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1. VECTOR SPACES AND SUBSPACES

Vector spaces have two built-in concepts.

(1) Vectors: these can be added, subtracted from each other.
(2) Scalars: these can be added, subtracted, multiplied, divided (except by zero).

Also, we can multiply a vector by a scalar (and get a vector). The set of scalars in this
course is usualy R (the real numbers) or C (the complex numbers), but in general there
are many other possibilities.

Example 1.1. Here are some vector spaces. The term ‘vector space’ really refers to the set
of vectors.
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(1) R3 (or more generally, Rn, for any fixed n ⩾ 1). Here the set of scalars is R.
Observe

(x1, x2, x3) + (y1,y2,y3) = (x1 + y1, x2 + y2, x3 + y3)

(x1, x2, x3) − (y1,y2,y3) = (x1 − y1, x2 − y2, x3 − y3),
a(x1, x2, x3) = (ax1,ax2,ax3),

for any xi, yi, a ∈ R.
(2) Cn. This is similar, but here the scalars are complex numbers.
(3) Mm,n(R), the set of all m× n (i.e. m rows, n columns) matrices over R (the set of

scalars). Here the vectors ARE matrices, and vector addition is matrix addition.
Mm,n(C), the set of all m× n-matrices over C (and the set of scalars is C).

(4) Pn(t), the set of all polynomials in variable t of degree at most n, i.e.

Pn(t) := {a0 + a1t+ . . . + ant
n : ai ∈ R}.

The scalars are R.
(5) Fix a set X. The set RX is the collection of all functions from X into R. For f,g ∈

RXand x ∈ X, we have

(f+ g)(x) = f(x) + g(x)

(af)(x) = af(x).
Likewise, CX (functions from X to C) is a vector space with scalars C.

1.1. Axioms for a vector space. I’ll generally use u, v, w, . . . etc. for vectors, and a, b, c,
. . . for scalars. Let K denote the set of scalars, which in this module is always R or C. (In
general, K can be any field, but I am not defining this; K can even be finite.) Let V be a
non-empty set of vectors, and suppose there are rules of addition of vectors, and scalar
multiplication, so that if u, v ∈ V then the sum u+v ∈ V , and if a ∈ K, v ∈ V , then av ∈ V .
Then V is called a vector space over K if the following axioms hold.

(1) V is an abelian group under +, i.e.
(a) ∀u, v ∈ V (u+ v ∈ V) (V is closed under vector addition).
(b) (u + v = v + u), ∀u, v ∈ V (+ is commutative, i.e. V is an abelian group with

operation +).
(c) (u+ v) +w = u+ (v+w) ∀u, v,w ∈ V , (+ is associative);
(d) there is a zero vector 0 ∈ V such that ∀v ∈ V (0 + v = v+ 0 = v);
(e) for all v ∈ V there is an ‘inverse vector’ −v in V such that v+(−v) = (−v)+v =

0;
(2) Scalar multlication satisfies (for all u, v ∈ V and a,b ∈ K):

(a) ∀u ∈ V , ∀a ∈ K (av ∈ V) (V is closed under scalar multiplication).
(b) a(u+ v) = au+ av;
(c) (a+ b)u = au+ bu;
(d) (ab)u = a(bu);
(e) 1u = u.

In practice, we don’t usually have to check all these, to see that something is a vector
space.

Remark 1.2. Note that sometimes 0 denotes the zero vector, sometimes the zero scalar –
this should be clear from context.
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The next theorem collects facts really obvious for Rn or Cn. We need to know them for
all vector spaces, i.e. that they follow from the axioms for vector spaces.

Theorem 1.3. Let V be a vector space over a field K. Then
(1) if a ∈ K and 0 ∈ V then a · 0 = 0;
(2) if 0 ∈ K and v ∈ V then 0 · v = 0;
(3) if av = 0 then either a = 0 or v = 0;
(4) (−a)v = a(−v) = −(av).

Proof. I’ll just do (i), (iii).
(i) a · 0 = a · (0 + 0) = a · 0 + a · 0. Now add −(a · 0) to both sides. We find

0 = a · 0 + 0 = 0 + a · 0.
(iii) Suppose that av = 0 and a ̸= 0. Then there is a−1 ∈ K, so a−1av = a−1 · 0 = 0. But

also, a−1av = 1 · v = v. Hence v = 0.
□

Example 1.4. To demonstrate that choice of axioms is a delicate matter we will consider
examples which violet these “obvious” properties.

On the set R2 of ordered pairs (x,y) define + as usual, i.e. (x,y)+(u, v) = (x+u,y+v),
but define the multiplication by scalar as λ · (x,y) = (x, 0).

Since the addition is defined in the usual way we could easily check all corresponding
axioms:

(1) a + b ∈ V .
(2) a + b = b + a.
(3) a + (b + c) = (a + b) + c.
(4) a + 0 = a, where 0 = (0, 0).
(5) For any vector a = (x,y) there is −a = (−x,−y) such that a + (−a) = 0.

However for our strange multiplication λ · (x,y) = (x, 0) we should be more careful:
(1) λ · a ∈ V .
(2) λ · (a + b) = λ · a + λ · b, because λ · ((x,y) + (u, v)) = λ · (x+ u,y+ v) = (x+ u, 0)

λ · (x,y) + λ · (u, v) = (x, 0) + (u, 0) = (x+ u, 0).
(3) (λ+µ) ·a ̸= λ ·a+µ ·a, because (λ+µ) ·(x,y) = (x, 0) however λ ·(x,y)+µ ·(x,y) =

(x, 0) + (x, 0) = (2x, 0).
(4) (λµ) · a = λ(µ · a) = µ(λ · a), i.e. the associative law holds (why?)
(5) 1 · a ̸= a (why?)

This demonstrate that the failing axioms could not be derived from the rest, i.e they are
independent.

1.2. Subspaces. Let W be a subset of a vector space V over K. Then W is a subspace of V
if W is also a vector space over K. This looks boring, with lots of axioms to check, but it’s
easy to check in practice, because of the following.

Theorem 1.5. W ⊆ V is a subspace of V if and only if
(1) 0 ∈ W,
(2) W is closed under addition of vectors, i.e. if v,w ∈ W then v+w ∈ W;
(3) W is closed under scalar multiplication, i.e. if w ∈ W and a ∈ K then aw ∈ W.
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Proof. Clearly, if W is a subspace then 1–3 hold. We show the converse, so assume 1–3
above. Then W is a group: the inverse of w is −w = −(1 ·w) = (−1)w, so lies in W.

The other properties all hold in W since they hold in V , e.g. w + 0 = 0 +w = w holds
if w ∈ W, since W ⊆ V so w ∈ V , and the above rule holds in V . □

Corollary 1.6. W ⊆ V is a subspace of V if and only if

(1) 0 ∈ W;
(2) av+ bw ∈ W whenever a,b ∈ K and v,w ∈ W.

Example 1.7. (1) Always, {0} and V are subspaces of V ;
(2) In the vector space R2, the set of points on a line through the origin (eg 2x+3y = 0)

is a subspace, but 2x+ 3y = 1 is not.
(3) In Mn,n(R), consider the set X of symmetric n × n matrices. Here A = (aij) is

symmetric if aij = aji for all i, j, i.e. if A = AT . An example of a symmetric matrix

is

1 2 4
2 3 6
4 6 5

. Then X is a subspace of Mn,n(R).

(4) The solution space of any system of homogeneous linear equations in n variables
(coefficients in R) is a subspace of Rn.

Remark 1.8. (1) If U1,U2 are subspaces of V then U1 ∩ U2 is a subspace of V . For
0 ∈ U1 ∩U2, and if u, v ∈ U1 ∩U2, and a,b ∈ K, then au+ bv ∈ U1, au+ bv ∈ U2,
so au+ bv ∈ U1 ∩U2, so Corollary 1.6 applies.

(2) In general, the union of two subspaces is not a subspace; for if u1 ∈ U1 and u2 ∈ U2,
then possibly u1 + u2 ̸∈ U1 ∪U2. For example, in R2, let

U1 := {(x, 0) : x ∈ R},
U2 := {(0,y) : y ∈ R}.

Then (1, 0), (0, 1) ∈ U1 ∪U2, but (1, 1) ̸∈ U1 ∪U2.

Definition 1.9. Given a set S of vectors in a vector space V , a vector v is a linear combina-
tionof elements of S if v = a1s1 + . . . + aksk for some s1, . . . , sk ∈ S and a1, . . . ,ak ∈ K. We
denote by span(S) the set of linear combinatioms of elements of S.

Theorem 1.10. Let S be a non-empty subset of V . Then

(1) span(S) is a subspace of V ;
(2) any subspace of V which contains S also contains span(S).

Proof. As usual, we apply Corollary 1.6.

(1) Clearly 0 ∈ span(S), e.g. as 0 = 0 · s1 for any s1 ∈ S. Let v,w ∈ span(S), say
v = a1s1 + . . . + aksk, w = b1t1 + . . . + bktk (so ai,bi ∈ K and si, ti ∈ S). Suppose
a, b ∈ K. Then av+ bw =

a(a1s1+ . . .+aksk)+b(b1t1+ . . .+bktk) = (aa1)s1+ . . .+(aak)sk+(bb1)t1+ . . .+(bbk)tk.

(2) This is clear, (formally, by induction).

□
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Example 1.11. In R2, the smallest subspace containing (1, 1), (2, 3) is all of R2, as any vector
(x,y) can be written as a(1, 1) + b(2, 3), as we can always solve

a+ 2b = x,
a+ 3b = y.

Thus, span{(1, 1), (2, 3)} = R2.

1.3. Direct Sums.

Definition 1.12. The sum of two subspaces U1,U2 of V is the set

U1 +U2 := {u1 + u2 : u1 ∈ U1,u2 ∈ U2}.

Theorem 1.13. If U1,U2 are subspaces of V , then U1 +U2 is a subspace of V , and is the smallest
subspace containing U1,U2.

Proof. (1) U1 + U2 is a subspace. Indeed, 0 = 0 + 0 ∈ U1 + U2, and if u1,u ′
1 ∈ U1,

u2,u ′
2 ∈ U2, then

a(u1 + u2) + b(u ′
1 + u ′

2) = (au1 + bu ′
1) + (au2 + bu ′

2) ∈ U1 +U2.

(2) Any subspace of V which contains U1,U2 must contain all the vectors u1 + u2, so
contains U1 +U2.

□

Remark 1.14. We have U1 +U2 = span(U1 ∪U2).

Example 1.15. Work in R3. Let

V0 := {(x,y, z) : x+ y+ z = 0},
V1 := {a(1, 0, 0) : a ∈ R},
V2 := {a(1, 0,−1) : a ∈ R}.

Then V0 + V1 = R3, since for a,b, c ∈ R,

(a,b, c) = (−b− c,b, c) + (a+ b+ c, 0, 0) ∈ V0 + V1.

Also V0 + V2 = V0, since V2 ⊂ V0 (so anything in V0 + V2 already lies in V0). The subspace
V1 + V2 is a plane.

Definition 1.16. If U1,U2 are subspaces of V , and U1 ∩ U2 = {0}, then U1 + U2 is called a
direct sum of U1,U2, written U1 ⊕U2.

Remark 1.17. Any vector in U1 ⊕U2 has the form u1 +u2 (where ui ∈ Ui) in a unique way.
For suppose u1 + u2 = u ′

1 + u ′
2 (where ui,u ′

i ∈ Ui). Then u1 − u ′
1 = u2 − u ′

2. But the left
hand side lies in U1, and the right hand side lies in U2, so u1 − u ′

1 ∈ U1 ∩ U2 = {0}, so
u1 − u ′

1 = 0, so u1 = u ′
1, and likewise u2 = u ′

2.

Example 1.18. (1) In Example 1.15, R3 = V0⊕V1. For if (a, 0, 0) ∈ V0, then a+0+0 = 0,
so a = 0.

(2) Let V := P2(t) be the set of all polynomials over R of degree at most 2 (see Exam-
ple 1.1). Let

V0 := {at2 : a ∈ R},
V1 := {bt+ c : b, c ∈ R},
V2 := {a(t2 + 1) : a ∈ R}.
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Then V0, V1, V2 are subspaces of V (check this!). And V = V0 ⊕ V1 = V2 ⊕ V1. To
see that V = V2 ⊕ V1, observe that at2 + bt + c = a(t2 + 1) + (bt + (c − a)); it is
trivial that V1 ∩ V2 = {0}.

Definition 1.19. If U1 ⊕U2 = V , then U2 is a complement of U1 in V .

Remark 1.20. The complement is not necessarily unique; e.g., in Example 1.18, V0 and V2
are both complements of V1.

2. BASES AND DIMENSION

The material in this section (up to and including 2.8) was done for subspaces of Rn in
MATH1011.

Definition 2.1. A set S spans the vector space V if span(S) = V , i.e., any v ∈ V can be
written v = a1s1 + . . . + ansn for some ai ∈ K, si ∈ S.

The set S is linearly independent if the only linear combination of members of S giving 0
is the trivial one, i.e., if 0 = a1s1 + . . . + ansn (where si ∈ S are distinct), then a1 = . . . =
an = 0.

Example 2.2. Some examples in V = R2.
(1) (1, 1), (2, 3) span R2 and are linearly independent.
(2) (1, 1), (2, 2) span R2 but are not linearly independent.
(3) (1, 1), (2, 2), (2, 3) span R2 but are not linearly independent.
(4) (1, 1) is linearly independent but does not span R2.

Exercise 2.3. (1) Any set including the zero vector is linearly independent.
(2) Any subset of a linearly independent subset is linearly independent as well.
(3) Any set, which includes a spanning set, is spanning as well.
(4) A spanning set expanded by a single vector become linearly dependent.
(5) A linearly independent set with any single vector removed cannot be spanning.

To check whether a set of r vectors in Rn is linearly independent, form the r×n matrix
whose rows are these vectors, and put it into row reduced form. The original set is linearly
independent if and only if the row reduced form has r non-zero rows.

Definition 2.4. A basis of V is a set of vectors in V which is both linearly independent and
spans V .

Remark 2.5. The set {s1, . . . , sn} is a basis of V if and only if every vector v ∈ V can be
written as v = a1s1 + . . . + ansn (ai ∈ K, si distinct members of S) in a unique way
(up to order). To see this uniqueness, note that if {s1, . . . , sn} is linearly independent and
a1s1+ . . .+ansn = b1s1+ . . .+bnsn, then 0 = (a1−b1)s1+ . . .+(an−bn)sn, so ai = bi = 0
for all i, so the expressions are the same.

If {s1, . . . , sn} is a basis for V then V ‘looks like’ Kn; for each v ∈ V can be written
uniquely as v = a1s1 + . . . + ansn, so we can identify v with (a1, . . . ,an) ∈ Kn.

Theorem 2.6. Suppose that V is a vector space over K, and S ⊆ V is linearly independent. Then
there is a basis B of V with S ⊆ B.

Proof. We’ll do the special case when S is finite, and there are v1, . . . , vm ∈ V with V =
span(v1, . . . , vm). Suppose S = {s1, . . . , sn}.
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Case 1 span(S) = V . Now S is a basis of V , so put B := S.
Case 2 There is some vi ∈ {v1, . . . , vm} not in span(S). Now S∪{vi} is linearly independent.

For if a1s1 + . . . + ansn + bvi = 0, then b = 0, for otherwise vi = −b−1(a1s1 +
. . .+ansn) ∈ span(S). Hence, as S is linearly independent, also a1 = . . . = an = 0.
Now repeat the above argument with S ∪ {vi} in place of S. If we do not stop
before then, we eventually obtain a linearly independent set S∪{v1, . . . , vm}, which
certainly spans V so is a basis. If we stop before then, we have a basis.

□

Corollary 2.7. Suppose V is a vector space over K, S ⊆ V is linearly independent, and A ⊆ V
satisfies span(A) = V . Then there is a basis B of V with S ⊆ B ⊆ S ∪A.

Proof. Our proof of Theorem 2.6 gave this, under the assumption that S,A are finite (put
A = {v1, . . . , vm} in the theorem). We omit the proof in general. □

Note that the proof of Theorem 2.6 give you a method for answering questions like
Problem Sheet 2 Q1(a).

Corollary 2.8. Suppose S is a vector space over K and A ⊆ V spans V . Then A contains a basis
of V .

Proof. Apply Corollary 2.7 with S = ∅. □

The next lemma is the key to showing any two bases of a vector space have the same
size (so we can define dimension).

Lemma 2.9 (Exchange Lemma). (1) Suppose u1, . . . ,un, v are vectors in a vector space V ,
and v ∈ span(u1, . . . ,un−1,un), but v ̸∈ span(u1, . . . ,un−1). Then un ∈ span(u1, . . . ,un−1, v).

(2) Under the same assumptions, if u1, . . . ,un−1,un are linearly independent, so are u1, . . . ,un−1, v.

Proof. (1) Since v ∈ span(u1, . . . ,un), there are scalars bi such that

(1) v = b1u1 + . . . + bn−1un−1 + bnun.

Now bn ̸= 0, as otherwise v ∈ span(u1, . . . ,un−1). So

un = b−1
n (v− b1u1 − . . . − bn−1un−1) = b−1

n v− b−1
n b1u1 − . . . − b−1

n bn−1un−1,

so un ∈ span(u1, . . . ,un−1, v).
(2) Suppose that u1, . . . ,un are linearly independent, and that

a1u1 + . . . + an−1un−1 + anv = 0.

Substituting from (1),

a1u1 + . . . + an−1un−1 + an(b1u1 + . . .bn−1un−1 + bnun) = 0

so
(a1 + anb1)u1 + . . . + (an−1 + anbn−1)un−1 + anbnun = 0.

As u1, . . . ,un are linearly independent, all the coefficients are zero, so anbn = 0.
As bn ̸= 0, an = 0, so a1u1 + . . .an−1un−1 = 0. But u1, . . . ,un−1 are linearly
independent, so this forces a1 = . . . = an−1 = 0.

□

Theorem 2.10. Suppose that A, B are both bases of the vector space V . Then A and B have the
same number of elements.
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Proof. For convenience, we assume that A,B are finite, and that A is at least as big as B. Let
B = {v1, . . . , vn}, and choose distinct u1, . . . ,un ∈ A. We shall show that A = {u1, . . . ,un}.

Now u1 ∈ V = span(v1, . . . , vn), so u1 = a1v1 + . . . + anvn for some scalars ai. Not
all the ai are zero, as otherwise u1 = 0, contradicting that A is linearly independent.
So, without loss, suppose a1 ̸= 0. Now u1 ̸∈ span(v2, . . . , vn), as otherwise we’d have
u1 = 0 · v1 + b2v2 + . . . + bnvn = a1v1 + . . . + anvn, contradicting that B is linearly
independent.

So by Lemma 2.9, v1 ∈ span(u1, v2, . . . , vn), and (using 2.9(ii), {u1, v2, . . . , vn} is a basis
of V . Next, we apply the above argument to u2 (in place of u1), then to u3, and so on.
Eventually, we find that {u1, . . . ,un} is a basis of V , and so A = {u1, . . . ,un}. □

Definition 2.11. The number of elements of a basis of V (which by Theorem 2.10 does not
depend on the choice of basis) is called the dimension of V , denoted dim(V).

Corollary 2.12. Let V be a vector space and n = dim(V). If a set S has exactly n vectors then
the following are equivalent:

(1) S is linearly independent;
(2) S spans V ;
(3) S is basis of V .

Example 2.13. (1) Cn, a vector space over C, has a standard basis (1, 0, . . . , 0), (0, 1, 0, . . . , 0),. . . ,
(0, . . . , 0, 1), so has dimension n.

(2) Pn(t) has basis 1, t, t2, . . . , tn, so has dimension n+ 1.
(3) Mm,n(R) has a basis {Eij : 1 ⩽ i ⩽ m, 1 ⩽ j ⩽ n}, so has dimension mn. Here, Eij

is the m× n matrix with a 1 in the (i, j)-entry, zeros elsewhere.
(4) The set of points on the line x + 2y = 0 can be described as {a(1, −1

2 ) : a ∈ R}, so
has basis (1, −1

2 ), so dimension 1.
(5) The plane x+ 2y+ 3z = 0 in R3 has solution set

{(−2a− 3b,a,b) : a,b ∈ R} = {a(−1, 1, 0) + b(−3, 0, 1) : a,b ∈ R},
so basis (−2, 1, 0), (−3, 0, 1), and dimension 2. Suppose we want to expand this set
to a baiss of R3. Try to add in the vectors (1, 0, 0), (0, 1, 0), (0, 0, 1), and the first time
the dimension goes up to 3, we have a basis. In fact, (−2, 1, 0), (−3, 0, 1), (1, 0, 0) is
a basis of R3.

Finally, an important theorem.

Theorem 2.14. Let U, V be subspaces of the finite dimensional vector space W. Then

dim(U) + dim(V) = dim(U ∩ V) + dim(U+ V).

Proof. Let w1, . . . ,wm be a basis for U ∩ V . Using Theorem 2.6, we can extend this set
to a basis w1, . . . ,wm,u1, . . . ,ur for U, and to a basis w1, . . . ,wm, v1, . . . , vs for V . Now
dim(U ∩ V) = m, dim(U) = m+ r, dim(V) = m+ s.

Lemma 2.15. w1, . . . , wm, u1, . . . , ur, v1, . . . , vs is a basis for U+ V .

Assuming the above Lemma, the theorem is proved, for then dim(U+ V) = m+ r+ s,
so

dim(U) + dim(V) = (m+ r) + (m+ s) = m+ (m+ r+ s) = dim(U ∩ V) + dim(U+ V).

□
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Proof of Lemma 2.15. First, spanning. So let z ∈ U + V . Then z = u + v for some u ∈ U,
v ∈ V . We can write

u = a1w1 + . . . + amwm + b1u1 + . . . + brur,
v = c1w1 + . . . + cmwm + d1v1 + . . . + dsvs,

so

z = u+ v = (a1 + c1)w1 + . . . + (am + cm)wm + b1u1 + . . . + brur + d1v1 + . . . + dsvs,

so our set spans U+ V .
Next, linear independence. So suppose

(2) a1w1 + . . . + amwm + b1u1 + . . . + brur + c1v1 + . . . + ccvs = 0

and put w :=
∑

aiwi, u =
∑

biui and v =
∑

civi. Now v = −w − u ∈ U, so v ∈ U ∩ V ,
so v = d1w1 + . . . + dmwm for some di. Thus:

v = c1v1 + . . . + csvs = d1w1 + . . . + dmwm.

Hence c1v1 + . . . + csvs − d1w1 − . . . − dmwm = 0. But w1, . . . ,wm, v1, . . . , vs are linearly
independent, so c1 = . . . = cs = d1 = . . . = dm = 0, so v = 0. Thus, (2) gives

a1w1 + . . . + amwm + b1u1 + . . . + bbur = 0,

so (as w1, . . . ,wm,u1, . . . ,ur are linearly independent), a1 = . . . = am = b1 = . . . = br = 0
as required. □

Corollary 2.16. If V = V1 ⊕ V2, then dim(V) = dim(V1) + dim(V2).

Proof. This follows from the theorem, as in this case dim(V1 ∩ V2) = 0. □

Example 2.17. Inside V = R4, let

V1 := {(a,b, c, 0) : a,b, c ∈ R},
V2 := {(a,a,b,b) : a,b ∈ R}.

Then V1 ∩ V2 := {(a,a, 0, 0) : a ∈ R} := {a(1, 1, 0, 0) : a ∈ R}, so dim(V1 ∩ V2) = 1. Clearly
dim(V1) = 3, and also dim(V2) = 2 (V2 has basis (1, 1, 0, 0), (0, 0, 1, 1)). Now

dim(V1 + V2) = dim(V1) + dim(V2) − dim(V1 ∩ V2) = 3 + 2 − 1 = 4.

Thus, V1 + V2 = R4 (but it is not a direct sum).

3. LINEAR TRANSFORMATIONS

Definition 3.1. Let U,V be vector spaces over K. A mapping α : U → V is a linear trans-
formation (or linear mapping) if

α(u1 + u2) = α(u1) + α(u2) and
α(au) = aα(u)

for all u1,u2,u ∈ U,a ∈ K.

Equivalently, α is a linear transformation if α(a1u1 + a2u2) = a1α(u1) + a2α(u2) for all
a1,a2 ∈ K and u1,u2 ∈ U.

Exercise 3.2. Show that under linear transformation:
(1) The null vector of U is mapped to the null vector of V .
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(2) Any straight line in U is mapped to a straight line in V .

Theorem 3.3. Any linear transformation from Rm to Rn has the form

α(x1, . . . , xm)T = A(x1, . . . , xm)T ,

where A = (aij) is an n × m matrix. The basis vectors (1, 0, . . . , 0)T , . . . , (0, . . . , 0, 1)T map
under α to the columns of A.

Remark 3.4. Here, to save on trees, we write (x1, . . . , xm)T (the transpose) for the column

vector

 x1
...

xm

 .

Example 3.5. Consider linear mappings R2 → R2. As examples, we have the iden-

tity transformation (matrix
(

1 0
0 1

)
), expansions (with matrix

(
a 0
0 a

)
), rotations (matrix(

cos θ − sin θ
sin θ cos θ

)
for rotation anticlockwise by θ) and a reflection in the x-axis (matrix(

1 0
0 −1

)
).

Before proving the theorem, we fix the following notation, used throughout the course.
We let e1 := (1, 0, . . . , 0)T , e2 := (0, 1, 0, . . . , 0)T , . . . , em := (0, . . . , 0, 1)T be the standard basis
of Rm.

Proof of Theorem 3.3. By linearity of α,

α(x1, . . . , xm)T = α(

m∑
j=1

xjej) =

m∑
j=1

xjα(ej) =

m∑
j=1

xjfj,

where f1 := α(e1), . . . , fm := α(em). Write fj = (a1j, . . . ,anj)
T , the jth column of A. Then

α(x1, . . . , xm)T =
∑m

j=1 xjfj =

= x1

a11
...

an1

+ x2

a12
...

an2

+ . . . + xm

a1m
...

anm

 =

a11 . . . a1m
...

...
...

an1 . . . anm


 x1

...
xm

 ,

as claimed in the theorem. □

Remark 3.6. If we choose any f1, . . . fm ∈ Rn, then there is a unique linear mapping β :
Rm → Rn with β(ei) = fi for each j = 1, . . . ,m. For we must have β(

∑m
j=1 xjej) =∑m

j=1 xjfj, by linearity.

Now we do something similar for linear transformations between arbitrary vector spaces.

Theorem 3.7. Let U,V be vector spaces over K of dimensions m,n respectively, and let u1, . . . ,um

be a basis of U, v1, . . . vn a basis of V . Let α : U → V be a linear transformation. For each
j = 1, . . . ,m, put α(uj) =

∑n
i=1 aijvi, and let A = (aij), an n × m matrix. Then for any

c1, . . . , cm ∈ K, α(
∑m

j=1 cjuj) =
∑n

i=1 divi, where (d1, . . . ,dn)
T = A(c1, . . . , cm)T .
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Proof. We have

α

 m∑
j=1

cjuj

 =

m∑
j=1

cjα(uj) (by linearity)

=

m∑
j=1

cj

n∑
i=1

aijvi

=

m∑
j=1

n∑
i=1

aijcjvi

=

n∑
i=1

 m∑
j=1

aijcj

 vi

=

n∑
i=1

divi.

□

Remark 3.8. The j-th column of A gives the coordinates of α(uj) with respect to the basis
v1, . . . , vn of V .

Much of the aim of the rest of the module is to choose bases carefully so that the matrix
for A (which depends on the choice of bases) has a nice shape.

Definition 3.9. Let α : U → V be a linear transformation. Then the image of α is Im(α) :=
{α(u) : u ∈ U}, and the kernel of α is Ker(α) := {u ∈ U : α(u) = 0}. The kernel is also called
the null space of α.

Theorem 3.10. Let α : U → V be a linear transformation. Then Im(α) is a subspace of V and
Ker(α) is a subspace of U.

Proof. First, observe that α(0) = α(0 · u) = 0 · α(u) = 0, so 0V ∈ Im(α), and 0U ∈ Ker(α).
To see Im(α) is a subspace: if v1, v2 ∈ Im(α) then there are u1,u2 ∈ U with α(u1) = v1,

α(u2) = v2. Now if a1,a2 ∈ K, then a1v1 + a2v2 = α(a1u1 + a2u2) ∈ Im(α).
To see Ker(α) is a subspace, let u1,u2 ∈ Ker(α). Then α(a1u1 + a2u2) = a1α(u1) +

a2α(u2) = a1 · 0 + a2 · 0 = 0, so a1u1 + a2u2 ∈ Ker(α). □

Example 3.11. Let α : R3 → R3 be the linear map

(x,y, z)T 7→ (x+ y− 2z, x− z, x− y)T .

We shall find the matrix for α (with respect to the standard basis of R3) and then find bases
for Im(α) and Ker(α). So we see how α acts on the standard basis. Now α(1, 0, 0)T =
(1, 1, 1)T , α(0, 1, 0)T = (1, 0,−1)T , and α(0, 0, 1)T = (−2,−1, 0)T . Hence the matrix for α is

A =

1 1 −2
1 0 −1
1 −1 0

 .

Now Ker(α) consists of all solutions to the simultaneous equations x+y−2z = 0, x−z = 0
and x− y = 0. By row operations, this solution space is {a(1, 1, 1) : a ∈ R} so {(1, 1, 1)} is a
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basis for Ker(α). Also, Im(α) is spanned by the columns of A. To get a basis, write these
as rows (ie form AT ), and do row operations. We can reduce AT to1 1 1

0 −1 −2
0 0 0

 ,

so the non-zero rows {(1, 1, 1), (0,−1,−2)} form a basis for Im(α).

Definition 3.12. If α : U → V is a linear transformation, then r(α) := dim(Im(α)) is the
rank of α, and n(α) = dim(Ker(α)) is the nullity of α.

Theorem 3.13 (Rank and Nullity Theorem). Let α : U → V be a linear transformation. Then

r(α) + n(α) = dim(U).

Proof. As usual, we shall assume dim(U) is finite.
Let v1, . . . , vr be a basis for Im(α). Then there are u1, . . . ,ur ∈ U with α(ui) = vi for

each i. Also, choose a basis t1, . . . , tk for Ker(α). The theorem follows from the following
claim.

Lemma 3.14. u1, . . . ,ur, t1, . . . , tk is a basis for U.

Proof of Lemma. Spanning. If u ∈ U, then α(u) ∈ Im(α), so we can write α(u) = a1v1 +
. . . + arvr = a1α(u1) + . . . + arα(ur). Then

α(u− (a1u1 + . . . + arur)) = α(u) − (a1α(u1) + . . . + arα(ur)) = 0.

Hence u− (a1u1 + . . . + arur) ∈ Ker(α), so has form b1t1 + . . . + bktk for some scalars bi.
Then u = a1u1 + . . . + arur + b1t1 + . . . + bktk.

Linear Independence. Suppose a1u1 + . . . + arur + b1t1 + . . . + bktk = 0. Then

0 = α(a1u1 + . . . + arur + b1t1 + . . . + bktk) = a1v1 + . . . + arvr.

Hence a1 = . . . = ar = 0, as v1, . . . , vr are linearly independent. Then b1t1 + . . .+bktk = 0.
But t1, . . . , tk are linearly independent, so also b1 = . . . = bk = 0. □

□

Remark 3.15. In Example 3.11, dim(U) = dim(R3) = 3, n(α) = 1, and r(α) = 2. The proof
of Theorem 3.13 shows that (1, 1, 1)T , α−1(1, 1, 1)T , α−1(0,−1,−2)T is a basis for R3.

3.1. Discussion of Simultaneous Equations. Suppose we have a system of n linear si-
multaneous equations

a11x1 + . . . + a1mxm = b1,
a21x1 + . . . + a2mxm = b2

. . . . . . . . .
an1x1 + . . . + anmxm = bn,

so of the form Ax = b, where A = (aij) is an n × m matrix, x = (x1, . . . , xm)T , and
b = (b1 . . . ,bn)

T ∈ Rn.
Multiplication by A gives a linear map α : Rm → Rn. Now r(α) = n ⇔ Im(α) = Rn,

which holds if and only if we can solve the above system for every b ∈ Rn.
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Also, n(α) = 0 if and only if the homogeneous system Ax = (0, . . . , 0)T has the zero
vector in Rm as the only solution. This means also that if α(x) = α(y) = b, then α(x−y) =
0, so x− y = 0; that is, n(α) = 0 means that solutions to Ax = b, if they exist, are unique.

Now r(α) + n(α) = m, so if m < n, then r(α) < n and we can’t always solve the
system. If m > n, then m > r(α) so n(α) > 0, wo we cannot solve uniquely. If m = n, then
either r(α) = n and n(α) = 0 (so for all b ∈ Rn there is a unique solution of Ax = b), or
r(α) < n and n(α) > n (so for some b there is no solution, but if there is a solution there
are infinitely many).

3.2. Composition of Mappings.

Lemma 3.16. Let U,V ,W be vector spaces, and α : U → V , β : V → W be linear transforma-
tions. Then the function βα : U → W defined by βα(u) = β(α(u)) is linear.

Proof. We have

(βα)(a1u1 + a2u2) = β(α(a1u1 + a2u2))

= β(a1α(u1) + a2α(u2)) (as α is linear)
= a1β(α(u1)) + a2β(α(u2)) (as β is linear)
= a1(βα)(u1) + a2(βα)(u2).

□

Theorem 3.17. Suppose that dim(U) = m, with basis u1, . . . ,um, dim(V) = n, with basis
v1, . . . , vn, dim(W) = p, with basis w1, . . . ,wp. Suppose α : U → V and β : V → W are
linear transformations with matrices A,B with respect to these bases. Then βα has matrix BA
with respect to the bases u1, . . . ,um of U and w1, . . . ,wp of W.

Proof. By Theorem 3.3,

α(uj) =

n∑
i=1

aijvi for j = 1, . . . ,m

β(vi) =

p∑
k=1

bkiwk for i = 1, . . . ,n,
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where A = (aij) and B = (bij). Put C = BA = (cij). Now,

(βα)(uj) = β(

n∑
i=1

aijvi)

=

n∑
i=1

aijβ(vi)

=

n∑
i=1

p∑
k=1

bkiaijwk

=

p∑
k=1

(

n∑
i=1

bkiaij)wk

=

p∑
k=1

ckjwk.

Thus, βα has matrix C. □

3.3. Inverses. We adopt the following convention. If α : U → U, then we use the same
basis for U on both sides.

Definition 3.18. If α : U → U is linear, then α is invertible if α is 1-1 and onto. In this
case, for each b ∈ U, the equation α(u) = b has a unique solution, which we write as
u = α−1(b). We call α−1 the inverse of α.

Proposition 3.19. Suppose α : U → U is invertible. Then
(1) r(α) = dim(U), n(α) = 0;
(2) α−1 : U → U is linear.
(3) if α has matrix A with respect to basis u1, . . . ,un, the α−1 has matrix A−1 with respect

to this basis.

Proof. First, since α is onto, Im(α) = U, so r(α) = dim(U). Since α(u) = b can be solved
uniquely, ker(α) = {0}, so n(α) = 0.

To see that α−1 is linear, suppose α−1(v1) = u1 and α−1(v2) = u2, and let a1,a2 be
scalars. Then α(a1u1 + a2u2) = a1v1 + a2v2, so

α−1(a1v1 + a2v2) = a1u1 + a2u2 = a1α
−1(v1) + a2α

−1(v2).

Finally, if α−1 has matrix B, then since αα−1 = α−1α = id which has matrix In, by
Theorem 3.17 AB = BA = I, so B = A−1. □

Theorem 3.20 (The AP = PB Theorem). Let α : U → U be a linear transformation, and
u1, . . . ,un and v1, . . . , vn be two bases of U. Suppose that α is respresented by the matrix A with
respect to u1, . . . ,un, and by B with respect to basis v1, . . . , vn. Then there is a nonsingular matrix
P such that AP = PB, and P = (pij) is given by vj =

∑n
i=1 pijui (for each j).

Remark 3.21. (1) The conclusion says B = P−1AP.
(2) P is a ‘change of basis’ matrix. It’s jth column is (p1j, . . . ,pnj)

T – the coordinates
of vj with respect to the basis u1, . . . ,un.



LINEAR ALGEBRA 2 15

Proof of Theorem 3.20. As α is represented by B in the v-basis,

α(vj) =

n∑
i=1

bijvi

=

n∑
i=1

bij

n∑
k=1

pkiuk

=

n∑
k=1

n∑
i=1

pkibijuk

=

n∑
k=1

(PB)kjuk.

Also,

α(vj) = α(

n∑
i=1

pijui)

=

n∑
i=1

pijα(ui)

=

n∑
i=1

n∑
k=1

pijakiuk as A represents α with respect to u-basis

=

n∑
k=1

n∑
i=1

akipijuk

=

n∑
k=1

(AP)kjuk.

Thus, (PB)kj = (AP)kj for all k, j, so PB = AP.
Finally, we show P is invertible. Now the jth column of P is vj written in the u-basis.

Thus, working in the u-basis, multiplication by P takes each ui to vi. This is invertible,
with the inverse transformation taking vi to ui. □

Example 3.22. Consider α : R2 → R2 given by α

(
x
y

)
=

(
x
−y

)
. The u1,u2 basis will be

u1 =

(
1
0

)
, u2 =

(
0
2

)
, and the v1, v2 basis will be v1 =

(
1
1

)
, v2 =

(
1
2

)
. First, we find A,

the matrix of α for the u-basis. Now

α(u1) = α

(
1
0

)
=

(
1
0

)
= 1 · u1 + 0 · u2, and

α(u2) = α

(
0
2

)
=

(
0
−2

)
= 0 · u1 − 1 · u2.

Hence A =

(
1 0
0 −1

)
.
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Next, we find B, the matrix of α for the v-basis. Now

α(v1) = α

(
1
1

)
=

(
1
−1

)
= 3v1 − 2v2 and

α(v2) = α

(
1
2

)
=

(
1
−2

)
= 4v1 − 3v2.

Hence, B =

(
3 4
−2 −3

)
.

To find P: its jth column is vj written in the u-basis.

v1 =

(
1
1

)
= 1 ·

(
1
0

)
+

1
2
·
(

0
2

)
, and

v2 =

(
1
2

)
= 1 ·

(
1
0

)
+ 1 ·

(
0
2

)
,

so P =

(
1 1
1
2 1

)
. Finally, a calculation shows AP = PB.

4. DIAGONALISATION OF MATRICES

From now on, α : V → V is a linear transformation, where V is an n-dimensional real or
complex vector space. If α is represented by the n× n matrix A with respect to one fixed
basis, then with respect to any other basis it has matrix P−1AP, for some non-singular P
(by Theorem 3.20).

Definition 4.1. Two matrices A, B are said to be similar if there is an invertible matrix P
such that P−1AP = B; that is, if A,B represent the same linear transformation with respect
to (different) bases.

Exercise 4.2. Show that the relation “matrices A and B are similar” is an equivalence.

To investigate similarity of matrices we need the following notions.

Definition 4.3. Let α : V → V be linear. A scalar λ is said to be an eigenvalue of α if
there is a non-zero vector v ∈ V such that α(v) = λv. The vector v is called an eigenvector
corresponding to the eigenvalue λ.

Remark 4.4. (1) λ is an eigenvalue of α ⇔ there is v ̸= 0 such that (α− λI)v = 0

⇔ Ker(α− λI) ̸= {0}
⇔ n(α− λI) ̸= 0
⇔ r(α− λI) ̸= n by Rank and Nullity Theorem
⇔ α− λI is not invertible.

(2) Some α have no eigenvalues. For example, suppose K = R, and
(

0 1
−1 0

)
defines

a linear transformation α : R2 → R2 (with respect to the standard basis). Now(
0 1
−1 0

)(
x
y

)
= λ

(
x
y

)
means that y = λx and −x = λy, so either x = y = 0, or

−yx = λ2yx, so λ2 = −1, which has no solutions in R.
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(1,3)

(2,1)

(1,3)

(2,1)

FIGURE 1. Eigenvalues and Eigenvectors

Theorem 4.5. Let α : V → V be a linear transformation, where dim(V) = n. Then the eigen-
values of α are the roots of the characteristic equation det(tI − A) = 0, where A is any matrix
representing α with respect to some basis. The equation is independent of the choice of basis, so
can be written det(tI− α) = 0. It is a polynomial in t of degree n.

Proof. First, we verify that the characteristic equation is independent of the choice of basis.
So suppose that A represents α with respect to one basis, and B represents α with respect
to another. Then there is a non-singular matrix P such that B = P−1AP (Theorem 3.20).
Now

det(tI− B) = det(tI− P−1AP)

= det(P−1(tI)P − P−1AP)

= det(P−1(tI−A)P)

= det(P−1)det(tI−A)det(P)
= det(tI−A),

the last step using that det(P−1)det(P) = det(P−1P) = det(I) = 1.
Now, λ is an eigenvalue of α ⇔ α− λI is not invertible

⇔ det(A− λI) = 0 ⇔ det(λI−A) = 0.

This clearly is a polynomial of degree n in t, with leading term tn. □

Remark 4.6. There is some confusion as to whether det(tI − A) or det(A − tI) is the char-
acteristic equation. I go for det(tI − A), so the coefficient of tn is 1. But the two have the
same roots. Indeed, det(tI−A) = (−1)n det(A− tI).
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We often write χ(t) for the characteristic equation (also called the characteristic polyno-
mial). By Theorem 4.5, this can be regarded equally as the characteristic equation of A, or
of α (where A represents α with respect to some basis).

Definition 4.7. (1) The linear transformation α : V → V is diagonalisable if there is
a basis of V such that α is represented by a diagonal matrix with respect to this
basis.

(2) We denote by Diag(λ1, . . . , λn) the diagonal matrix whose diagonal entry (in the
(i, i) position, for each i) is λi.

Remark 4.8. If α is represented by A with respect to some basis, then α is diagonalisable
if and only if there is a non-singular matrix P such that P−1AP is diagonal, that is, A is
similar to a diagonal matrix.

Theorem 4.9. Let α : V → V be linear. Then α is diagonalisable if and only if there is a basis of
V consisting of eigenvectors of α.

Proof. ⇐ If v1, . . . , vn is a basis of V consisting of eigenvectors of α, with α(vj) = λjvj for
each j, then the matrix for α with respect to the basis v1, . . . , vn is Diag(λ1, . . . , λn).

⇒ Conversely, suppose α has matrix Diag(λ1, . . . , λn) with respect to basis v1, . . . , vn.
Then αvi = λivi for each i, so the vi are eigenvectors. □

Example 4.10. Let A =

(
0 1
−1 0

)
. First, consider it as giving a linear transformation α :

R2 → R2 (with respect to the standard basis). The characteristic equation is det
(
λ −1
1 λ

)
=

λ2 + 1, which has no real roots. So A has no eigenvalues in R, so no eigenvectors, so is not
diagonalisable. Next, work over complex scalars, and consider A as giving a linear trans-
formation α : C2 → C2, again with respect to the standard basis. Now λ2+1 = (λ+i)(λ−i),
with roots i,−i. We find the eigenvectors.

For λ = i, the equation (iI−A)

(
x
y

)
=

(
0
0

)
is(

i −1
1 i

)(
x
y

)
=

(
0
0

)
,

which gives the single equation ix−y = 0, with solution set {a(1, i) : a ∈ C}, so (1, i) is an
eigenvector.

For λ = −i, we solve (−iI−A)

(
x
y

)
=

(
0
0

)
, that is(

−i −1
1 −i

)(
x
y

)
=

(
0
0

)
.

This gives the equation −ix − y = 0, with solutions {a(i, 1) : a ∈ C}, so (i, 1) is an eigen-
vector.

The vectors (1, i) and (i, 1) are linearly independent, so form a basis of eigenvectors

of α, so by Theorem 4.9, α is dagonalisable. Pur P =

(
1 i
i 1

)
(so the columns) of P are
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the eigenvectors, treated as column vectors). Then P−1 = 1
2

(
1 −i
−i 1

)
, and a calculation

shows that P−1AP =

(
i 0
0 −i

)
.

4.1. More on eigenvalues, eigenvectors. In the discussion which follows, we shall work
over C. The key fact is that every polynomial b0 +b1t+ . . .+bmtm (with bi ∈ C) factorises
completely into linear factors over C. So we shall for a while assume K = C. This avoids
problems like that in the last example (working over R).

Definition 4.11. Let α : V → V be linear, and λ be an eigenvalue of α (so a root of the
characteristic polynomial χ(t)). Then the algebraic multiplicity ma(λ) is defined to be its
multiplicity as a root of χ(t). Its geometric multiplicity mg(λ) is dim(ker(tI−α)) = n(tI−α).

Given an n× n matrix A, we can regard A as giving a linear transformation Cn → Cn,
so can talk of the algebraic and geometric multiplicities of eigenvalues of A (in fact, these
do not depend on the choice of basis).

Proposition 4.12. Let α : V → V be linear, where V is an n-dimensional vector space.
(1) For each eigenvalue λ of α, we have

1 ⩽ mg(λ) ⩽ ma(λ) ⩽ n

(that is, ‘geometric multiplicity ⩽ algebraic multplicity’).
(2) If λ1, . . . , λr are the distinct eigenvalues of α then

ma(λ1) +ma(λ2) + . . . +ma(λr) = n.

(3) If λ1, . . . , λr are the distinct eigenvalues, and vi is an eigenvector of λi for each i, then
{v1, . . . , vr} is linearly independent.

Proof. (1) By the definition of eigenvalue mg(λ) ⩾ 1; and as χ(t) has degree n, ma(λ) ⩽
n. So we must show that mg(λ) ⩽ ma(λ).

Suppose that mg(λ) = p, take a basis v1, . . . , vp for Ker(λI−α), and extend it to
a basis v1, . . . , vn for V . With respect to the basis v1, . . . , vn, α has matrix(

Diag(λ, . . . , λ) S
Z T

)
,

where Diag(λ, . . . , λ) is p×p, S is some p×(n−p) matrix, Z is the all-zero (n−p)×p
matrix, and T is some (n−p)×(n−p) matrix. Now det(tI−α) = (t−λ)p det(tI−T),
so ma(λ) ⩾ p.

(2) We have det(tI−α) = (t−λ1)
ma(λ1)(t−λ2)

ma(λ2) . . . (t−λr)
ma(λr), and det(tI−α)

has degree n.
(3) We show by induction on m that if λ1, . . . , λm are distinct eigenvalues with eigen-

vectors v1, . . . , vm, then v1, . . . , vm are linearly independent.
If m = 1, this is trivial, as eigenvectors are non-zero. So suppose

(3) c1v1 + . . . + cmvm = 0.

Multiplying (3) by λm,

c1λmv1 + . . . + cmλmvm = 0.
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Also, by applying α to (3), we have

c1λ1v1 + . . . + cmλmvm = 0.

Hence, subtracting, c1(λ1 − λm)v1 + . . . + cm−1(λ1 − λm)vm = 0. As v1, . . . , vm−1
are linearly independent (by induction), this gives

c1(λ1 − λm) = . . . = cm−1(λm−1 − λm) = 0.

As the λj are distinct, this forces c1 = . . . = cm−1 = 0, and from (3) we then also
get cm = 0.

□

Definition 4.13. If V1, . . . ,Vr are subspaces of the vector space V , then V is a direct sum
V = V1 ⊕ . . . ⊕ Vr if each v ∈ V is uniquely expressible as v = v1 + . . . + vr (for vi ∈ Vi).

Remark 4.14. The last definition extends Definition 1.16 to the situation where there are
more than two subspaces.

Let V1, . . . ,Vr be subspaces of V , and suppose that whenever v1 ∈ V1, . . . , vr ∈ Vr and
v1 + . . . + vr = 0, we have v1 = . . . = vr = 0. Then V1 ⊕ . . . ⊕ Vr is a direct sum, and its
dimension is dim(V1)+ . . .+dim(Vr). We omit the proof, but it follows easily by induction
from Corollary 2.16.

Proposition 4.15. The following are equivalent.
(1) α is diagonalisable;
(2) mg(λ) = ma(λ) for each eigenvalue λ;
(3) V = Ker(λ1I− α)⊕ . . . ⊕ Ker(λrI− α).

Proof. For each i = 1, . . . , r, put Vi := Ker(λiI− α).
(i)⇒ (ii) We use Theorem 4.9 and its proof. So suppose α is diagonalisable. This means

that with respect to a basis of eigenvectors, say u1, . . . ,un, α has matrix

A = Diag(λ1, . . . , λ1, λ2, . . . , λ2, . . . , λr, . . . , λr).

For each j there are ma(λj) occurrences of λj in this matrix (take its characteris-
tic polynomial). Hence, there are ma(λj) basis vectors from u1, . . . ,un which are
eigenvectors of λj (cf. Proof of Theorem 4.9). Hence, mg(λj) ⩾ ma(λj). Thus, by
(i), mg(λj) = ma(λj) for each j.

(ii) ⇒ (iii) Suppose (ii), i.e. that mg(λ) = ma(λ) for each λ. First, using (iii) and Remark 4.14,
observe that the sum V1+. . .+Vr is direct. Thus, it suffices to show that it equals V ,
i.e. that the dimensions sum to n = dim(V). Since dim(Vi) = mg(λi), assuming
(b) we have

r∑
i=1

dim(Vi) =

r∑
i=1

mg(λi) =

r∑
i=1

ma(λi) = n,

as required.
(iii) ⇒ (i) Suppose V = V1⊕. . .⊕Vr. Then, by Remark 4.14, dim(V) = dim(V1)+. . .+dim(Vr).

Let Bi be a basis for Vi for each i. Observe that Bi consists of eigenvectors with
eigenvalue λi. Then, using the definition of direct sum, B := B1∪ . . .∪Br is linearly
independent, and as it has size dim(V), B is a basis of V . Thus, V has a basis of
eigenvectors of α, so by Theorem 4.9, α is diagonalisable.
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□

Example 4.16. Let A =

2 0 0
0 2 1
0 0 3

 and B =

2 1 0
0 2 0
0 0 3

. In both cases, ma(3) = 1 and

ma(2) = 2, since each have characteristic equation (λ − 2)2(λ − 3). Since 1 ⩽ mg(3) ⩽
ma(3), we must in each case have mg(3) = 1. Thus, in each case, the matrix is diagonalis-
able if and only if mg(2) = 2.

For A, we find 2I−A =

0 0 0
0 0 1
0 0 1

, and the row reduced for of this has one non-zero

row. That is, r(2I − A) = 1 and n(2I − A) = 2 (regarding these as linear transformations
with respect to standard basis), so for A we find mg(2) = 2, and so A is diagonalisable.

For B, on the other hand, 2I − B =

0 1 0
0 0 0
0 0 1

 which has rank 2 and nullity 1, so

mg(2) = 1 for B, so B is not diagonalisable.
To diagonalise A, find a basis of eigenvectors. For λ = 2, v1 = (1, 0, 0)T and v2 =

(0, 1, 0)T are eigenvectors. For λ = 3, v3 = (0, 1, 1)T is an eigenvector. Let P have v1, v2, v3

as columns, so P =

1 0 0
0 1 1
0 0 1

. Then P−1 =

1 0 0
0 1 −1
0 0 1

, and P−1AP =

2 0 0
0 2 0
0 0 3

,

which is diagonal with the eigenvalues 2,2,3 listed in the order corresponding to eigen-
vectors v1, v2, v3.

4.2. Polynomials. We shall continue to work with vector spaces over C, to ensure that
any polynomial factorises into linear factors. So V is an n-dimensional vector space over
C.

We have α : V → V . If A represents α with respect to the basis v1, . . . , vn, then by
Theorem 3.17, A2 represents the composition α2, A3 represents α3, and so on. Also, if A
represents α, and B represents β, then A+B represents α+β, where α+β is defined so that
(α+β)(v) = α(v)+β(v). More generally, given the polynomial p(t) = b0+b1t+. . .+bmtm,
we can form the linear transformation p(α) = b0 + b1α + . . . + bmαm, which has matrix
p(A) := b0I+ b1A+ . . . + bmAm with respect to the basis v1, . . . , vn.

Lemma 4.17. (1) Let α : V → V be a non-zero linear transformation. Then there is a
polynomial p(t) of degree at most n2 with p(α) = 0 (that is, p(α) is the zero linear
transformation, so it maps each vector to the zero vector).

(2) All polynomials p such that p(α) = 0 are multiples of a unique polynomial of minimal
degree which is monic, i.e. has leading coefficient 1.

Definition 4.18. The monic polynomial of minimal degree described in (ii) is called the
minimal polynomial of α, and is usually denoted µ(t).

Proof of Lemma 4.17. (1) Let Lin(V ,V) be the set of all linear transformations V → V .
Then Lin(V ,V) is a vector space over C (compare Example 1.1(e).) If we work over
a fixed basis of V , then Lin(V ,V) is essentially the same as Mn,n(C) (just replace
each linear transformation by the matrix representing it in our given basis.) Now
the dimension of Mn,n(C) is n2, since we may form a basis {Ei,j : 1 ⩽ i, j ⩽ n},
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where Ei,j has a 1 in the (i, j)-entry and zeros elsewhere. Hence dim(Lin(V ,V)) =
n2. It follows that the set I,α,α2, . . . ,αn2

is linearly dependent (as it has size n2 +1).
Hence, there are constants c0, c1, . . . , cn2 ∈ C such that c0 + c1α + . . . cn2αn2

= 0.
Thus, if p(t) = c0 + c1t+ . . . + cn2tn

2
, then p(α) = 0.

(2) Let µ(t) be of minimal degree and of form µ(t) = tk + dk−1t
k−1 + . . . + d1t+ d0 –

we can put it in this (monic) form by multiplying by a non-zero constant.
If p(t) is another polynomial with p(α) = 0, then by division for polynomials,

we have p(t) = q(t)µ(t) + r(t) where deg(r(t)) < deg(µ(t)) or r(t) = 0. (If you
don’t know this fact about division of polynomials, don’t worry about it! The idea
is that q(t) is the quotient, r(t) is the remainder.) Now r(α) = p(α)−q(α)µ(α) = 0,
so by the minimality of the degree of µ(t), r(t) = 0, so p(t) = q(t)µ(t) is a multiple
of µ(t).

□

We now state the main theorem about the minimal polynomial, the Cayley-Hamilton
Theorem. The proof of the Cayley-Hamilton Theorem is given in these notes but not in
the lectures, and for the exam, you will be expected to know the statement but not the
proof of Cayley-Hamilton, and you will be expected to know the proof of Corollary 4.20.

Theorem 4.19 (Cayley-Hamilton Theorem). The characteristic polynomial χ(t) of α satisfies
χ(α) = 0.

Corollary 4.20. If µ(t) and χ(t) are respectively the minimal and characteristic polynomials of t,
then µ(t) divides χ(t).

Proof. By the Cayley-Hamilton Theorem, χ(α) = 0, so by Lemma 2, χ(t) is a multiple of
µ(t). □

Before proving the Cayley-Hamilton Theorem, recall that if A is an n × n matrix then
adj(A) is the transposed ‘matrix of cofactors’. That is, adj(A) = BT , where B = (bij) and
bij is + or - the determinant of the (n− 1)× (n− 1)-matrix obtained from A by removing

the ith row and jth column. For example, if A =

1 2 1
0 1 1
1 0 1

 then B =

 1 1 −1
−2 0 2
1 −1 1

,

so adj(A) = BT =

 1 −2 1
1 0 −1
−1 2 1

.

Now A · adj(A) = det(A) · In (a fact about matrices; you may recall that A−1 =
adj(A)/det(A) if A is invertible).

Proof of Theorem 4.19. Let A be the matrix of α with respect to some basis. By the last
remark,

(tI− α) adj(tI− α) = χ(t)I.

Put B := adj(tI − α). Then B is a matrix such that each entry is a polynomial in t. So
B = B0 + tB1 + t2B2 + . . ., where each Bj is a matrix over C. (For example, we could write(

t2 + t+ 1 t− 1
t2 t

)
=

(
1 −1
0 0

)
+

(
1 1
0 1

)
t+

(
1 0
1 0

)
t2.
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Thus,
(tI−A)(B0 + tB1 + t2B2 + . . .) = χ(t)I,

for any t. Now put t = A. Then the left hand side is zero, so χ(A)I = 0. This forces
χ(A) = 0, so χ(α) = 0. □

Corollary 4.21. Suppose χ(t) = Πm
i=1(t− λi)

ni is the characteristic polynomial of α. Then µ(t)
has the form Πm

i=1(t− λi)
pi where 1 ⩽ pi ⩽ ni for each i.

Proof. Since µ(t) divides χ(t), we just need to check that each λi is a root of µ(t), i.e. that
1 ⩽ pi. So let λ be an eigenvalue of α, with eigenvector v. Then αv = λv, so α2v = λ2v,
α3(v) = λ3(v), etc. Thus, µ(α)v = µ(λ)v. Since µ(α) = 0, and v ̸= 0, this forces µ(λ) = 0, so
λ is a root of µ(t). □

Finally, we obtain our last criterion for diagonalisability of a linear transformation.

Proposition 4.22. Let α : V → V be a linear transformation, where V is a vector space over C.
Then α is diagonalisable if and only if µ(t) is a product of distinct linear factors.

Proof. ⇒ Suppose that α is diagonalisable, represented by the matrix

A = Diag(λ1, . . . , λ1, λ2, . . . , λ2, . . . , λr, . . . , λr).

Then you can check that

(λ1I−A)(λ2I−A) . . . (λrI−A) = 0,

so µ(t) = (t− λ1)(t− λ2) . . . (t− λr) (a product of distinct linear factors).
⇐ Suppose µ(t) = (t − λ1)(t − λ2) . . . (t − λr). Let µi(t) := µ(t)/(t − λi). Now,

expanding by partial fractions,

1
µ(t)

=
1

(t− λ1)(t− λ2) . . . (t− λr)
=

c1

t− λ1
+

c2

t− λ2
+ . . . +

cr

t− λr
.

Hence, multiplying by µ(t),

1 =
µ(t)

µ(t)
= c1µ1(t) + c2µ2(t) + . . . + crµr(t).

Let v ∈ V . Then, from the last equation,

(4) v = c1µ1(α)v+ c2µ2(α)v+ . . . + crµr(α)v.

It follows that for each i, ciµi(α)v ∈ Ker(λiI− α). Indeed,

(λiI− α)ciµi(α)v = (λiI− α)ci
µ(α)

λiI− α
v = ciµ(α)v = 0.

Thus, each ciµi(α) is an eigenvalue of α, so by (4), the eigenvectors of α span V ,
and so α is diagonalisable by Theorem 4.9.

□

Example 4.23. Return to matrices A and B from the Example 4.16, which both have the
characteristic polynomial (λ−2)2(λ−3). Since A is diagonalisable its minimal polynomial
is (λ − 2)(λ − 3), and since B is not diagonalisable its minimal polynomial coincides with
the characteristic one. We also can conclude that A and B are not similar.
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5. INNER PRODUCT SPACES

We now return to working with vector spaces over R (so from now on, K = R), but the
theory below could be developed for vector spaces over C.

Definition 5.1. Let V be a vector space over R, and suppose that for each pair of vectors
u, v ∈ V there is defined a real number written ⟨u, v⟩ (sometimes denoted (u, v), or u · v).
This is called a (real) inner product on V if it satisfies the following, for a,b ∈ R, and
u1,u2,u, v ∈ V .

(1) (Linearity) ⟨au1 + bu2, v⟩ = a⟨u1, v⟩+ b⟨u2, v⟩.
(2) (Symmetry) ⟨u, v⟩ = ⟨v,u⟩.
(3) (Positive Definiteness) ⟨u,u⟩ ⩾ 0, and ⟨u,u⟩ = 0 ⇔ u = 0.

The vector space V with ⟨−,−⟩ satisfying 1–3 is called an inner product space.

Remark 5.2. We can deduce from these axioms the following properties.
(1) ⟨u,av1 + bv2⟩ = ⟨av1 + bv2,u⟩ = a⟨v1,u⟩ + b⟨v2,u⟩ = a⟨u, v1⟩ + b⟨u, v2⟩ – that is,

the inner product is linear also in the second variable.
(2) For all v ∈ V , ⟨0, v⟩ = ⟨0v, v⟩ = 0⟨v, v⟩ = 0, and also ⟨v, 0⟩ = ⟨0, v⟩ = 0.
(3) We have the following generalisation of 1

⟨a1u1 + a2u2 + . . . + anun,b1v1 + b2v2 + . . . + bmvm⟩ =
n∑

i=1

m∑
j=1

aibj⟨ui, vj⟩.

This can be proved by induction. First use induction on n to get

⟨a1u1 + . . . + anun,b1v1⟩ = a1b1⟨u1, v1⟩+ . . . + anb1⟨un, v1⟩,
and then use induction on m.

Example 5.3. (1) Take the usual scalar (or ‘dot’) product on V = Rn. Here, if x =
(x1, . . . , xn) and y = (y1, . . . ,yn), then ⟨x,y⟩ =

∑n
i=1 xiyi. This is ‘Euclidean n-

space’.
(2) Let V be the vector space of all continuous functions on the closed interval [a,b]

(or restrict to the subspace of polynomial functions on this interval). Define

⟨f,g⟩ =
∫b
a

f(t)g(t)dt.

This is an inner product, by the basic rules for integration.
(3) As a slight adjustment of (2), let w(t) be a continuous and strictly positive function

on [a,b] (a ‘weight function’), and let

⟨f,g⟩ =
∫b
a

f(t)g(t)w(t)dt.

Theorem 5.4 (Cauchy-Schwarz Inequality). If V is an inner product space, and u, v ∈ V , then

⟨u, v⟩2 ⩽ ⟨u,u⟩⟨v, v⟩.

Proof. We can assume ⟨u,u⟩ ̸= 0, as otherwise u = 0 and both sides vanish. Let t ∈ R.
Then ⟨tu− v, tu− v⟩ ⩾ 0, and (by linearity) equals

t2⟨u,u⟩− 2t⟨u, v⟩+ ⟨v, v⟩.
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Put t = ⟨u,v⟩
⟨u,u⟩ . Then we obtain

⟨u, v⟩2

⟨u,u⟩
−

2⟨u, v⟩2

⟨u,u⟩
+ ⟨v, v⟩ ⩾ 0.

Multiplying out, we get ⟨v, v⟩⟨u,u⟩ ⩾ ⟨u, v⟩2. □

Example 5.5. In Rn, with the usual scalar product, the Cauchy-Schwarz Inequality says
n∑

i=1

xiyi ⩽
(∑

x2
i

) 1
2
(∑

y2
i

) 1
2

,

or x · y ⩽ |x| |y| for vectors in Rn. This is true in R3, as x · y = |x| |y| cos θ, where θ is the
angle between the vectors x and y.

Definition 5.6. If v ∈ V then the norm of v, also called the length of v, is defined to be√
⟨v, v⟩, and denoted ∥v∥.

Theorem 5.7. Let V be an inner product space. Then the norm on V satisfies
(1) ∥v∥ ⩾ 0, and ∥v∥ = 0 if and only if v = 0,
(2) ∥kv∥ = |k| · ∥v∥ for any k ∈ R,
(3) ∥u+ v∥ ⩽ ∥u∥+ ∥v∥ (the triangle inequality).

Proof. (1) This is just an axiom for inner products.
(2) ⟨kv,kv⟩ = k2⟨v, v⟩. Now take square roots, noting both sides are positive.
(3) We have

⟨u+ v,u+ v⟩ = ⟨u,u⟩+ 2⟨u, v⟩+ ⟨v, v⟩
⩽ ⟨u,u⟩+ 2⟨u,u⟩

1
2 ⟨v, v⟩

1
2 + ⟨v, v⟩ by Theorem 5.4

= ∥u∥2 + 2 ∥u∥ · ∥v∥+ ∥v∥2 = (∥u∥+ ∥v∥)2.

Now take square roots.
□

Definition 5.8. We say that vectors u, v ∈ V (a real inner product space) are orthogonal,
written u ⊥ v, if ⟨u, v⟩ = 0.

Theorem 5.9 (Pythagoras). If u ⊥ v then ∥u+ v∥2 = ∥u∥2 + ∥v∥2.

Proof. ⟨u+ v,u+ v⟩ = ⟨u,u⟩+ 2⟨u, v⟩+ ⟨v, v⟩ = ∥u∥2 + ∥v∥2 . □

Definition 5.10. A set {e1, . . . , em} in an inner product space V is said to be orthonormal if
∥ei∥ = 1 for each i and ⟨ei, ej⟩ = 0 for all distinct i, j. An orthonormal basis for a subspace
W of V is a basis of W which is an orthonormal set.

Proposition 5.11. Suppose that e1, . . . , em is an orthonormal set.
(1) If v =

∑m
i=1 aiei and w =

∑m
i=1 biei, then ⟨v,w⟩ =

∑m
i=1 aibi.

(2) ∥
∑m

i=1 aiei∥2
= (

∑m
i=1 a

2
i), so e1, . . . , em is linearly independent;

(3) If v = a1e1 + . . . + amem, then ai = ⟨v, ei⟩ for each i.

Proof. (1) Apply Remark 3 after Definition 5.1.
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(2)

⟨
m∑
i=1

aiei,
m∑
j=1

ajej⟩ =
m∑
i=1

m∑
j=1

aiaj⟨ei, ej⟩ =
m∑
i=1

a2
i.

In particular, is
∑m

i=1 aiei = 0, then
∑m

i=1 a
2
i = 0, which implies that ai = 0 for all

i (as squares are non-negative).
(3) Observe that ⟨v, ei⟩ = ⟨a1e1 + . . . + amem, ei⟩ = ai.

□

Example 5.12. (1) In Rn, the standard basis is an orthonormal basis.
(2) There are many other orthonormal bases in Rn, for example, in R3

u1 =

(
1√
3

,
1√
3

,
1√
3

)
,

u2 =

(
1√
2

,
−1√

2
, 0
)

,

u3 =

(
1√
6

,
1√
6

,
−2√

6

)
is an orthonormal basis.

(3) Here is a set of orthonormal functions on the interval [0, 2π], with respect to the
inner product ⟨f,g⟩ =

∫2π
0 f(t)g(t)dt (see Example 5.3):

1√
2π

,
cos t√

π
,

sin t√
π

.

5.1. Gram–Schmidt Orthogonalisation Process. This is a procedure for finding an or-
thonormal basis. Let v1, . . . , vm be a linearly independent set of vectors in the real in-
ner product space V . We construct an orthonormal set e1, . . . , em such that for each
j = 1, . . . ,m,

span(e1, . . . , ej) = span(v1, . . . , vj).
The construction is as follows. First, put e1 = v1/ ∥v1∥ (that is, we normalise v1, to ensure

length 1).
To find each subsequent ej, we first subtract off the components of vj in the directions

of the previous ek, and then normalise.
More formally, put w2 = v2 − ⟨v2, e1⟩e1. Now

⟨w2, e1⟩ = ⟨v2, e1⟩− ⟨v2, e1⟩⟨e1, e1⟩ = 0,

and span(w2, e1) = span(v2, e1) = span(v2, v1), so w2 ̸= 0. Now, put e2 = w2/ ∥w2∥ (i.e.,
normalise w2).

In general, let

wj = vj −

j−1∑
k=1

⟨vj, ek⟩ek.

Then, for l < j,

⟨wj, el⟩ = ⟨vj, el⟩−
j−1∑
k=1

⟨vj, ek⟩⟨ek, el⟩ = 0, and
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span(wj, e1, . . . , ej−1) = span(vj, e1, . . . , ej−1) = span(v1, . . . , vj),

so wj ̸= 0. Now put ej = wj/ ∥wj∥.

Example 5.13. The plane x + y + z = 0 in R3 has basis v1 = (1, 0,−1), v2 = (0, 1,−1). We
find an orthonormal basis.

First, e1 = (1, 0,−1)/ ∥(1, 0,−1)∥ = ( 1√
2
, 0, −1√

2
).

Next,

w2 = v2 − ⟨v2, e1⟩e1 = (0, 1,−1) −
1√
2

(
1√
2

, 0,
−1√

2

)
=

(
−1
2

, 1,
−1
2

)
.

Hence,

e2 = w2/ ∥w2∥ =

√
2√
3

(
−1
2

, 1,
−1
2

)
=

(
−1√

6
,

2√
6

,
−1√

6

)
.

We’ll now extend e1, e2 to an orthonormal basis of R3. Put v3 = (0, 0, 1), so v1, v2, v3 is a
basis of R3. Then

w3 = v3 − ⟨v3, e1⟩e1 − ⟨v3, e2⟩e2

= (0, 0, 1) −
1√
2

(
1√
2

, 0,
−1√

2

)
+

1√
6

(
−1√

6
,

2√
6

,
−1√

6

)
= (0, 0, 1) +

(
1
2

, 0,
−1
2

)
+

(
−1
6

,
2
6

,
−1
6

)
=

(
2
6

,
2
6

,
2
6

)
=

(
1
3

,
1
3

,
1
3

)
.

Hence, e3 =
√

3w3 = ( 1√
3
, 1√

3
, 1√

3
). Geometrically, e3 is a unit vector perpendicular to the

plane x+ y+ z = 0.

5.2. Orthogonal Complements. Recall from Definition 1.19: If W1 ⊂ V are vector spaces,
then W2 is a complement of W1 if and only if V = W1 ⊕ W2 (direct sum), or equivalently,
W1 + W2 = V and W1 ∩ W2 = {0}, or equivalently again, each vector v ∈ V is uniquely
expressible as v = w1 +w2, for wi ∈ Wi.

In general, complements to a subspace are not unique, see Remark 1.20. However,
given an inner product we have a particularly nice complement.

Definition 5.14. Let V be an inner product space, and W be a subspace of V . The orthogonal
complement W⊥ of W is defined by

W⊥ := {v ∈ V : ⟨v,w⟩ = 0 for all w ∈ W}.

Theorem 5.15. Let W be a subspace of a finite-dimensional inner product space V . Then
(1) W⊥ is a subspace of V ;
(2) V = W ⊕W⊥, so dimV = dimW + dim(W⊥);
(3) (W⊥)⊥ = W.

Proof. (1) Clearly, 0 ∈ W⊥. If v1, v2 ∈ W⊥ and a1,a2 ∈ R, and w ∈ W, then

⟨a1v1 + a2v2,w⟩ = a1⟨v1,w⟩+ a2⟨v2,w⟩ = 0 + 0 = 0.

Hence a1v1 + a2v2 ∈ W⊥, so W⊥ is a subspace.
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(2) Take a basis w1, . . . ,wm for W, and extend it to a basis w1, . . . , wm, vm+1, . . . , vn of
V . Now apply Gram–Schmidt: We get an orthonormal basis e1, . . . , en of V , such
that e1, . . . , em is an orthonormal basis of W. It suffices to prove the following
claim, which yields that V = W +W⊥ and W ∩W⊥ = {0}.

Lemma 5.16. W⊥ = span(em+1, . . . , en).

Proof of the Lemma 5.16. First, W⊥ ⊆ span(em+1, . . . , en). For let v ∈ W⊥, and
suppose v =

∑n
i=1 aiei (as the ei are a basis of V). Then aj = ⟨v, ej⟩ = 0 for

j ⩽ m, since ej ∈ W and v ∈ W⊥. Hence, v = am+1em+1 + . . . + anen ∈
span(em+1, . . . , en).

Also span(em+1, . . . , en) ⊆ W⊥. For suppose that v ∈ span(em+1, . . . , en) and
w ∈ W, say v =

∑n
i=m+1 aiei and w ∈

∑m
i=1 biei. Then

⟨v,w⟩ = ⟨am+1em+1 + . . . + anen,b1e1 + . . . + bmem⟩ = 0.

□

(3) First, we show W ⊆ (W⊥)⊥. To see this, let w ∈ W and v ∈ W⊥. Then ⟨w, v⟩ = 0,
so w ∈ (W⊥)⊥.

Thus, it remains to show that dim(W) = dim(W⊥). But

dim(W) + dim(W⊥) = n = dim(W⊥)⊥ + dim(W⊥)

(as V = W⊥ + (W⊥)⊥ by 2), so dim(W) = dim(W⊥)⊥. Hence W = (W⊥)⊥.
□

As a brief example, recall Example 5.13. There, V = R3, and W is the plane x+y+z = 0.
Now

W⊥ = span(e3) = span
(

1√
3

,
1√
3

,
1√
3

)
.

6. REAL SYMMETRIC MATRICES

We show here that any real symmetric matrix can be diagonalised by an “orthogonal”
matrix P. This gives applications to quadratic forms in the final section.

First, a quick observation about inner products. Let ⟨·, ·⟩ be an inner product on the
real vector space V , with an orthonormal basis e1, . . . , en for V . We shall write vectors
v ∈ V as column vectors with respect to the ei basis (but for reasons of space, these will
be denoted as transposes of row vectors). So if v =

∑n
i=1 aiei, we write v = (a1, . . . ,an)

T .
Now observe that ⟨v,w⟩ = wTv (a matrix product of a row vector by a column vector).
For if v = a1e1 + . . . + anen and w = b1e1 + . . . + bnen, then

⟨v,w⟩ =
n∑

i=1

aibi = (b1, . . . ,bn)

a1
...
an

 = wTv.

Recall that a matrix A is symmetric if A = AT , that is, if A = (aij), then aij = aji for all
i, j.

Recall also that if matrix A represents the linear transformation α : V → V with
respect to the basis e1, . . . , en, then α(

∑n
j=1 xjej) =

∑n
i=1 yiei, where A(x1, . . . , xn)T =

(y1, . . . ,yn)
T , so yi =

∑n
j=1 aijxj for each i = 1, . . . ,n.
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Definition 6.1. The linear transformation α : V → V is called self-adjoint if, for all u, v ∈ V ,
we have

⟨αu, v⟩ = ⟨u,αv⟩.

Theorem 6.2. Let α : V → V be linear, represented by A with respect to the orthonormal basis
e1, . . . , en for V . Then A is symmetric if and only if α is self-adjoint.

Proof. ⇐ Suppose ⟨αu, v⟩ = ⟨u,αv⟩ for al u, v ∈ V . Put u = ei and v = ej. Then,
(with the subscripts i, j indicating which vector entry is 1),

⟨αu, v⟩ = vT · αu = (0, . . . , 0, 1j, 0, . . . , 0)A(0, . . . , 0, 1i, 0, . . . 0)T

= (0, . . . , 0, 1j, 0, . . . , 0)

a1i
...

ani

 = aji.

Also,

⟨u,αv⟩ = (a1j, . . . ,anj)(0, . . . , 0, 1i, 0, . . . , 0)T = aij.

Hence, aij = aji.
⇒ Suppose A is symmetric. Let v = (v1, . . . , vn)T and u = (u1, . . . ,un)

T . Then
⟨αu, v⟩ = vTAu, and ⟨u,αv⟩ = (Av)Tu = vTATu = vTAu (as A is symmetric).
Hence, ⟨αu, v⟩ = ⟨u,αv⟩.

□

Theorem 6.3. Let α : V → V be self-adjoint, represented by the real symmetric matrix A with
respect to the orthonormal basis e1, . . . , en of V . Then

(1) The eigenvalues of A (and hence α) are all real;
(2) eigenvalues corresponding to distinct eigenvectors are orthogonal;
(3) V has an orthonormal basis of eigenvectors of A.

In particular, α is diagonalisable.

Proof. (1) Suppose that λ is an eigenvalue of A, with eigenvector x1e1 + . . . + xnen.
Put x := (x1, . . . , xn)T . Write λ̄ for the complex conjugate of λ, and work over C.
(So if λ = a+ bi, then λ̄ = a− bi.) Also, for the vector x, write x̄ = (x̄1, . . . , x̄n)T .

Now Ax = λx, so Ax̄ = λx = λ̄x̄. Taking transposes, it follows that x̄TAT = λ̄x̄T .
Hence, multiplying on the right by the n× 1 matrix x,

x̄TATx = λ̄x̄Tx.

Also,
λx̄Tx = x̄T (λx) = x̄T (Ax) = x̄TATx,

the last step as A = AT . Thus, λ̄x̄Tx = λx̄Tx. As x ̸= 0, it follows that λ = λ̄, that is,
λ is real.

(2) Suppose λ ̸= µ are eigenvalues, with eigenvectors v, w respectively. So αx = λx
and αy = µy. Then

λ⟨x,y⟩ = ⟨λx,y⟩ = ⟨αx,y⟩ = ⟨x,αy⟩ = ⟨x,µy⟩ = µ⟨x,y⟩.

As λ ̸= µ, it follows that ⟨x,y⟩ = 0.
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(3) We use induction on n = dimV . If n = 1 the result is obvious.
By 1, there is a real eigenvalue λ1 of α, with eigenvector x1. We may suppose

that ∥x1∥ = 1 (normalise). Put W := (span(x1))
⊥ < V . Then dim(W) = n − 1, by

Theorem 5.15(ii).
We claim that α(W) ⊆ W. To see this, observe that if w ∈ W, then

⟨αw, x1⟩ = ⟨w,αx1⟩ = ⟨w, λ1x1⟩ = λ1⟨w, x1⟩ = 0,

so αw ∈ W.
It follows that α induces a self-adjoint mapping W → W. Since dim(W) =

n − 1, there is an orthonormal basis w2, . . . ,wn of eigenvectors of α in W. Now
x1,w2, . . . ,wn is an orthonormal basis of eigenvectors of α in V .

□

Definition 6.4. An n× n matrix P is orthogonal if PT = P−1, that is PTP = I.

The above definition esentially says that P is orthogonal if and only if its columns form

an orthonormal basis of Rn. In the 2 × 2 case, an example is
(

cos θ − sin θ
sin θ cos θ

)
.

Lemma 6.5. Let α : V → V be represented by a matrix A with respect to some orthonormal basis
e1, . . . , en of V . Then if we change to another orthonormal basis f1, . . . , fn of V , the matrix for α
in this basis has form P−1AP, where P is orthogonal.

Proof. We have fj =
∑n

i=1 pijei, where P = (pij) (see Theorem 3.20). Now

⟨fj, fk⟩ = ⟨
n∑

i=1

pijei,
n∑

i=1

pikei⟩ =
n∑

i=1

pijpik.

Hence,
∑n

i=1 pijpik takes value 1 if j = k, and zero otherwise. This just says PTP = I. □

The following corollary is really the point of this section. It says in particular than
any real symmetric matrix is diagonalisable, but is much stronger than this (because P is
orthogonal).

Corollary 6.6. If A is a real symmetric matrix, then there is an orthogonal matrix P with P−1AP =
PTAP equal to a diagonal matrix D.

Proof. Take e1, . . . , en as the standard basis of Rn, and f1, . . . , fn as an orthonormal basis of
eigenvectors of A (given by Theorem 6.3). Then the matrix D of A with respect to f1, . . . , fn
is diagonal (as it is a basis of eigenvectors). Also, by Lemma 6.5, there is orthogonal P with
P−1AP = D. □

Example 6.7. Let α : R3 → R3 be given by the matrix A =

0 2 0
2 2 2
0 2 0

 with respect

to the standard basis. Note that A is symmetric, so there is an orthonormal basis of R3

consisting of eigenvectors of A. First, calculating det(tI − A) along the first row, we find
χ(t) = t(t(t − 2) − 4) + 2(−2t) = t(t2 − 2t − 8) = t(t − 4)(t + 2), so the eigenvalues are
0, 4,−2.



LINEAR ALGEBRA 2 31

For λ = 0, solving  0 −2 0
−2 −2 −2
0 −2 0

x
y
z

 =

0
0
0


gives eigenvector (1, 0,−1)T . For λ = 4, we find eigenvector (1, 2, 1)T . For λ = −2, an
eigenvector is (1,−1, 1)T . Normalising these, we find

P =


1√
2

1√
6

1√
3

0 2√
6

−1√
3

−1√
2

1√
6

1√
3

 .

Then

P−1AP = PTAP =

0 0 0
0 4 0
0 0 −2

 .

7. QUADRATIC FORMS

Let V be an n-dimensional real vector space, with basis v1, . . . , vn. So any vector x ∈ V
can be written in the form x = x1v1 + . . . + xnvn.

Definition 7.1. In this setting, a quadratic form is a function q : V → R of the form

q(x) = q(x1v1 + . . . + xnvn) =

n∑
i=1

n∑
j=1

cijxixj,

where each cij ∈ R.

Example 7.2. (1) The standard norm of vector produced by the inner product ⟨x, x⟩ =
x2

1+x2
2+. . .+x2

n in Rn is a quadratic form. Moreover a norm from any inner product
is a quadratic form as well.

(2) Working in the standard basis of R2, with x = (x1, x2), the function q(x) = 3x2
1 +

4x1x2 − x2
2 is a quadratic form. We can write q(x) as a matrix product

(x1x2)

(
3 4
0 −1

)(
x1
x2

)
= (x1x2)

(
3x1 + 4x2

−x2

)
.

It can also be written as

(x1x2)

(
3 2
2 −1

)(
x1
x2

)
.

The second matrix expression above suggests there is a connection between quadratic
forms and real symmetric matrices. We now formalise this.

Proposition 7.3. Working with respect to a fixed basis of V , any quadratic form q(x) can be
written in the form

q(x) = (x1 . . . xn)A

x1
...
xn

 ,

where A is a real symmetric matrix. Furthermore, such an expression is unique, and every n×n
real symmetric matrix gives rise to a quadratic form on V .



32 VLADIMIR V. KISIL

Proof. We just prove the first assertion. Suppose our form is

q(x) = q(x1v1 + . . . + xnvn) =

n∑
i=1

n∑
j=1

cijxixj.

Put aij :=
cij+cji

2 . Then A = (aij) is symmetric, and

q(x) =

b∑
i=1

n∑
j=1

aijxixj = (x1 . . . xn)A
(
x1 . . . xn

)T .

□

The last proposition says that, if we write x = x1v1 + . . . + xnvn as the column vector
(x1, . . . , xn)T , then q(x) = xTAx, where A is real symmetric. We would like to change the
basis of V , to ensure that the matrix A is diagonal.

Proposition 7.4. Suppose that w1, . . . ,wn is another basis of V , with wj =
∑n

i=1 mijvi, for
each j. Put M = (mij). Then

(1)
∑n

i=1 xivi =
∑n

j=1 yjwj, where (x1 . . . xn)T = M(y1 . . .yn)
T .

(2) In the wi basis, the quadratic form q(x) = xTAx becomes

q(x) = (y1 . . .yn)(M
TAM)

y1
...
yn

 ,

and the matrix MTAM is symmetric. (Here, (y1, . . . ,yn) is the sequence of coordinates
of the vector x with respect to the w basis, that is, x = y1w1 + . . . + ynwn.)

Proof. (1) We indeed have:

n∑
j=1

yjwj =

n∑
j=1

yj

n∑
i=1

mijvi =

n∑
i=1

 n∑
j=1

mijyj

 vi =

n∑
i=1

xivi.

(2) Now q(x) = xTAx = (My)TA(My) = yT (MTAM)y.
□

Definition 7.5. We say that square matrices A,B are congruent if there is non-singular M
with B = MTAM.

Remark 7.6. (1) In Proposition 7.4, the jth column of M is the tuple of coordinates of
wj written in the v-basis.

(2) By Corollary 6.6, any real symmetric matrix is congruent to a diagonal matrix.
(3) In the first year Geometry module you used orthogonal transformations of R2

(which are rotations) to diagonalise quadratic forms in order to obtain canonical
equations of ellipses, parabolas and hyperbolas, cf. Example 7.13.

Theorem 7.7. For any quadratic form q on V , there is a choice of basis with redspect to which q
is diagonal, that is, q is given as

q(y) = yTDy = yT Diag(d1, . . . ,dn)y

where D = Diag(d1, . . .dn) is a diagonal matrix. Equivalently, q(y) = d1y
2
1+d2y

2
2+. . .+dny

2
n.
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Proof. We must show that if A is a real symmetric matrix, then there is a non-singular
matrix M such that MTAM is diagonal. By Corollary 6.6, there is an orthogonal matrix P

such that P−1AP is diagonal, and as P is orthogonal, we have P−1 = PT . □

The proof of Theorem 7.7 gives a method of diagonalising a quadratic form q:

(1) Find the real symmetric matrix A and its characteristic polynomial χ(t);
(2) Factorise χ(t) to find the eigenvalues
(3) Find a basis of eigenvectors, let M have these as columns, and calculate MTAM.

This process is slow – for example, it may be difficult to factorise χ(t). Since we do not
require that MT = M−1, there are much easier methods. The main point is that premulti-
plying by a non-singular matrix MT has the effect of doing a sequence of row operations
to A, and postmultiplying by M has the effect of doing the corresponding sequence of
column operations. So we aim to diagonalise A by doing a sequence of row operations
and the corresponding sequence of column operations. Here’s an easy example.

Example 7.8. We diagonalise the quadratic form q = x2 + 4xy + 2yz. (I have switched
from having variables x1, . . . , xn to variables x,y, z – you will see both conventions in past

papers.) The matrix here is

1 2 0
2 0 1
0 1 0

. To diagonalise it, we first aim to make the 2’s in

the (1,2) and (2,1) entries into 0. So do r ′2 = r2 − 2r1 and then c ′
2 = c2 − 2c1, to get1 2 0

2 0 1
0 1 0

 ∼

1 2 0
0 −4 1
0 1 0

 ∼

1 0 0
0 −4 1
0 1 0

 .

This is still symmetric. To get rid of the 1’s in the (3, 2) and (2, 3) entries, do r ′3 = r3 + r2/4

and then c ′
3 = c3 + c2/4. We get

1 0 0
0 −4 1
0 0 1

4

 and then

1 0 0
0 −4 0
0 0 1

4

. Thus, with respect

to a different basis, the quadratic form can be written in the diagonal form q = u2 − 4v2 +
1
4w

2.

In general, the algorithm for diagonalising a quadratic form is slightly more compli-
cated. For example, in the last example, how would we have got rid of the 2’s in the
(1, 2) and (2, 1) entries if the (1, 1) entry had been 0? Here is a sketch of the general proce-
dure. It ensures that there is no non-zero entry in the first row or column except possibly
in the (1, 1) entry. After we have achieved that, then we apply the same process to the
(n− 1)× (n− 1) matrix obtained by deleting the first row and column.

(1) If a11 ̸= 0, then for each i > 1 do operations r ′i = ri + ar1 and then c ′
i = ci + ac1

for appropriate a.
(2) If a11 = 0 but aii ̸= 0 for some i > 1, interchange rows r1 and ri, and then

interchange columns c1 and ci, to get a matrix with aii in the (1, 1) entry. Then
apply (i) above.

(3) Suppose all the diagonal entries aii are zero. Find some j with aij ̸= 0, and then
do r ′i = ri + rj and then c ′

i = ci + cj. The (i, i) entry is now non-zero, so proceed
as in (ii).
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Example 7.9. Consider the quadratic form q = 4yz (a function of x,y, z). This has matrix0 0 0
0 0 2
0 2 0

. There is no non-zero entry in first row or column, and no non-zero diagonal

entry, so use method (iii). Do r ′2 = r2 + r3 then c ′
2 = c2 + c3 to get

0 0 0
0 4 2
0 2 0

. Now do

r ′3 = r3 −
1
2r2 and then c ′

3 = c3 −
1
2c2, to get

0 0 0
0 4 0
0 0 −1

. Thus, a diagonalised forn is

q = 4v2 −w2.

A given quadratic form can usually be diagonalised in many different ways, i.e., there
is no unique answer. However, the following definition and theorem give a partial unique-
ness.

Definition 7.10. Let q(y) = d1y
2
1 + . . . + dny

2
n be a quadratic form in diagonal form. Let

P be the number of strictly positive di, and N be the number of strictly negative di. Then
the rank of q is defined to be rank(q) = P + N, and the signature of q is defined to be
signature(q) = P −N.

Theorem 7.11 (Sylvester’s Law of Inertia). Let q(x) = xTAx be a quadratic form, and suppose
it has two diagonalised forms x = My and x = Nz, so MTAM = Diag(c1, . . . , cn) and NTAN =
Diag(d1, . . . ,dn). Then the ranks of c1y

2
1 + . . . + cny

2
n and d1y

2
1 + . . . + dny

2
n are equal, and

their signatures are also equal.

Proof. This is omitted. □

From the last theorem, it follows that we can define the rank of a quadratic form to be
the rank of any quadratic form of it. Likewise for signature.

Example 7.12. In Example 7.8 we found a diagonal form u2 − 4v2 + 1
4w

2. Thus, the rank
is 2 + 1 = 3, and the signature is 2 − 1 = 1.

In Example 7.9, a diagonal form was 4v2 −w2. The rank is 1 + 1 = 2, and the signature
is 1 − 1 = 0.

Rank and signature have certain geometrical meaning.

Example 7.13. Consider the equation cx2 + dy2 = 1.
• If c, d > 0, this is an ellipse.
• If c > 0 and d < 0 then it is a hyperbola.
• If c > 0 and d = 0, it is the union of 2 lines (a degenerate case).
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self-adjoint transformation, 29
signature of the quadratic form, 34
similar matrices, 16
space

inner product, 24
vector, 2

span: linear, 6
standard basis, 8, 10
subspace, 3

union, 4
sum

direct, 5, 20
of two subspaces, 5
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The AP = PB Theorem, 14
theorem
AP = PB , 14
Cayley-Hamilton, 22
Pythagoras, 25
rank and nullity, 12

transformation, see also linear transformation

union of subspaces, 4

vector, 2
orthogonal, 25
orthonormal, 25
space, 2
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