)dy =

∫
C

f(g(t),h(t))h ′(t))dt

EXERCISE 2.3. Evaluate
∫
C
xy2 ds if C is given by x = cos t, y =

sin t; 0 ⩽ t ⩽ π/2.

EXERCISE 2.4. Evaluate
∫
C
ydy + z dy + xdz if C is the graph of

x = sin t, y = 2 sin t, z = sin2t; 0 ⩽ t ⩽ π/2.

EXERCISE 2.5. Evaluate
∫
C
xydx + x2y3 dy if C is the graph of

x = y3 from (0, 0) to (1, 1).

EXERCISE 2.6. Evaluate
∫
C
(x2 +y2)dx+ 2xdy along three differ-

ent paths from (1, 2) to (−2, 8).

EXERCISE 2.7. Evaluate
∫
C
(xy + z)ds if C is the lime segment

from (0, 0, 0) to (1, 2, 3).

THEOREM 2.8. The mass of a wire is given by

m =

∫
C

δ(x,y)ds,

where δ(x,y) is the linear mass density.

THEOREM 2.9. The work W done by a force F long a path C is
defined as follows

W =

∫
C

M(x,y, z)dx+N(x,y, z)dy+ P(x,y, z)dz.

If T is a unit tangent vector to C at (x,y, z) and r = xi+ yj+ zk, then

W =

∫
C

F · Tds =

∫
C

F · dr.

3. Independence of Path

There is a condition for an integral be independent from the path.

THEOREM 3.1. If F(x,y) = M(x,y)i +N(x,y)i is continuous on an
open connected region D, then the line integral

∫
C
F · dr is independent of

path if and only if F is conservative—that is, F(x,y) = ∇f(x,y) for some
scalar function f.
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EXERCISE 3.2. Show that
∫
C
F ·dr is independent of path by find-

ing a potential function f for F:

F(x,y) = (6xy2+3y)i+(6x2y+2x)j; F(x,y) = (2xe2y+4y3)i+(2x2e2y+12xy2)j.

In fact we are even able to give a formula for the evaluation:

THEOREM 3.3. Let F(x,y) = M(x,y)i + N(x,y)i be continuous on
an open connected region D, and C be a piecewise-smooth curve in D with
endpoints A(x1,y1) and B(x2,y2). If F(x,y) = ∇f(x,y) for some scalar
function f, then∫

C

M(x,y)dx+N(x,y)dy =

∫ (x2,y2)

(x1,y1)

F · dr = [f(x,y)]
(x2,y2)
(x1,y1)

.

Particularly
∫
C
F · dr = 0 for every simple closed curve C.

EXERCISE 3.4. Show that integral is independent of path, and
find its value ∫ (1,π/2)

(0,0)

ex sinydx+ ex cosydy.

THEOREM 3.5. If F is a conservative force field in two dimensions, then
the work done by F along any path C from A(x1,y1) to B(x2,y2) is equal
to the difference in potentials between A and B.

THEOREM 3.6. If M(x,y) and N(x,y) have continuous first partial
derivatives on a simply connected region D, then the line integral∫

C

M(x,y)dx+N(x,y)dy

is independent of path in D if and only if
∂M

∂y
=

∂N

∂x
.

EXERCISE 3.7. Use above theorem to show that
∫
C
F · dr is not

independent of path:
(i) F(x,y) = y3 cos xi− 3y2 sin xj.

(ii)
∫
C
ey cos xdx+ xey cos z dy+ xey sin z dz.

4. Green’s Theorem

THEOREM 4.1 (Green’s Theorem). Let G be a piecewise-smooth simple
closed curve, and let R be the region consisting of G and its interior. If M
and N are continuous functions that have continuous first partial derivat-
ives throughout an open region D containing R, then∮

C

Mdx+Ndy =

∫∫
R

(
∂N

∂x
−

∂M

∂y

)
da

EXERCISE 4.2. Use Green’s theorem to evaluate the line integrals
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(i)
∮√

ydx+
√
xdy if C is the tringle with vertices (1, 1), (3, 1),

(2, 2).
(ii)

∮
C
y2 dx+ x2 dy if C is the boundary of the region bounded

by the semicircle y =
√
4− x2 and x-axis.

As an application we could derive a formula as follows:

THEOREM 4.3. If a region R in the xy-plane is bounded by a piece-
wise-smooth simple closed curve C, then the area A of R is

A =

∮
C

xdy = −

∮
C

ydx =
1

2

∮
C

xdy− ydx.

The region R could contains holes, provided we integrate over
the entire boundary and always keep the region R to the left of C.

EXERCISE 4.4. Use the above theorem to find to fine the area
bounded by the graphs y = x3, y2 = x.

THEOREM 4.5 (Vector Form of Green’s Theorem).∮
C

F · Tds =

∫∫
R

(∇× F) · kdA.

5. Surface Integral

We could define surface integrals in a way similar to definite in-
tegral, double, triple, lines integrals by means of Riemann sums:∫∫

S

g(x,y, z)dS = lim
∥P∥→0

∑
k

g(xk,yk, zk)∆Tk.

To calculate surface integrals we use

THEOREM 5.1. Evaluation formulas for surface integrals are:∫∫
S

g(x,y, z)dS =

∫∫
Rxy

g(x,y, f(x,y))
√

[f ′x(x,y)]
2 + [f ′y(x,y)]

2 + 1dA∫∫
S

g(x,y, z)dS =

∫∫
Rxz

g(x,h(x, z)z)
√

[h ′
x(x, z)]

2 + [h ′
z(x, z)]

2 + 1dA∫∫
S

g(x,y, z)dS =

∫∫
Rxy

g(k(y, z),y, z)
√

[k ′
y(y, z)]

2 + [k ′
z(y, z)]

2 + 1dA

EXERCISE 5.2. Evaluate surface integral of g(x,y, z) = x2+y2+z2

over the part of plane z = y+4 that is inside the cylinder x2+y2 = 4.

EXERCISE 5.3. Express the surface integral
∫∫

S
(xz + 2y)dS over

the portion of the graph of y = x3 between the plane y = 0, y = 8,
z = 2, and z = 0 as a double integral over a region in yz-plane.

DEFINITION 5.4. The flux of vector field F through (or over) a
surface S is ∫∫

S

F · ndx.
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EXERCISE 5.5. Find
∫∫

S
F·ndx for F = xi−yj and S the first octant

portion of the sphere X2 + y2 + z2 = a2.

EXERCISE 5.6. Find the flux of F(x,y, z) = (x2 + z)i+ y2zj+ (x2 +
y2 + z)k over S is the first-octant portion of paraboloid z = x2 + y2

that is cut off by the plane z = 4.

6. Divergence Theorem

7. Stoke’s Theorem



Bibliography

[1] Earl Swokowski, Michael Olinick, and Dennis Pence. Calculus. PWS Publish-
ing, Boston, 6-th edition, 1994.

47





Index

n-leafed rose, 37
nth-degree Taylor polynomial, 14
xyz-coordinate system, 17

angle θ between a and b, 18
angles between lines, 20
antiderivative, 25

cardioid, 37
Cauchy-Schwartz-Bunyakovskii

inequality, 19
chain rules, 31
circular paraboloid, 22
component of a along b, 19
cone, 22
conservative, 41
continuous, 24, 28
converge

uniformly, 11
convergent, 12
coordinate of a point, 17
Coulom’s law of charge interaction,

41
critical point, 33
cross product, 19
curl, 42
cylinder, 22

directrix of, 22
right circular, 22

cylindrical coordinates, 39

derivative, 24
partial

first, 29
second, 29

determinant of order 2, 19
determinant of order 3, 19
difference of vectors, 18
differentiable, 30
differential of function, 30
directional derivative, 31

gradient form, 32
directrix of the cylinder, 22
discriminant, 33
distance, 17, 21

between two lines, 21
between two points, 17
from a point to the plane, 21

divergence, 42
domain, 27
dot product, 18

properties, 18
double integral, 35
double integral in polar coordinates,

37

Ellipsoid, 22
ellipsoid, 22
endpoint, 23
endpoints, 23
extrema

local, 33

first octant, 17
first partial derivatives, 29
flux, 45
function

continuous, 28
differentiable, 30

function of two variables, 27
functional sequence, 11

limit of, 11
functional series, 11

convergent, 12
uniformly, 12

geometric meaning, 24
geometrical meaning

double integral, 35
gradient, 32
gradient form, 32
Green’s theorem, 44
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vector form, 45

hyperbolic paraboloid, 22
hyperboloid of one sheet, 22
hyperboloid of two sheets, 22

increment of function, 30
inner product, 18
interval of convergence, 10
inverse square field, 41
inverse vector, 17
iterated integrals, 36

level curves, 27
level surface, 27
limaçons, 37
limit, 24, 27, 28

non-uniform, 11
uniform, 11

limit of functional sequence, 11
line integrals along a curve, 42
linear mass density, 43
lines

orthogonal, 21
parallel, 20

local extrema, 33
test, 33

local maximum, 33
local minimum, 33

Maclaurin series, 13
magnitude of vector, 18
mass of a wire, 43
maximum

local, 33
minimum

local, 33

Newton’s law of gravitation, 41
non-uniform limit, 11
norm of the partition, 35
null vector, 17

opposite direction, 18
orientation, 23
origin, 36
orthogonal, 18, 21

paraboloid, 22
paraboloid of revolution, 22
parallel, 20, 21
parameter equation, 23
perpendicular, 18
Physical meaning, 39

plane, 21
equation, 21

planes
orthogonal, 21
parallel, 21

polar axis, 36
polar coordinates, 36
pole, 36
potential, 41
potential function, 41
power series in x, 9
power series in x− d, 10
power series representation of f(x),

12
Properties of the dot product, 18
Properties of the vector product, 20

quadric surface, 22

radius of convergence, 10
range, 27
rectangular coordinate system, 17
Riemann sum, 35
right circular cylinder, 22
right-handed coordinate system, 17
rule

two-path, 28

saddle point, 33
same direction, 18
scalar product, 18
second partial derivatives, 29
sequence of functions, 11
series

functional, 11
space curve, 23
spherical coordinates, 40
spiral of Archimedes, 37
subtraction of vectors, 18

Taylor remainder, 14
Taylor series, 14
theorem

Green’s, 44
vector form, 45

trace on a surface, 22
triangle inequality, 19
triple integral, 38

physical meaning, 39

uniform limit, 11
uniformly convergent, 12
uniformly converges, 11
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vector, 17
angle between, 18
difference, 18
magnitude, 18
opposite direction, 18
orthogonal, 18
perpendicular, 18
same direction, 18
subtraction, 18

vector field in three dimensions, 41
vector product, 19

properties, 20
vector-valued function, 23

continuous, 24
derivative

geometric meaning, 24
derivative of, 24
limit of, 24

volume, 35

work W done by a force F long a
path C, 43

work done by a constant force, 19
work done by a force along a path,
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