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These are essentially the lecture notes I will be lecturing from, though the examples
given will be slightly different in lectures. There are one or two small topics covered
below that may not be covered in lectures. You should aim to be familiar also with the
examples in the problem sheets.

1. The integers

The symbol Z denotes the set of integers. By positive integers, we mean integers x with
0 < x, and x is a non-negative integer if 0 ⩽ x.

Definition 1.1. Let n,d ∈ Z. We say that d divides n (or that d is a divisor of n, or that d
is a factor of n) if there is some q ∈ Z with n = dq. We denote this by d|n. If d does not
divide n, we write d ̸ |n.

Example 1.2. 5|10 , 4 ̸ |39, −7|21, 9|0, 0|0, 0 ̸ |5.

Convention. Often, by a divisor, one means a positive divisor. You have to work out
what is meant from the context.

Lemma 1.3. (i) d|1 ⇒ d = ±1.
(ii) a|b and b|a ⇒ a = ±b.
(iii) d|a and d|b ⇒ d|ax+ by for any x,y ∈ Z.
(iv) d|n and n|m ⇒ d|m.
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Proof. (i) Obvious.
(ii) If one of a,b is zero, so are both, and the result holds, so suppose neither is zero.

Suppose aq = b and bq ′ = a (where q,q ′ ∈ Z). Then aqq ′ = a, so qq ′ = 1, so by (i),
q = ±1, giving b = ±a.

(iii) As d|a there is k ∈ Z with dk = a, and as d|b there is l ∈ Z with dl = b. Now
ax+ by = dkx+ dly = d(kx+ ly), and as kx+ ly ∈ Z, d|ax+ by.

(iv) As d|n there is k ∈ Z with dk = n and as n|m there is l ∈ Z with ln = m. Then
m = d(lk), so d|m. □

Definition 1.4. (a) An integer u is a unit if u|1 (so the only units are 1,−1).
(b) An integer p is prime if

(i) p ̸= 0, p not a unit,
(ii) p|ab ⇒ p|a or p|b,

(c) An integer p is irreducible if
(i) p ̸= 0, p not a unit,
(ii) the only divisors of p are ±1,±p.

So the first few positive irreducibles are 2, 3, 5, 7, 11, 13.
Later, you’ll see that in Z, ‘irreducible’= ‘prime’. This is not true in other number

systems (other ‘rings’); hence the pedantic-looking definitions.

Question 1.5. Are there infinitely many irreducibles (or primes)?

They seem to keep going, but how could one prove that there are infinitely many?

Digression – proof by mathematical induction.
Suppose we want to prove, for some property P of certain numbers, the statement ‘for

all positive integers n, P(n) is true’. We can’t in finite time do infinitely many tasks, i.e.
separately prove P(1), P(2), P(3), etc.

Method 1. Prove P(1), and for each n prove ‘if P(n), then P(n + 1)’. If we can do this
then it follows that for all integers n ⩾ 1, P(n) does hold. Indeed, suppose P(n) does
not hold for some n. Let k be the least such n (where it fails). We can’t have k = 1,
since we proved P(1). So k > 1, so by the minimality of k, P(k − 1) does hold. But then
since we proved ‘P(n) ⇒ P(n+ 1)’ for every n, in particular for n = k− 1, we get P(k), a
contradiction.

Example 1.6. (1) Let us prove the statement 1 + 2 + . . . + n = n(n + 1)/2. Let P(n)
be this statement. Clearly P(1) holds. Assume P(n) holds, and aim to show
P(n + 1). Then 1 + 2 + . . . + (n + 1) = (1 + 2 + . . . + n) + (n + 1) = (by inductive
hypothesis) n(n+ 1)/2+ (n+ 1) = (n+ 1)(n+ 2)/2. Thus, under the assumption
of P(n), P(n+ 1) holds. It follows by induction that P(n) holds for all n ⩾ 1.

Sometimes, one handles several initial cases separately, before the inductive
step (or one only aims to prove P(n) for n greater than some specified integer).

(2) Let P(n) be the statement ‘any product of n odd positive integers is odd.’ The
statement P(1) is obvious – an odd number is odd! Also, consider the case n = 2.
Let a1,a2 be odd, say a1 = 2k+1, a2 = 2l+1. Then a1a2 = (2k+1)(2l+1) = 2(2kl+
k+ l)+ 1, so is odd. So P(2) holds. Assume now P(n) holds, for some n > 2, and
let a1, . . . ,an+1 be odd positive integers. Then b := a1 . . .an+1 = (a1 . . .an).an+1.



LECTURE NOTES, ALGEBRA AND NUMBERS, MATH3172 3

As P(n) holds, a1 . . .an is odd, so b is the product of two positive integers, so is
odd (by the n = 2 case).

Method 2. ‘Course of values’ induction. Sometimes, you replace the step ‘if P(n) then
P(n+ 1)’ by the step ‘if P(k) holds for all k ⩽ n, then P(n+ 1).’ (Strictly speaking, when
arguing in this way one doesn’t even need to do a ‘base case’ – think abou it!). This is
also valid: if P(n) is false for some n, then there is a least n such that P(n) fails, and this
n violates the inductive step.

We end the digression on induction here – but the proof of the next lemma illustrates
‘course of values’ induction.

Lemma 1.7. Let k be an integer with k ⩾ 2. Then k can be expressed as a product of positive
irreducibles.

Proof. We use ‘course of values’ induction on k. It is clearly true for the starting point
k = 2, which is irreducible.

Suppose now that for every integer a with 2 ⩽ a ⩽ k − 1, a can be expressed as a
product of positive irreducibles. We prove that k can be so expressed.

Case 1. k is irreducible. Then trivially k is a product of irreducibles.
Case 2. k is reducible. Now k has divisors other than ±1, and we can assume them

positive. So k = lm where 2 ⩽ l < k, 2 ⩽ m < k. By induction, each of l,m is a product
of positive irreducibles. Hence so is k. □

So, irreducibles are the ‘building blocks’ for multiplication in Z.

Question 1.8. Is the decomposition into irreducibles unique?

Clearly, we have to ignore the order of the irreducibles, as for example 3 × 3 × 7 × 5 =
5×3×7×3. Apart from this, it is unique. This will be shown later, after we’ve developed
some more theory. It is false in some other number systems, and is a source of some
famous errors.

Theorem 1.9. There are infinitely many irreducibles in Z.

Proof. The argument is by contradiction, ‘reduction ad absurdum’. Assume the statement
false, do some argument, and get a contradiction. So the statement was true after all!

So suppose that the theorem is false, so in particular there are just finitely many
positive irreducibles, say p1 = 2, p2 = 3, p3 = 5, p4 = 7, . . . ,pt. (We cannot specify what t
is). Write

N := p1 . . .pt + 1.

By Lemma 1.7, we can write N as a product of positive irreducibles, say N = q1 . . .qs.
Now q1|N. Also, as the pi list all irreducibles, q1 is one of the pi, so q1|N− 1. Hence, by
Lemma 1.3(iii), q1|N− (N− 1) = 1. So q1 = 1, contrary to the definition of ‘irreducible’.

So, after all, there are infinitely many positive irreducibles! □

There are many other similar but stronger results, such as the following.

Theorem 1.10. There are infinitely many irreducibles of the form 4k+3 with k a positive integer.
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Proof. Suppose there are just finitely many, say p1 = 3, p2 = 7, p3 = 11, p4 = 19, . . . ,pt.
Put N := 4p1 . . .pt − 1. Then N = 4(p1 . . .pt − 1) + 3, so has form 4k + 3. Write N as
a product of positive irreducibles, N = q1 . . .qs. Each of the qi must have for 4k + 1 or
4k+ 3, as N is odd. If they were all of the form 4k+ 1, then N would also have this form
(Exercises 1, Q2(ii)). But N has form 4k + 3, so some qi must have form 4k + 3, so must
be among the pj. Thus, qi|4p1 . . .pt − N = 1, which is impossible. This contradiction
proves the theorem. □

Definition 1.11. Let a,b be integers. An integer g is called a greatest common divisor
(g.c.d.) of a,b if

(i) g|a and g|b (so g is a common factor of a,b), and
(ii) for any c ∈ Z, if c|a and c|b, then c|g.

This seems a bit odd: part (i) is easy to understand, but (ii) is complicated – why not
just say that g is the biggest integer satisfying (i)? The reasons:

– if g is a g.c.d of a,b, so is −g – we do not claim that the g.c.d. is unique.
– (ii) gives more information that just saying g is the biggest of the common divisors.
– in some number systems, there may not be any meaning of ‘biggest’, but the present

definition still works.

Definition 1.12. We say integers a,b are coprime, or relatively prime, if 1 is a g.c.d. of a,b.

Notation. The positive g.c.d. of a,b is denoted (a,b), and really is the ‘biggest’ com-
mon divisor.

So, for example, (8, 20) = 4 = (−8, 20).
(15, 26) = 1 = (−15,−26).
(36, 54) = 18.
(0, 50) = 50.
We do not define (0, 0).
To find a g.c.d., e.g to find (540, 900): one way is to express each as a product of powers

of distinct irreducibles. So 540 = 22 × 33 × 5 and 900 = 22 × 32 × 52. Then for each prime
divisor, take the minimum of the exponents, and multiply these prime powers together.
So (540, 900) = 22 × 32 × 5 = 180. But we’ll shortly see another way.

Lemma 1.13. The positive g.c.d. of a,b is unique.

Proof. Suppose c, c ′ are both positive g.c.d.’s of a,b. Then as c is a common divisor and
c ′ satisfies Definition 1.11 (ii), c|c ′. Likewise (reversing c, c ′) c ′|c. So by Lemma 1.3(ii),
c = ±c ′, so as they are both positive, c = c ′. □

Does every pair of integers have a g.c.d? We’ll show the answer is ‘Yes’. It follows
that g = (a,b) is also the biggest common divisor d of a,b; for any such d divides g, so
as g > 0, d ⩽ g.

Theorem 1.14 (The Division Algorithm). Let d,n ∈ Z with d ̸= 0. Then n = qd + r for
some q, r ∈ Z with 0 ⩽ r < |d|.

The Idea. q stands for ‘quotient’, and r stands for ‘remainder’. We divide d into n as
many times as possible (q times) and the remainder r is then less than |d|. For example,
let n = 50, d = 8.Then 6 × 8 = 48, remainder 2, so 50 = 6 × 8 + 2, so q = 6, r = 2. Or
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if n = −80, d = −7, we have 12 × −7 = −84, remainder 4, so −80 = 12 × (−7) + 4, so
q = 12, r = 4.

Proof of Theorem 1.14. Let S := {n − qd : q ∈ Z}. Then S contains at least one positive
integer: for example, if n ⩾ 0 take q = 0, or if n < 0 take q = nd so n− qd = n− nd2 =
−n(d2 − 1) ⩾ 0.

Let r be the smallest non-negative integer in S. Then r ⩾ 0, and r = n − qd for some
q ∈ Z.

Now r − |d| ∈ S: for if d > 0, then r − |d| = r − d = n − qd − d = n − (q + 1)d, and if
d < 0 then r− |d| = r+ d = n− qd+ d = n− (q− 1)d.

Also, r − |d| < r. If r − |d| ⩾ 0, this contradicts the minimality of r. So r − |d| < 0, so
r < |d|. □

Lemma 1.15. Let a,b,q, r ∈ Z with a = qb + r, and with a,b not both zero. Then (a,b) =
(b, r).

Proof. Let g = (a,b). Then g > 0, so to show g = (b, r) we must show (i) g|b and g|r, and
(ii) for any c ∈ Z, if c|b and c|r then c|g.

Trivially (by definition of (a,b)), g|b, and as g|a and g|b, g|a−qb so g|r. Thus (i) holds.
For (ii), suppose c|b and c|r. Then c|qb + r = a. Thus, as c|a and c|b and g satisfies part
(ii) of the definition of (a,b), c|g. Thus (ii) above holds for (b, r), so g = (b, r). □

Lemma 1.16. Given n,d as in the Division Algorithm, q and r are unique.

Proof. See Exercises 1, Q5. □

Theorem 1.17 (Euclid’s Algorithm). Every pair of integers a,b (not both 0) has a positive
g.c.d. (a,b). Furthermore, there are integers s, t so that

(a,b) = sa+ tb

(and we can find such s, t).

Proof. Step 1: By the Division Algorithm (Theorem 1.14) there are m1, r1 ∈ Z so that

a = m1b+ r1 and 0 ⩽ r1 < |b|.

Now (if r1 ̸= 0) replace a and b by b and r1 and repeat.
Step 2. By the Division Algorithm (Theorem 1.14) there are m2, r2 ∈ Z so that

b = m2r1 + r2 and 0 ⩽ r2 < r1.

Now (if r2 ̸= 0) replace b and r1 by r1 and r2 and repeat.
Step 3. By the Division Algorithm (Theorem 1.14) there are m3, r3 ∈ Z so that

r1 = m3r2 + r3 and 0 ⩽ r3 < r2.

Continue like this. We have r1 > r2 > r3 > . . . and ri ⩾ 0 for all i, so eventually
(possibly already at Step 1) we get ml, rl so that rl = 0, that is,

rl−2 = mlrl−1 + 0.

Claim. (a,b) = rl−1 (the last non-zero remainder).
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Proof of Claim. Clearly rl−1 = (rl−1, rl−2), as rl−1|rl−2. And by Lemma 1.15,

rl−1 = (rl−1, rl−2) = . . . = (r1, r2) = (b, r1) = (a,b).

□

To find s, t, go back up the above steps. We have a = m1b+ r1
b = m2r1 + r2
r1 = m3r2 + r3
and so on, to rl−4 = ml−2rl−3 + rl−2
rl−3 = ml−1rl−2 + rl−1
rl−2 = mlrl−1.
Then (a,b) = rl−1 = rl−3 −ml−1rl−2
= rl−3 −ml−1(rl−4 −ml−2rl−3)
= −ml−1rl−4 + (1 +ml−1ml−2)rl−3)
=..., until we get an expression sa+ tb. □

Example 1.18. (1) To find (−50, 8).
−50 = (−7)× 8 + 6
8 = 6 × 1 + 2
and 6 = 3 × 2
so (−50, 8) = 2, and 2 = 8 − 6 = 8 − (−50 + 7 × 8) = (−1)× (−50) + (−6)× 8. So s = −1,
and t = −6.

(2) To find (6300, 1320).
6300 = 4 × 1320 + 1020
1320 = 1 × 1020 + 300
1020 = 3 × 300 + 120
300 = 2 × 120 + 60
120 = 2 × 60 + 0,
so (6300, 1320) = 60, the last non-zero remainder. Now
60 = 300 − 2 × 120
= 300 − 2(1020 − 3 × 300)
= 7 × 300 − 2 × 1020
= 7(1320 − 1020) − 2 × 1020
= −9 × 1020 + 7 × 1320
= −9(6300 − 4 × 1320) + 7 × 1320
= −9 × 6300 + 43 × 1320, so s = −9 and t = 43.

In general, s and t are not uniquely determined.

Recall, a,b are coprime if (a,b) = 1. We now have

Lemma 1.19. Let a,b ∈ Z. Then a,b are coprime if and only if there are s, t ∈ Z with
sa+ tb = 1.

Proof. ⇒ Immediate from Theorem 1.17.
⇐ Suppose sa+ tb = 1 and that c|a and c|b. Then c|sa+ tb (by Lemma 1.3(iii)) so c|1,

and hence c = ±1 (by Lemma 1.3(i)). □

Next, a long-promised fact.

Theorem 1.20. Let p ∈ Z. Then p is prime if and only if p is irreducible.



LECTURE NOTES, ALGEBRA AND NUMBERS, MATH3172 7

Proof. Of course, in the definitions of ‘prime’ and ‘irreducible’ in Definition 1.4, clause
(i) is the same, so we focus on clause (ii).

⇒. Assume p is prime, and p = ab (for a,b ∈ Z). We must show that a,b are from
±1,±p. Now p|p, so p|ab, so p|a or p|b (as p is prime). The situation is symmetrical
between a and b, so we may assume p|a. Then a = pc for some c ∈ Z. So p = ab = pcb,
so cb = 1, so b = ±1, a = ±p.

⇐ Assume p is irreducible, and p|ab, say pc = ab. If p|a we are done, so assume
p ̸ |a. The only divisors of p are ±1,±p, so the only common divisors of a,p are ±1, so
(p,a) = 1. Thus, by Euclid’s Algorithm (Theorem 1.17), there are s, t ∈ Z with

sp+ ta = 1.

Then spb+ tab = b, so p(sb+ tc) = b, so p|b. So if p ̸ |a then p|b, so p is prime. □

Remark 1.21. The above proof shows that if n|ab and (n,a) = 1 then n|b. For there are
s, t ∈ Z with sn+ ta = 1, so snb+ tab = b, and n|snb+ tab.

In Z, we’ll now just use the word ‘prime’. But remember the two words ‘irreducible’
and ‘prime’ with their distinct meanings – in other number systems they differ.

Finally, we give a major theorem which illustrates a key theme of the later parts of the
module.

Theorem 1.22 (The Fundamental Theorem of Arithmetic). Let a ∈ Z, with a ̸= 0 and a
not a unit. Then

(1) (Existence) a can be expressed as a product a = up1 . . .pm where u is a unit and each pi

is a positive prime;
(2) (Uniqueness) also, if there is another expression a = vq1 . . .qn where v is a unit and the

qi are positive primes, then u = v, n = m, and the pi, qj can be paired off so that corresponding
pairs are equal.

For example, −160 = (−1)× 2 × 2 × 2 × 2 × 2 × 5
= (−1)× 2 × 5 × 2 × 2 × 2 × 2, etc.

Proof. (Existence) If a ⩾ 2, apply Lemma 1.7. If a ⩽ −2, find a decomposition for −a,
and premultiply by (−1).

(Uniqueness). If a is positive then the unit is 1, and if a < 0 then the unit is -1, so
u = v.

Let us assume that a is positive (otherwise first prove the result for −a). Dropping
the initial unit, a = p1 . . .pm = q1 . . .qn, where the pi,qj are positive primes. Also, p1|a,
so p1|q1 . . .qn, so as p1 is prime, p|qj for some j (see Exercises 1, Q3). As qj is prime, it
is irreducible (here we use Theorem 1.20), so in fact p1 = qj. So as

p1 . . .pm = q1 . . .qn, we have

p2 . . .pm = q1 . . .qj−1qj+1 . . .qn.

Continuing this way (or arguing by induction), we get rid of all the pi, and there can’t
be any qi left. So n = m, and we’ve paired off the pi and qj. □
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2. Congruences

Definition 2.1. Let a,b,n ∈ Z with n > 0. We say ‘a is congruent to b modulo n’ and
write a ≡ b (modn), if n|a− b, that is, a− b = kn for some k ∈ Z.

Examples. 21 ≡ 3 (mod 6); 18 ≡ −3 (mod 7); −5 ̸≡ 15 (mod 3). Also, a is even if
and only if a ≡ 0 (mod 2) and a is odd if and only if a ≡ 1 (mod 2).

In the lemmas below, we always assume n is a positive integer.

Lemma 2.2. (i) For all x ∈ Z, x ≡ x (modn);
(ii) For all x,y ∈ Z, if x ≡ y (modn) then y ≡ x (modn).
(iii) For all x,y, z ∈ Z, if x ≡ y (modn) and y ≡ z (modn) then x ≡ z (modn).

Proof. These are all easy. For (iii), we have x − y = kn and y − z = ln, say. Then
x− z = (x− y) + (y− z) = (k+ l)n, so n|x− z. □

Lemma 2.3. (i) Every integer a is congruent modulo n to exactly one integer in the range
0, 1, . . . ,n− 1, namely its remainder on division by n.

(ii) Integers a,b are conguent modulo n if and only if they have the same remainder on division
by n.

Proof. (i) By the Division Algorithm (Theorem 1.14) we can write a = qn + r with 0 ⩽
r < n. Then a ≡ r (modn).

For the uniqueness of r, note that if also a ≡ r ′ (modn) with 0 ⩽ r ′ < n, then
r ′ ≡ a ≡ r (modn), so r ′ ≡ r (by Lemma 2.2(iii)), so n|r ′−r. But |r ′−r| < n, so actually
r ′ = r.

(ii) If a,b have the same remainder r, then a ≡ r and b ≡ r, so (using Lemma 2.2)
r ≡ b, so a ≡ b (all modulo n).

Conversely, if a and b are congruent modulo n, and have remainders r and r ′ respec-
tively, then a ≡ r, b ≡ r ′, and a ≡ b, so a ≡ r ′, so by (i), r = r ′. □

Lemma 2.4. Modulo n we have
(i) If a ≡ a ′ and b ≡ b ′ then a+ b ≡ a ′ + b ′ and ab ≡ a ′b ′.
(ii) If a ≡ a ′ then ar ≡ (a ′)r for all r ⩾ 0.
(iii) If a ≡ a ′ then f(a) ≡ f(a ′) for any polynomial f(x) with integer coefficients.

Proof. (i) We have n|a− a ′ and n|b− b ′, so n|(a− a ′) + (b− b ′) = (a+ b) − (a ′ + b ′), so
a+ b ≡ a ′ + b ′.

Also, if kn = a− a ′ and ln = b− b ′, say, then

ab = (a ′ + kn)(b ′ + ln) = a ′b ′ + (kb ′ + kln+ a ′l)n,

so n|ab− a ′b ′.
(ii),(iii) These follow from (i). □

The last lemma generalises familiar facts about ‘even’, ‘odd’. For example, if x ≡
1 (mod 2) and y ≡ 1 (mod 2) then xy ≡ 1× 1 ≡ 1 (mod 2), so odd × odd=odd. Also
if x ≡ 1 (mod 2) and y ≡ 0 (mod 2) then x+y ≡ 1+0 = 1 (mod 2), so odd+even=odd.

Lemma 2.5. Modulo n, we have
(i) if a ≡ c then ma ≡ mc.
(ii) If ma ≡ mc and (m,n) = 1 then a ≡ c.
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Proof. (i) Obvious.
(ii) By Theorem 1.17 there are s, t ∈ Z with sm+ tn = 1. Then as

ma ≡ mc (modn), we have

sma ≡ smc (modn),

so sma+ tna ≡ smc+ tnc (we are just adding multiples of n), so

(sm+ tn)a ≡ (sm+ tn)c, so

a ≡ c (modn).

□

Note. In (ii) we need the hypothesis (m,n) = 1. For example, putting m = n = 2, we
have 2 × 1 ∼= 2 × 2 (mod 2) but 1 ̸≡ 2 (mod 2).

Example 2.6. (1) Suppose we wish to find all solutions of x3 + 6x ≡ 2 (mod 5). First,
this is the same as x3 + x ≡ 2 (mod 5) (so we reduce all coefficients modulo 5). By
Lemmas 2.3 and 2.4, it suffices to look for solutions in the finite set {0, 1, 2, 3, 4} – this is
trial and error, but easy. The only such solution is x = 1. So the general solution of the
congruence is x = 1 + 5k (for any k ∈ Z). If the number n is small, this is a good general
method.

(2) What is the last digit of 381? This is too large a problem for calculators. We need
to find the remainder of 381 modulo 10.

Now, 381 = (34)20 × 3. So working modulo 10, 34 = 81 ≡ 1, so 381 ≡ 120 × 3 ≡ 3. So the
last digit is 3.

(3) Find the remainder when 1212 is divided by 567.
Modulo 567 we have:

122 = 144, so 124 = 14462 = 20736 ≡ 324, so
128 ≡ 3242 = 104976 ≡ 81, so
1212 = 128 × 124 ≡ 81 × 324 = 26244 ≡ 162, the remainder.

(4) Any positive integer is congruent modulo 9 to the sum of its digits. Indeed, write
the number n as arar−1ar−2...a0 (so ar is the first digit in base 10, etc.). Then n = ar ×
10r+ar−1×10r−1+. . .a1×10+a0 ≡ ar×1r+ar−1×1r−1+. . .a1×1+a0 = ar+ar−1+. . .+a0,
the sum of the digits.

(5) Any square is congruent to 0 or 1 modulo 4. For if a is congruent to 0, 1, 2, 3
modulo 4, then, respectively, a2 is congruent to 0, 1, 4, 9, hence to 0, 1, 0, 1, modulo 4.

Lemma 2.7. Let a,n ∈ Z with n > 0 and (a,n) = 1. Then the congruence ax ≡ 1 (modn)
has a unique solution modulo n.

Proof. First, existence. As (a,n) = 1, by Theorem 1.17 there are s, t ∈ Z with as+ tn = 1.
Then as as ≡ 1 (modn), x = s is a solution.

For uniqueness, suppose that x0 is a solution, and x is arbitrary. Then x is a solution
⇔ ax ≡ ax0 (modn) ⇔ x ≡ x0 (modn), the last step by Lemma 2.5(ii). □
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Example. Solve 15x ≡ 1 (mod 11). Here (15, 11) = 1 so there is a unique solution
modulo 11. We use Euclid’s Algorithm to find s, t as above (or, as the numbers are small,
just spot them!)
15 = 11 × 1 + 4
11 = 4 × 2 + 3
4 = 3 × 1 = 1
3 = 3 × 1 + 0,
so 1 = 4 − 3 = 4 − (11 − 4 × 2) = 3 × 4 − 11 = 3(15 − 11) − 11 = 3 × 15 − 4 × 11. Thus, the
solution is x ≡ 3 (mod 11).

Remark 2.8. How do we solve (can we solve?) a general congruence ax ≡ b (modn).
(i) Suppose (a,n) = 1. Use Euclid’s Algorithm as above to find a solution y for

ay ≡ 1 (modn). Then ax ≡ b ⇔ x ≡ by (modn). (Proof. If ax ≡ b then axy ≡ by so
x ≡ x(ay) ≡ by. Conversely, if x ≡ by then ax ≡ aby = (ay)b ≡ b.)

For example, solve 15x ≡ 4 (mod 11). By the example above, take y = 3, a solution
to 15y ≡ 1 (mod 11). The solutions are x ≡ 4 × 3 ≡ 1 (mod 11).

(ii) Suppose (a,n) = d > 1.
Now if d ̸ |b there is no solution; indeed, if x0 was a solution then ax0 = b + kn, and

d|ax0 − kn but d ̸ |b, a contradiction.
So suppose d|b (with d > 1). Now the solutions of ax ≡ b (modn) are exactly the

solutions of a
d
x ≡ b

d
(mod n

d
) (CHECK THIS!). Also, (a

d
, n
d
) = 1 (CHECK THIS TOO!).

So a
d
x ≡ b

d
(mod n

d
) has a unique solution mod n

d
, by case (i). This gives d solutions

modulo n.

Example 2.9. (i) Solve 40x ≡ 12 (mod 28). Now (40, 28) = 4, and 4|12, so the solutions
are the same as for 10x ≡ 3 (mod 7). As (10, 7) = 1, we use Euclid’s Algorithm to find
s, t with 10s + 7t = 1, namely s = −2, t = 3. So the solutions of 10y ≡ 1 (mod 7) are
y ≡ −2 ≡ 5 (mod 7), so the solutions of 10x ≡ 3 (mod 7) are x ≡ 3 × 5 ≡ 1 (mod 7).
(As the numbers are small, you could have just spotted this.) So, the solutions of 40x ≡
12 (mod 28), written modulo 28, are x ≡ 1, 8, 15, 22 (mod 28). (Note: you might have
been asked to find all solutions in the range 0, 1, . . . , 27; these would be 1, 8, 15, 22.)

(ii) Solve 40x ≡ 14 (mod 28). There are no solutions, as 4 = (40, 28) ̸ |14.
(iii) Solve 3x ≡ 6 (mod 7). Here (3, 7) = 1, and (−2)× 3 + 1 × 7 = 1. So the solutions

of 3y ≡ 1 (mod 7) are y ≡ −2 ≡ 5 (mod 7), and the solutions of 3x ≡ 6 (mod 7) are
x ≡ (−2)× 6 ≡ 2 (mod 7).

2.1. Three other theorems on congruences. In an equation like 4085x ≡ 20102 (mod 11),
we can replace 40 by 7, and 20 by 9, but we CANNOT just change the exponents modulo
11. For such equations, we often use Fermat’s Little Theorem.

Theorem 2.10 (Fermat’s Little Theorem). Let a be an integer and p a positive prime. Then
ap ≡ a (modp).

Proof. We first prove it for non-negative a. We use induction on a. For the case a = 0 it
just says 0p ≡ 0, obviously true. So assume it is true for a = k, and deduce that it holds
for a = k+1. Now, by the Binomial Theorem, (k+1)p = kp+

(
p
1

)
kp−1+

(
p
2

)
kp−2+ . . .+1p.

This is congruent modulo p to kp + 1, as p|
(
p
i

)
for all i with 1 ⩽ i ⩽ p− 1, by Sheet 1 Q4.

By induction hypothesis, kp ≡ k (modp), so (k + 1)p ≡ k + 1 (modp). So we have
proved the result for a = k+ 1, so by induction, it holds for all a ⩾ 0.
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Finally, suppose a < 0. If p is odd, then ap = −(−a)p ≡ −(−a) = a, and if p = 2, ap =
a2 ≡ −(−a)2 ≡ −(−a) = a, in both cases using the last paragraph for the congruence
step. □

Corollary 2.11. Let a be an integer, and p a prime with (a,p) = 1. Then ap−1 ≡ 1 (modp).

Proof. By Theorem 2.10, ap ≡ a (modp). Now we may cancel a as (a,p) = 1 – we here
use Lemma 2.5(ii). □

Example 2.12. We want to solve the congruence mentioned above, 4085x ≡ 20102 (mod 11).
As noted, this is the same as 785x ≡ 9102 (mod 11). Now by the last Corollary, as 11 is
prime and (11, 7) = (11, 9) = 1, 710 ≡ 1 and 910 ≡ 1 (mod 11). Also, 85 = 8 × 10 + 5 and
102 = 10 × 10 + 2, so the congruence is

(710)8 × 75x ≡ (910)10 × 92 (mod 11),

which is 18 × 75x ≡ 110 × 92. Now 75 = 72 × 72 × 7 ≡ 5 × 5 × 7 ≡ 3 × 7 ≡ 10 (mod 11),
and 92 = 81 ≡ 4 (mod 11). So we have 10x ≡ 4 (mod 11). Now (−1)× 10+ 1× 11 = 1,
so 10y ≡ 1 (mod 11) has solutions y ≡ −1 ≡ 10 (mod 11), so 10x ≡ 4 (mod 11)
has solutions x ≡ 40 ≡ 7 (mod 11). So the original congruence has solutions x ≡
7 (mod 11).

Example 2.13. For p = 13, we have 2 × 7 ≡ 1, 3 × 9 ≡ 1, 4 × 10 ≡ 1, 5 × 8 ≡ 1, 6 × 11 ≡ 1,
so 2 × 7 × 3 × 9 × 4 × 10 × 5 × 8 × 6 × 11 ≡ 15 = 1. So 12! ≡ 15 × 12 ≡ −1 (mod 13).

This is the idea of the proof for the following general example:

Lemma 2.14. Let p be a prime number and a be in the range 2, 3, . . . ,p− 2. Then the equation
ax ≡ 1 (modp) has the unique solution in the same range and, moreover, a ̸= x.

Proof. Consider the p − 3 numbers 2, 3, . . . ,p − 2. If a is one of these numbers, then, by
Lemma 2.7, there is a unique number x in the range 0, 1, . . . ,p− 1 with ax ≡ 1 (modp).
Also, x is in the range 2, 3, . . . ,p − 2. For if x = 0 we get a × 0 = 0 ̸≡ 1; if x = 1 we get
ax ≡ a ≡ 1 modp so a = 1; and if x = p − 1 then 1 ≡ ax = a(p − 1) ≡ −a, so a ≡ −1 so
a = p− 1; in each case the assumptions on a are contradicted.

Also, x ̸= a, for otherwise ax = a2 ≡, so p|a2 − 1 = (a + 1)(a − 1). Hence, as p
is prime, p|a + 1 or p|a − 1, so a ≡ −1 or a ≡ 1 (modp). These are impossible as
2 ⩽ a ⩽ p− 2. □

As an immediate corollary we obtain:

Theorem 2.15 (Wilson’s Theorem). Let p be a positive prime. Then (p− 1)! ≡ −1 (modp).

Proof. If p = 2 or p = 3 it is clear by calculation, so assume p > 3. By Lemma 2.14, we
can pair off the numbers in the range 2, . . . ,p−2, so the product of each pair is congruent
to 1 modulo p. Thus, (p− 1)! ≡ 1 × . . . × 1 × (p− 1) ≡ −1 (modp). □

Theorem 2.16 (Chinese Remainder Theorem). If n1,n2, . . . ,nk are pairwise coprime integers
and a1, . . . ,ak ∈ Z, then the simultaneous congruences
x ≡ a1 (modn1)
x ≡ a2 (modn2)
.
.
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.
x ≡ ak (modnk)
have a unique solution modulo n1n2...nk.

History. This is the problem of Sun Tsu (AD100?). Suppose we have an unknown
number of objects. When counted in threes, 2 are left over. When counted in fives, 3 are
left over, and when counted in sevens, 2 are left over. How many objects are there? This
is equivalent to solving the simultaneous congruences
x ≡ 2 (mod 3)
x ≡ 3 (mod 5)
x ≡ 2 (mod 7).

Proof of Theorem 2.16. We use induction on k – the result is clearly true for k = 1. Suppose
k = 2, and consider (with n1,n2) = 1) the congruences
x ≡ a1 (modn1)
x ≡ a2 (modn2) (∗).

By Euclid’s Algorithm, there are s1, s2 ∈ Z such that s1n1 + s2n2 = 1. Define

x0 = a1s2n2 + a2s1n1.

Then x0 is a solution, for (using s2n2 = 1 − s1n1) we find

x0 = a1s2n2 + a2s1n1 = a1(1 − s1n1) + a2s1n1 ≡ a1 (modn1),

and, as s1n1 = 1 − s2n2,

x0 = a1s2n2 + a2s1n1 = a1s2n2 + a2(1 − s2n2) ≡ a2 (modn2).

Now x is a solution of the simultaneous congruences (∗)
⇔ x ≡ x0 (modn1) and x ≡ x0 (modn2)
⇔ n1 and n2 divide x− x0
⇔ x− x0 = n1q for some q ∈ Z and n2|n1q
⇔ x− x0 = n1q for some q ∈ Z and n2|nq (by Problem Sheet 2, Q1)
⇔ n1n2|x− x0
⇔ x ≡ x0 (modn1n2).
This gives the result for k = 2.

Now assume the result for a system of k− 1 congruences, where k− 1 ⩾ 2, and prove
it for k congruences (e.g. the system in the statement of the theorem). By the k = 2 case,
we may replace the first two congruences by the single congruence

x ≡ x0 (modn1n2).

Now n1n2 is coprime to n3, . . . ,nk, so the result holds by induction on k.
□

Example 2.17. Find all solutions to the simultaneous congruences
x ≡ 1 (mod 3)
x ≡ 5 (mod 7)
x ≡ 2 (mod 11).

To solve the first two, find s1, s2 with 3s1 + 7s2 = 1 – e.g. put s1 = −2 and s2 = 1. Then
x0 = 1 · 7.1 + 5 · 3.(−2) = −23 ≡ 19 (mod 21) is the general solution. (Check it!)
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Now solve
x ≡ 19 (mod 21)
x ≡ 2 (mod 11).
Find t1, t2 with 21t1 + 11t2 = 1. Again, rather than use Euclid’s Algorithm you can just
spot t1 = −1, t2 = 2. So x1 = 19 · 11 · 2 + 2 · 21 · (−1) = 418 − 42 = 376 is a solution.
Our general solution is modulo 11× 21 = 231, and 376 ≡ 145 (mod 231), so the general
solution is x ≡ 145 (mod 231). Check this works for all three equations.

2.2. Public Key Encryption. We consider an application of Fermat’s Little Theorem (and
Euclid’s Algorithm) to cryptography.

Traditionally, secret messages are sent as follows. Alice wants to send a message m
(the plaintext) to Bob. It is assumed that m is already a sequence of digits, obtained by
some trivial way of converting letters to numbers. Using some encrypting method, she
turns m into a ciphertext. This is sent to Bob, who decrypts it. In traditional methods,
both Alice and Bob know both the encrypting and decrypting methods. This is potentially
insecure.

Public key cryptography is based on the idea that certain mathematical operations
are computationally feasible, but the inverse operation may be hopelessly unfeasible. In
particular, suppose p,q are huge prime numbers (e.g. with 500 digits) and n = pq.
Recovering this factorisation from n may be unfeasible.

RSA ciphers are named after Rivest, Shamir and Adleman, who published a key paper
in 1978. It turned out that the same method had been worked out in GCHQ, Cheltenham
several years earlier, but kept secret.

Fix two huge prime numbers p,q (e.g. 500 digits). It may be hard to find such primes
(or to determine that they are prime), but it is feasible to produce numbers which are
prime with a very high degree of probability. Put n = pq, k = (p−1)(q−1). Now choose
large d with (k,d) = 1 – for example choose d to be a prime greater than p,q.

The person receiving messages, namely Bob, knows n,p,q,k,d. He publishes just n,d.
Then anyone can easily send Bob a message, and can send it publicly, but only Bob can
decode it in reasonable time.

The message (the plaintext) will be an integer m with 1 < m < n. (In practice, it may
be a sequence m1,m2, ...,mt of such numbers.) To encode m, find c with 0 ⩽ c < n with
md ≡ c (modn). It is not so hard for Alice to find such c – we’ve done exercises like
that.

To decode, Bob uses Euclid’s Algorithm to find integers x > 0 and y < 0 such that
dx + ky = 1 – these exist as (d,k) = 1. This calculation is done by Bob just once – he
uses the result for all messages he receives. Note that no-one else knows k, so no-one
else could find such x,y – as they cannot in reasonable time recover p,q from n,d.

Lemma 2.18. m ≡ cx (modn).

Thus, to decode the message, Bob finds (reasonably easily) c ′ with 0 ⩽ c ′ < n such
that cx ≡ c ′ (modn), and knows that m = c ′.

Proof of Lemma 2.18. Since n = pq with p,q prime, if m ≡ cx (modp) and m ≡ cx (modq),
then p|m− cx and q|m− cx, so pq|m− cx, so m ≡ cx (modn).

To see m ≡ cx (modp), note

cx ≡ (md)x = mdx = m1−ky = m.m−(ky) = m.m−(p−1)(q−1)y = m.m(p−1)i (modn),
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where i = −(q− 1)y > 0. Hence as p|n,

cx ≡ m.m(p−1)i (modp).

Now either p|m, or (m,p) = 1, and in the latter case mp−1 ≡ 1 (modp) by the Corollary
to Fermat’s Little Theorem (Corollary 2.11). Either way, we find cx ≡ m (modp).

Likewise cx ≡ m (modq), and so cx ≡ m (modn).
□

How do we obtain the plaintext from message in English? We could use e.g. a table
converting letters, punctuation, and numerals into two digit numbers: for example A =
00,B = 01, . . . ,M = 12, . . . ,Z = 25, comma = 26, full stop = 27, question mark = 28,
0 = 29, 1 = 30, . . . , 9 = 38, exclamation mark = 39, with 99 indicating a space between
words. (I’ve taken this from D.M. Burton Elementary Number Theory, p. 148.)

As an example with ridiculously small numbers try p = 11, q = 13, so n = 143 and
k = (p − 1)(q − 1) = 120. Choose d = 7 – again, far too small, but at least coprime to k.
Remember, the recipient Bob knows all these numbers, but only publishes 143, and 7. (Of
course, as 143 is so small, it it trivial for everyone to work out p,q,k, but this wouldn’t be
true for a large such n.) Bob also finds x,y ∈ Z with dx+ky = 1 and with y < 0. We find
120 = 7 × 17 + 1, so (−17) · 7 + 1 · 120 = 1, but unfortunately 1 > 0. However, we use the
trick from Problem Sheet 1, Q7(b) to get y < 0. That is, (−17)7+1·120+120·7−120·7 = 1,
so 7(120 − 17) + 120(1 − 7) = 1, so 7 · 103 + 120 · (−6) = 1, that is, x = 103 and y = −6.

Alice wishes to encode the word SAUSAGE. Using the routine in the last paragraph,
this gives plaintext 18002018000604. She encodes this two digits at a time (but she might
use longer blocks than two, but each block should as a number be at most n)). The initial
18 is encoded by the remainder of 187 (mod 143). Now 182 = 324 ≡ 38 (mod 143), so
184 ≡ 382 = 1444 ≡ 14 (mod 143), so 186 = 182 × 184 ≡ 38 × 14 = 532 ≡ 103 (mod 143),
and 187 = 103 × 18 = 1854 ≡ 138 (mod 143). So the first three digits of the ciphertext are
138. Since (00)7 = 0, the next three digits are 000. (Note that as 143 has three digits, we
should expect our blocks of ciphertext to have three digits.)

However, a better and more instructive approach is to use the Chinese Remainder
Theorem and Fermat’s Little Theorem as follows. We have 143 = 11 × 13. To find 187

modulo 143, we first find c1, c2 such that
187 ≡ c1 (mod 11) and
187 ≡ c2 (mod 13). In fact, the exponent 7 is here so small that Fermat’s Little Theorem
plays no role (with larger d, as in the lecture notes, it does). Reducing mod 11 and 13,
we solve
77 ≡ c1 (mod 11)
57 ≡ c2 (mod 13).
Now 77 = (72)3 ·7 = 493 ·7 ≡ 53 ·7 = 25·35 ≡ 3·2 = 6 and 57 = (52)3 ·5 ≡ (−1)3 ·5 = −5 ≡ 8.
So c1 = 6 and c2 = 8. So our ciphertext will be x ∈ {0, . . . , 142} with
x ≡ 6 (mod 11)
x ≡ 8 (mod 13). (For such x will be congruent to 187 modulo 11 and modulo 13, and
hence modulo 11 × 13 = 143.)

We do this by the Chinese Remainder Theorem (Theorem 2.16). First find s, t with
11s+13t = 1 – using Euclid’s Algorithm or guesswork we get 11 ·6+13 · (−5) = 1. Thus,
by the Chinese Remainder Theorem, x ≡ 6 · (−5) · 13 + 8 · 6.11 = −390 + 528 = 138 (as
before).
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The advantage of this way is we can use the same values s, t for other calculations,
and it is easier to do by hand. We continue: as before, clearly 007 ≡ 0 (mod 143), so
plaintext 00 gives ciphertext 000.

We next find 207 (mod 143). Now modulo 11, 207 ≡ 97 = (92)3 · 9 = 43 · 9 = 16 · 36 ≡
5 · 3 = 15 ≡ 4. And modulo 13, 207 ≡ 77 = (72)3 · 7 ≡ 53 · 7 = 25 · 35 ≡ (−1)(−4) = 4. So
solve
x ≡ 4 (mod 11)
x ≡ 4 (mod 13)
by Chinese Remainder Theoirem as above to get x ≡ 4·13·(−5)+4·11·6 = −260+264 = 4,
so plaintext 20 gives ciphertext 004.

Repeating the above 18 gives ciphertext 138, and 00 gives ciphertext 000. We find
(06)7 (mod 143). Here bare hands quickly gives 64 = 1296 ≡ 9 (mod 143), and 63 =
216 ≡ 73 (mod 143), so 67 ≡ 9 × 73 = 657 ≡ 85, so the ciphertext for 06 is 085. Likewise
(04)7 = 256 · 43 ≡ 113 · 43 = 452 · 16 ≡ 23 · 16 = 368 ≡ 82, so plaintext 04 gives
ciphertext 082. If I’ve made no calculation errors (!) the overall message gets encoded as
138000004138000085082.

To decode, Bob will treat the ciphertext as having blocks of length 3, each correspond-
ing to a letter, or number, or punctuation, or space. He first finds the remainder of (138)x,
that is (138)103, modulo 143. This should be 18. Let’s check it, again using Fermat’s Little
Theorem and the Chinese Remainder Theorem. Modulo 11, 138103 ≡ 6103 = (610)10.63 ≡
1 · 63 = 36 · 6 ≡ 3 · 6 ≡ 7.
And modulo 13, 138103 ≡ 8103 = (812)8 · 87 ≡ 1 · 87 = 643 · 8 ≡ (−1)3 · 8 = 5.
Thus, the plaintext x satisfies x ≡ 7 (mod 11) and x ≡ 5 (mod 13), so by the Chinese
Remainder Theorem, x ≡ 7 · (−5) · 13 + 5 · 6.11 = −455 + 330 = −125 ≡ 18 (mod 143), as
required.

He then finds the remainder of (000)103 modulo 143, which of course is 00. Continuing,
he recovers the plaintext from the ciphertext.

One further comment: we have used Fermat’s Little Theorem and the Chinese Re-
mainder Theorem to save work when finding powers modulo n. Of course, when Alice
finds the ciphertext (so when calculating md (modn)), she can’t actually do this, as she
doesn’t know p and q! Bob, however, can use this method when decoding. Everything is
done by computer anyway, and the assumption is that finding powers modulo n doesn’t
take a computer too long.

3. Equivalence relations

Definition 3.1. Let X be a set. A relation R on X is a subset of X × X, so is a set of pairs
from X. If x,y ∈ X, write xRy if (x,y) ∈ R.

We say that R is an equivalence relation on X if it satisfies the following three properties.
Reflexive: xRx for all x ∈ X;
Symmetric: if xRy then yRx.
Transitive: if xRy and yRz then xRz.

Example 3.2. (1) (1) The relation ⩽ on Z is reflexive: x ⩽ x holds for all x. It is
transitive: if x ⩽ y and y ⩽ z then x ⩽ z. It is not symmetric, as 2 ⩽ 3 but 3 ̸⩽ 2.
So it is not an equivalence relation. The relation < on Z is transitive, but not
reflexive or symmetric.
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(2) Consider the relation D on Z defined by xDy if and only if |x − y| ⩽ 1. This is
reflexive and symmetric, but not transitive: 1D2 and 2D3, but not 1D3. So D is
not an equivalence relation.

(3) The relation S on C defined by putting xSy if x4 = y4 is an equivalence relation.
Here 1S1 and 1S(−1) and 1Si and 1S(−i).

Lemma 3.3. Conguence modulo n is an equivalence relation on Z.

Proof. We did it – see Lemma 2.2. □

Definition 3.4. If R is an equivalence relation on X, and x ∈ X, define

x̂ := {y ∈ X : xRy}.

An equivalence class for R is a subset of X of the form x̂ for some x. If R is an equivalence
relation on X, denote by X/R the set of equivalence classes on X.

For example, for the relation on Z of congruence modulo 4, we have

−̂1 = {...,−5,−1, 3, 7, 11, ...}

0̂ = {...,−4, 0, 4, 8, ...}

1̂ = {...,−3, 1, 5, 9, ...}

2̂ = {...,−6,−2, 2, 6, ...}

3̂ = {...,−5,−1, 3, 7, ...}

4̂ = {...,−4, 0, 4, 8, ...}

5̂ = {...,−3, 1, 5, 9, ...}.
So there are exactly four different equivalence classes,

0̂ = {...,−4, 0, 4, 8, ...}

1̂ = {...,−3, 1, 5, 9, ...}

2̂ = {...,−6,−2, 2, 6, ...}

3̂ = {...,−5,−1, 3, 7, ...}.

Definition 3.5. A partition of a set X is a collection {X1,X2, . . .} of subsets of X such that
(a) each Xi is non-empty,
(b) each element of X lies in exactly one of the Xi (so they are mutually exclusive, and

exhaust X).

Theorem 3.6. Let X be a set.
(i) If R is an equivalence relation on X, then the set of equivalence classes of R is a partition of

X.
(ii) Any partition of X is the set of equivalence classes of some equivalence relation on X.

Examples. For congruence modulo 4, view Z as split into the four equivalence classes.
For the relation S on C (where xSy means x4 = y4), view C as split into equivalence
classes {0} (a class of size 1) and classes of size 4 of form {a,−a, ia,−ia}.
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Proof of Theorem 3.6. (i) If x ∈ X then x ∈ x̂ (as R is reflexive), so each equivalence class
is non-empty and their union is X. We must now show that distinct equivalence classes
have empty intersection. In fact, we note

(1) if xRy then x̂ = ŷ, and
(2) if not xRy, then x̂ ∩ ŷ = ∅.

Together, these suffice.
To see (1): Suppose xRy: if z ∈ ŷ then yRz, so xRz by transitivity, so z ∈ x̂. Thus, ŷ ⊆ x̂.

By symmetry, also yRx, so the same argument gives x̂ ⊆ ŷ, so together these give x̂ = ŷ.
(2) We prove the ‘contrapositive’, so suppose x̂ ∩ ŷ ̸= ∅, so there is some z ∈ x̂ ∩ ŷ.

Then xRz and yRz, so zRy (symmetry), and so xRy (symmetry).
(ii) Given a partition of X, define a relation R on X, putting xRy if and only if x,y belong

to the same set in the partition. Now check R is reflexive, symmetric, and transitive.
□

Notation. Let n be a positive integer. We denote by Zn the set of equivalence classes
in Z for the equivalence relation of congruence modulo n.

Thus, x ≡ y (modn) if and only if the elements x̂, ŷ of Zn are equal. As any integer
is congruent to exactly one of 0, 1, 2, . . . ,n− 1, the set Zn has exactly n elements, namely
Zn = {0̂, 1̂, . . . , n̂− 1}.

For any integer x, x̂ is equal to one of 0̂, 1̂, . . . , n̂− 1. For example, for n = 4, we have
Z4 = {0̂, 1̂, 2̂, 3̂}, and 4̂ = 0̂, 5̂ = 1̂ = −̂3, etc.

Define operations of addition and multiplication on Zn by:
x̂+ ŷ = x̂+ y
x̂× ŷ = x̂y.
e.g., for n = 4, 2̂ + 3̂ = 1̂, 2̂ × 3̂ = ˆ2 × 3 = 6̂ = 2̂, 2̂ × 2̂ = 0̂, etc.
Thus, Zn is a ‘number system’.

Remark 3.7. (i) It is not obvious that +,× on Zn are ‘well-defined’. We can write x̂ in
different ways, e.g. 4̂ = 1̂0 in Z6. But the definition of +, x̂ + ŷ = x̂+ y, appeared to
depend on how we write x̂.

For example, in Z6, 4̂+ 5̂ = 9̂ = 3̂, and also 1̂0+−̂1 = 9̂ = 3̂, so we get the same answer.
Likewise, 4̂ × 2̂ = 8̂ = 2̂, and 1̂6 × −̂4 = −̂64 = 2̂.

Does this work out in general? Well, (working in Zn) if x̂ = x̂ ′ and ŷ = ŷ ′, then
x ≡ x ′ (modn) and y ≡ y ′ (modn), so by Lemma 2.4(i), x + y ≡ x ′ + y ′ (modn),
and xy ≡ x ′y ′ (modn), so x̂+ y = ˆx ′ + y ′, and x̂y = x̂ ′y ′, as needed.

(ii) Allenby writes ⊕ for +, and ⊙ for ×, in Zn. So he defines x̂ ⊕ ŷ, x̂ ⊙ ŷ. This is
useful to remind you that it is not the usual +,×. I will not do this. When you see +,
think: is this usual addition, or addition in Zn, or vector or matrix addition, or what?

(iii) The theory of congruences which we have developed can be viewed as a theory
about equations in Zn. For example,

(a) to solve 3x ≡ 1 (mod 5) for x ∈ Z is equivalent to solving 3̂y = 1̂ in Z5. The solution
for the latter is y = 2̂, so the original congruence had general solution x ≡ 2 (mod 5).

The equation 40x ≡ 12 (mod 28) (Example 2.9(i)) had general solution x ≡ 1, 8, 15, 22 (mod 28).
In Z28 this congruence becomes the equation 1̂2x = 1̂2, which has the four solutions
x = 1̂, 8̂, 1̂5, 2̂2.
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(b) Fermat’s Little Theorem (Theorem 2.10) says: if p is prime then yp = y for all
y ∈ Zp.

(c) Wilson’s Theorem (Theorem 2.15) says that if p is prime then the product of the
non-zero elements of Zp is −̂1.

4. Rings

We have +,× on Z (or on Q, R or C) and also (with a new definition), we have these
operations on the finite set Zn. Each gives a rule for obtaining a third element from two
elements.

Definition 4.1. Given a set X, a function which associates to each pair of elements of X
(equal or distinct) another element of X is called a binary operation on X.

For example, if X = R, then +,× are binary operations, as are f1(x,y) = 2x+ 3y and
f2(x,y) = x2 + Cosy. But
f3(x,y) = (x+ y)

1
2 is not a binary operation on R, since f3(0,−1) ̸∈ R.

We are only interested in binary operations with (unlike f1, f2 above) ‘nice’ properties,
i.e. satisfying certain axioms.

Definition 4.2. A ring is a set R with two binary operations +,× satisfying the following
axioms.

(A1) (Associativity of +): a+ (b+ c) = (a+ b) + c for all a,b, c ∈ R;
(A2) (Commutativity of +): a+ b = b+ a for all a,b ∈ R.
(A3) (Existence of additive identity): There is an element of R, denoted by 0 or 0R,

such that a+ 0 = a for all a ∈ R.
(A4) (Existence of additive inverse): For every a ∈ R there is an element −a ∈ R with

a+ (−a) = 0.
(So far, the axioms say that (R,+) is an ‘abelian group).)
(M1) (Associativity of multiplication): a× (b× c) = (a× b)× c for all a,b, c ∈ R.
(D) (Distributivity): a× (b+ c) = a× b+ a× c and (a+ b)× c = a× c+ b× c for all

a,b, c ∈ R.

Note: We write a.b or ab for a× b. We write a− b for a+ (−b).

Example 4.3. (1) Z, Q, R, C are all rings (with the usual operations).
(2) Zn is a ring. The zero is 0Zn

= 0̂. The additive inverse of a = x̂ is −a = −̂x. The
axioms otherwise follow from the corresponding axioms for Z, e.g.

x̂+ (ŷ+ ẑ) = x̂+ ŷ+ z = ̂x+ (y+ z) = ̂(x+ y) + z = x̂+ y+ ẑ = (x̂+ ŷ) + ẑ.

(3) The set M2(Q) of all 2×2 matrices with entries in Q is a ring under matrix addition
and multiplication. In fact, if R is any ring and n is any positive integer, the set Mn(R)
of all n× n matrices with entries in R is a ring.

(4) If R,S are rings, then their Cartesian product R× S = {(r, s) : r ∈ R, s ∈ S} is a ring.
The ring operations are given by:

(r, s) + (r ′, s ′) = (r+ r ′, s+ s ′)

(r, s) · (r ′, s ′) = (rr ′, ss ′).
The zero is (0, 0) and −(r, s) is (−r,−s).
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We shall prove some elementary facts from the axioms for rings. Note that this saves
us work: because these facts follow from the axioms, they are true for all rings, and we
don’t have to check them separately in each ring.

Also, by seeing properties that are common to different rings, we gain insights about
them.

Lemma 4.4. Let R be a ring, and a,b, c ∈ R.
(i) (a− b) + b = a.
(ii) If a+ c = b+ c then a = b (cancellation law for +).
(iii) a.0 = 0.a = 0 for all a.
(iv) (−a)b = a(−b) = −(ab).
(v) −(a+ b) = (−a) + (−b).
(vi) −(−a) = a.
(vii) The additive inverse of a is unique.

Proof. (i) (a− b) + b = (a+ (−b)) + b =A1 a+ ((−b) + b) =A4 a+ 0 =A3 a.
(ii) a =A3 a + 0 =A4 a + (c + (−c)) =A1 (a + c) + (−c) = (b + c) + (−c) =A1 b + (c +

(−c)) =A4 b+ 0 =A3 b.
(iii) a.0 + a.0 =D a(0 + 0) =A3 a.0 =A3 a.0 + 0 =A2 0 + a.0, so by (ii), a.0 = 0.
(iv) ab+(−a)b =D (a−a)b = 0b =(iii) 0 = ab−(ab) so by cancellation (ii) and (A2),

(−a)b = −(ab). Similarly a(−b) = −(ab).
(v) a+ b+ (−(a+ b)) = 0 = a+ b+ (−a) + (−b). Now cancel.
(vi) (−a) + (−(−a)) = 0 = (−a) + a. Now cancel.
(vii) If a+ (−a) = a+ b = 0, then b = −a by cancellation. □

Definition 4.5. (i) A ring R is commutative if ab = ba for all a,b ∈ R. So Z and Zn are
commutative, but M2(R) is not (matrix multiplication is not commutative).

(ii) A ring R has a 1 if there is a multiplicative identity, that is, an element in R denoted
1 or 1R with a.1 = 1.a = a for all a ∈ R, and satisfying 1 ̸= 0.

For example, Z has a 1, and Zn has a 1, namely 1̂. The ring 2Z of even integers does
not have a 1. The ring 2̂Z14 = {0̂, 2̂, 4̂, 6̂, 8̂, 1̂0, 1̂2} (with operations modulo 14) has a one,
namely 8̂.

Nearly all rings in this module are commutative rings with a 1.
(iii) Let R be a ring with a 1. An element x ∈ R is invertible or is a unit if there is an

element x−1 ∈ R with xx−1 = x−1x = 1.
Note: A matrix A in M2(R) is a unit if and only if detA ̸= 0.
(iv) If the ring R is commutative, then an element a ∈ R is a zero-divisor of R if a ̸= 0

and there is b ∈ R with b ̸= 0 such that ab = 0.
(v) A ring is an integral domain if it is commutative, has a 1, and if it has no zero-

divisors.
So, Z, Q and Z5 are integral domains, but Z6 is not, as 2̂ × 3̂ = 0̂.
(vi) A ring R is a field if it is commutative, has a 1, and every non-zero element of R is

invertible.
Thus, Q, R and C are fields, but Z is not a field, as 2 is not invertible ( 1

2 ̸∈ Z).

Lemma 4.6. Every field F is an integral domain.

Proof. We must check that there are no zero-divisors. Suppose a,b ∈ F with ab = 0 and
a ̸= 0. Then a−1 exists, so b = 1.b = (a−1a)b = a−1(ab) = a−10 = 0, so b = 0. □
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Theorem 4.7. Every finite integral domain is a field.

Proof. Let R be a finite integral domain, say R = {r1, . . . , rn}. Let a be a non-zero element
of R, so a is one of the ri. Consider the elements ar1,ar2, . . . ,arn. These are all different,
for if ari = arj then ari − arj = 0, so a(ri − rj) = 0, so ri − rj = 0 (as a ̸= 0), so ri = rj.

This gives n distinct elements of R, which has size n, so every element of R occurs in
this list. In particular, the element 1 occurs in the list, that is, arl = 1 for some l. Then rl
is the multiplicative inverse of a. So R is a field. □

Theorem 4.8. Let n ∈ Z.
(i) â is a unit of Zn if and only if (a,n) = 1.
(ii) Zn is a field if and only if n is a prime (of Z).

Proof. (i) â has an inverse if and only if the congruence ax ≡ 1 (modn) has a solution
(for the inverse will then be x̂). Thus, the result follows from Remark 2.8. (Explicitly:
suppose â is a unit, say âb̂ = 1̂. Then ab = 1 + nk for some k. If (a,n) = d then
d|ab − nk = 1, so d = 1. Conversely, suppose (a,n) = 1. Then by Euclid’s Algorithm
there are x,y ∈ Z with ax+ ny = 1, and then âx̂ = 1̂.)

(ii) Clearly, Zn is a commutative ring with a 1. So Zn is a field
⇔ â = 0 or â is a unit for all a ∈ Z
⇔ n|a or (a,n) = 1 for all a ∈ Z
⇔ n is prime. □

4.1. Subrings. Recall from linear algebra the notion of subspace of Rn (or of any vector
space). This is just a non-empty subset of Rn which inherits the algebraic structure of
Rn (is a vector space). We look at similar ideas for rings.

Definition 4.9. Let R be a ring, and S a non-empty subset of R. Then S is a subring of R if
(i) S is closed under +,×; that is, a,b ∈ S ⇒ a+ b,ab ∈ S.
(ii) S is a ring with the same operations.

There is a similar definition of ‘subfield’ (just replace the word ‘ring’ by ‘field’ every-
where).

Remark 4.10. If S is a subring of R, then S and R have the same 0, i.e., 0S = 0R. For
0R + a = a+ 0R = a for all a ∈ R, and
0S + b = b + 0S = b for all b ∈ S. Putting a = 0S = b, we find 0S + 0R = 0S and
0S + 0S = 0S, so 0S + 0R = 0S + 0S, so 0R = 0S by cancellation.

Likewise, if a ∈ R then (−a)S = (−a)R (for if b is an additive inverse of a in S, then
a+ b = 0 and a+ (−a) = 0, so b = −a.

Lemma 4.11 (Subring Test). If R is a ring, and S is a subset of R, then S is a subring of R if and
only if all the following hold.

(i) if a,b ∈ S then a+ b ∈ S and ab ∈ S,
(ii) 0 ∈ S,
(iii) if a ∈ S then −a ∈ S.

Note: It is a lot easier to check conditions (i)-(iii) than all the ring axioms. There is a
similar way of checking a subset of a vector space is a subspace.
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Proof. If (i)–(iii) hold, then by (i), +,× are binary operations on S. Condition (ii) gives
the additive identity, and (iii) gives additive inverses. The other axioms for rings are
inherited from R. So S is a subring of R.

Conversely, if S is a subring then (i) holds as +,× are binary operations on S. Also, S
must have an additive identity, and by Remark 4.10, this is 0R. Every a ∈ S must have an
additive inverse, and by 4.10 again, this is −a. □

Note: Any subring (with a 1) of a field is an integral domain.

Example 4.12. (i) Z is a subring of the fields Q, R and C.
(ii) 2Z is a subring of Z (but has no 1).
(iii) Z3 is NOT a subring of Z, as its set of elements is not a subset of Z.
(iv) The set S of even integers modulo 14 is a subring of R = Z14. But note that 1R = 1̂,

whilst 1S = 8̂, as 8̂ × 2̂a = 1̂6a = 2̂a. So the multiplicative version of Remark 4.10 can
fail.

The next example will be very important later.

Example 4.13. Let d ∈ Z, d not a square. Define Z[
√
d] := {a + b

√
d : a,b ∈ Z}. Then

Z[
√
d] is a subring of the field C, and contains 1, so is an integral domain. Also, Z is a

subring of Z[
√
d]. In the special case when d = −1, Z[

√
d] = Z[i] = {a+ bi : a,b ∈ Z}, the

ring of Gaussian integers.

4.2. Polynomial rings. If R is a ring, let R[X] be the collection of all polynomials in X with
coefficients in R, i.e., R[X] is the set of all expressions of the form a0+a1X+a2X

2+. . .anX
n

where a0, . . . ,an ∈ R. Then R[X] is the polynomial ring in variable X with coefficients in R
(or ‘over R’).

So 2 + 3X2 + 5X4 ∈ Z[X], and 2 + 3X2 + 1
2X

4 ∈ Q[X] but is not in Z[X].
We use the usual rules for addition and multiplication: for example,

(2 + 3X2 + X3) + (1 + 2X2 + X4) = 3 + 5X2 + X3 + X4, and

(2 + 3X2 + X3)(1 + 2X2) = 2 + 7X2 + X3 + 6X4 + 2X5.

Formally, if f(X) = Σn
i=0aiX

i and g(X) = Σn
i=0biX

i, then f(X)+g(X) = Σn
i=0ciX

i where
ci = ai + bi for each i, and f(X)× g(X) = Σ2n

i=0diX
i, where, for each i, di = Σi

j=0ajbi−j.
In the notation, we often omit terms for which the coefficient is 0. If the coefficient of

a power of X is 1 we omit the coefficient. Thus 3 + X3 denotes 3 + 0.X+ 0.X2 + 1.X3.
Two polynomials are equal if the corresponding coefficients are equal.
The degree of f(X) is the largest exponent of X with non-zero coefficient – for example,

2 + 3X2 + 1
2X

17 has degree 17, 3 + X has degree 1, and 3 has degree 0. We say the corre-
sponding term is the leading term – so the leading terms of the above three polynomials
are respectively 1

2X
17, X, and 3. The polynomial f(X) is monic if the coefficient of the

leading term is 1.

Remark 4.14. (i) If R has a 1, then so does R[X] (namely, the constant 1).
(ii) R is a subring of R[X] (identify the element r ∈ R with the constant polynomial

r.X0).
(iii) If S is a subring of R, then S[X] is a subring of R[X].
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Lemma 4.15. (i) If R is an integral domain, so is R[X].
(ii) If F is a field, then the units of F[X] are the non-zero constant polynomials.

Proof. Suppose that R is an integral domain. We must show that R[X] has no zero-
divisors, so let f(X),g(X) be non-zero elements of R[X], say

f(X) = a0 + a1X+ . . . + amXm,

g(X) = b0 + b1X+ . . . + bnX
n with am,bn ̸= 0.

Then f(X)g(X) = Σm+n
i=0 ciX

i, where, in particular, cm+n = ambn. As R is an integral
domain, cm+n ̸= 0, so f(X)g(X) ̸= 0, as required.

(ii) Suppose in (i) that f(X)g(X) = 1. Since 1 has degree 0, this forces that f(X)g(X) = 0,
that is, m + n = 0, so m = n = 0. Thus f(X) = a0 and g(X) = 0, so they are constant
polynomials.

Conversely, if f(X) = a is a non-zero constant polynomial, then a ∈ F, and as F is a
field there is b ∈ F with ab = 1, and then the polynomial b is an inverse of f(X) in F[X]. □

5. Ideals

For the rest of the module, all rings will be assumed to be commutative, with a 1.

Definition 5.1. Let I be a non-empty subset of R. Then I is an ideal of R if
(i) if a,b ∈ I then a+ b,−a ∈ I, and
(ii) if a ∈ I and r ∈ R then ar ∈ I.

Note. (i) Every ideal of R is a subring of R. Apply the Subring Test Lemma 4.11, noting
that as I ̸= ∅, there is a ∈ I, so by (ii) of Definition 5.1, a.0 = 0 ∈ I.

(ii) However, not every subring is an ideal. The definition of ‘ideal’ is stronger, for in
(ii) above, we allow r to be any element of R, not just any element of I.

Example 5.2. (1) If R is a ring, then {0R} and R are ideals of R.
(2) Let d ∈ Z and [d] := {dn : n ∈ Z} (the set of all multiples of d). Then [d] is an ideal

of Z. For example, [2] is the ideal of all even integers.
(3) Let f ∈ Z[X] (the ring of polynomials over X). Then [f] := {fg : g ∈ Z[X]} is an ideal

of Z[X].
More generally,
(4) If R is any commutative ring and a ∈ R, then [a] := {ar : r ∈ R} is an ideal of R. It

is called the principal ideal generated by a.
Even more generally,
(5) Suppose R is a commutative ring, and a1, . . . ,am ∈ R. Consider ideals containing

a1, . . . ,am. Any such ideal contains all elements of the form r1a1 + . . . + rmam (where
ri ∈ R). Conversely, {r1a1 + . . . + rmam} is an ideal of R. So it is the smallest ideal of R
containing a1, . . . ,am, and is denoted [a1, . . . ,am].

(6) Let R = Z[X] and

I = [2,X] = {2f1 + Xf2 : f1, f2 ∈ Z[X]}.
Every element of I has even constant term, and conversely, any polynomial with even
constant term has the form

2a0 + a1X+ . . . + anX
n = 2.a0 + X(a1 + a2X+ . . .anX

n−1),

so lies in I.
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However, I is not a principal ideal. For suppose [2,X] = [f]. Then as 2 ∈ [f], f is a
constant polynomial, and as X ∈ [f], X is a multiple of f, so f = ±1. But 1 ̸∈ [2,X].

Theorem 5.3. Every ideal in Z is principal.

Proof. Let I be an ideal of Z. If I = {0}, then I = [0] so is principal. So we may assume
I ̸= {0}, so I contains a non-zero integer a, so I contains −a = (−1)×a. Now one of a,−a
is positive, so I contains a (strictly) positive integer. Let d be the smallest positive integer
in I.

Claim. I = [d] (which by definition is {dn : n ∈ Z}).

Proof of Claim. Clearly, [d] ⊆ I.
To show I ⊆ [d], suppose e ∈ I. By the Division Algorithm (Theorem 1.14), we have

e = md+ r for some m,d ∈ Z with 0 ⩽ r < d. □

Now e ∈ I, and md ∈ I, so r = e −md ∈ I. By minimality of d, r = 0, so e = md ∈
[d]. □

Is there a similar result for some other rings? Let’s try polynomial rings. We know
that Theorem 5.3 cannot work for Z[X], by Example 5.2 (6). What about Q[X]?

We first need a version of the Division Algorithm for polynomials.

Definition 5.4. The degree of a polynomial f(X), denoted deg f(X), is the largest exponent
e such that Xe has non-zero coefficient.

For example, 1 + 2X+ 5X2 − X4 has degree 4.

Theorem 5.5 (Division Algorithm for Polynomials). Let F be a field (e.g. Q), and let
f(X),g(X) ∈ F[X], with g(X) ̸= 0. Then there are q(X), r(X) ∈ F[X] such that

f(X) = q(X)g(X) + r(X)

and either
(i) r(X) = 0, or
(ii) r(X) ̸= 0 and deg r(X) < degg(X).

Proof. See pp. 49-50 of the book by Allenby. □

In lectures, I will give an example (omitted here).

Theorem 5.6. Let F be a field. Then every ideal of F[X] is principal.

Proof. We use the same proof as for Z (Theorem 5.3), now using the Division Algorithm
for polynomials.

So let I be an ideal of F[X], I ̸= {0}. In the proof of 5.3, we chose a smallest positive
element of I. This time, we choose a non-zero element of I of smallest degree, say f.
(Note: as often, we write f for f(X).)

Claim. I = [f] (which equals {fg : g ∈ F[X]}).

Proof of Claim. Clearly, [f] ⊆ I, by the definition of ‘ideal’.
To show I ⊆ [f], suppose h ∈ I. By Theorem 5.5, there are q, r ∈ F[X] such that

h = qf+ r, and either r = 0, or r ̸= 0 and deg r < deg f. □
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Now r = h − qf ∈ I, as h, f ∈ I. So by the minimality of deg(f), r = 0, so h = qf ∈ [f].
Thus, I = [f].

□

Definition 5.7. We say that the ring R is a principal ideal domain (PID) if it is an integral
domain, and every ideal of R is principal.

Note: By Theorems 5.3 and 5.6, Z and F[X] (for F a field) are PIDs. However, Z[X] is
not (see Example 5.2(6)).

Exercise. If F is a field, then the only ideals of F are {0} and F. These have the form [0]
and [1] respectively, so F is a PID.

Example 5.8. Consider the ideal [9, 15] = {9s+ 15t : s, t ∈ Z}, in Z. We wish to express it
as [d], as Z is a PID.

What should d be? Try d = (9, 15) (the positive g.c.d.).
Then,
(i) d|9, d|15, so 9, 15 ∈ [d], so [9, 15] ⊂ [d];
(ii) there are s, t ∈ Z with 9s + 15t = d (Euclid’s Algorithm), so d ∈ [9, 15], so [d] ⊆

[9, 15].
Thus, by (i) and (ii), [d] = [9, 15]. Of course, here d = 3. But our argument shows that

in general, if a,b ∈ Z, not both zero, then [a,b] = [(a,b)].

Example 5.9. We do a similar example, but for the ring Q[X] of polynomials in place of
Z. Consider the ideal I = [X2 + 4X + 3,X3 − X2 − 3X − 1] in Q[X]. We wish to express I
in the form [f], i.e., (by the proof of Theorem 5.6) to find some nonzero f ∈ I of smallest
possible degree. As in Example 5.8, it will suffice to find some f ∈ Q[X] such that

(a) f|X2 + 4X+ 3 and f|X3 − X2 − 3X− 1 in Q[X], and
(b) there are polynomials s, t ∈ Q[X] with f = s(X2 + 4X+ 3) + t(X3 − X2 − 3X− 1).
We do this using Euclid’s Algorithm for polynomials, just as in Z, but using the

Division Algorithm for polynomials (Theorem 5.5).
Easy division of polynomials gives

X3 − X2 − 3X− 1 = (X2 + 4X+ 3)(X− 5) + (14X+ 14)

X2 + 4X+ 3 = (14X+ 14)(
1

14
X+

3
14

).

The last non-zero remainder is 14X+ 14 , so this looks like a g.c.d. Indeed,
(i) 14X+ 14 divides X2 + 4X+ 3 and X3 − X2 − 3X− 1 in Q[X], and
(ii) 14X+ 14 = (X3 − X2 − 3X− 1) − (X− 5)(X2 + 4X+ 3).
Thus, I = [14X + 14] = [X + 1]. Note here that if q ∈ Q is nonzero then [f] = [qf]. So

we usually choose the generator of I to be monic, i.e. so that the coefficient of the highest
power of X is 1.

(I chose this example so the calculation is short – usually it would be messier.)

The last example suggests that notions like g.c.d. work well in rings other than Z,
such as Q[X]. We now explore this.
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5.1. Divisibility in rings.

Definition 5.10. Let R be a commutative ring with a 1.
(i) If a,b ∈ R, we say a divides b, written a|b, if there is c ∈ R with ac = b.
(ii) Given a,b ∈ R, not both zero, we say d ∈ R is a greatest common divisor (g.c.d.) of a,b
if

(a) d|a and d|b, and
(b) for any c ∈ R, if c|a and c|b then c|d.

(iii) u ∈ R is a unit if u|1.
(iv) If a,b ∈ R then a is an associate of b if there is unit u ∈ R with a = ub.
(v) r ∈ R is irreducible if

(a) r ̸= 0 and r is not a unit, and
(b) if r = ab where a,b ∈ R, then a or b is a unit.

(vi) r ∈ R is prime if
(a) r ̸= 0 and r is not a unit, and
(b) if r|ab, where a,b ∈ R, then r|a or r|b.

(vii) a,b ∈ R are coprime if 1 = g.c.d.(a,b).

Example 5.11. (i) In Q[X], X2 + 1
3X+ 1

2 |X
3 + 5

6X
2 + 2

3X+ 1
4 , as

X3 +
5
6
X2 +

2
3
X+

1
4
= (X2 +

1
3
X+

1
2
)(X+

1
2
).

We have 2X+ 4|X+ 2 in Q[X] but not in Z[X].
In Z[i], 2 + i|1 + 13i, as (2 + i)(3 + 5i) = 1 + 13i.

(ii) In Example 5.9, we showed that in Q[X], the polynomials X2+4X+3 and X3−X2−3X−1
have g.c.d. X+ 1.
(iii) In Q[X] the units are the constant polynomials except for 0, so the associates of X2+3
are the polynomials of the form c(X2 + 3) where c ∈ Q with c ̸= 0.

In Z[X], the units are 1,−1.
In Z[i], 1,−1, i,−i are units. Are there others? We will investigate in the next section.

(iv) In Q[X], ‘irreducible’ has the usual meaning for ‘irreducible polynomial’. Are irre-
ducibles in Q[X] the same as primes? Can we factorise every polynomial uniquely into
irreducibles, as in Theorem 1.20?
(v) If d is a g.c.d. of a,b, then the other g.c.d.’s are exactly the associates of d. Why is
this?
(vi) For which rings is there something like the Division Algorithm?

Lemma 5.12. Let R be a commutative ring with a 1. Then the relation ‘a is an associate of b’ is
an equivalence relation on R. The equivalence class of a is {au : u is a unit of R}.

Proof. (i) (Reflexivity) a is an associate of a as a.1 = a.
(ii) (Symmetry) Suppose a is an associate of b, so a = ub for some unit u of R. There

is v ∈ R with vu = uv = 1, and v is also a unit. Then va = vub = 1.b = b, so b is an
associate of a.

(iii) (Transitivity) Suppose a is an associate of b, and b is an associate of c, say a = ub
and b = vc with u, v both units. Now uv is a unit, for if uu ′ = 1 and vv ′ = 1 then
(uv)(u ′v ′) = 1. Thus, as a = (uv)c, a is an associate of c.

The second assertion is direct from the definitions. □
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We now discuss divisibility in polynomial rings over fields.

Exercise 5.13. Show that if F is a field, then every non-zero element of F[X] is an associate
of a unique monic polynomial over F.

Theorem 5.14 (Factor Theorem). Let F be a field, f(X) ∈ F[X], and a ∈ F. Then X− a divides
f(X) if and only if f(a) = 0 (calculated in F).

Proof. ⇒ Suppose (X − a)g(X) = f(X). Then substituting a for X, we find (a − a)g(a) =
f(a), so f(a) = 0.

⇐ Suppose f(a) = 0. We use the Division Algorithm for polynomials (Theorem 5.5)
to write f(X) = (X − a)g(X) + r(X), where deg r(X) < deg(X − a) = 1. So 0 = f(a) =
(a− a)g(a) + r(a), so r(a) = 0. As r(X) is constant, this forces r(X) = 0, so X− a divides
f(X), □

Corollary 5.15. If F is a field, then every polynomial f(X) ∈ F[X] of degree n has at most n
roots. It has exactly n roots in F (counted with multiplicity) if, when you write f(X) as a product
of irreducible factors, all the irreducible factors have degree 1.

Proof. For the first part, suppose the distinct roots of f(X) are a1, . . . ,at. Then f(X) =
(X − a1)f1(X) (for some f1(X) ∈ F[X]), and X − a2 divides f(X), so X − a2 divides f1(X)
(why? Compare Sheet 2 Q1). So f(X) = (X − a1)(X − a2)f2(X), for some polynomial
f2(X). Now X − a3 divides f(X) and so divides f2(X), and so on. So we find f(X) =
(X− a1)(X− a2)...(X− at)h(X) for some polynomial h(X), and so f has degree at least t,
so t ⩽ n.

The second assertion is an exercise. □

Theorem 5.16 (Fundamental Theorem of Algebra). Every polynomial over C of degree at
least 1 has a root in C.

Proof. Omitted – this really belongs to analysis, not algebra! □

It follows from the last theorem that every polynomial over C can be written as a
product of linear factors over C. More precisely, we have

Corollary 5.17. (i) The irreducible polynomials in C[X] are the linear polynomials aX+ b,
(ii) The irreducible polynomials in R[X] are the linear polynomials aX + b and the quadratics

aX2 + bX+ c with no real root.

Proof. (i) Clearly any linear polynomial is irreducible. Conversely, if f(X) is irreducible,
then by the Fundamental Theorem of Algebra (5.16), it has a root α ∈ C. Then by the
Factor Theorem (5.14), f(X) has a linear factor X − α. As F(X) is irreducible, we have
f(X) = c(X − α) for some c ∈ C, so f(X) is linear. (ii) Clearly the polynomials of the
described types are irreducible. Conversely, suppose f(X) ∈ R[X] is irreducible of degree
> 1. Then f(X) has no root in R. However, f(X) has a root α = +iv ∈ C. Since f(X) has
real coefficients, f(ᾱ) = f(α) = 0, where ᾱ denotes the complex conjugate of α (we use
here that for complex numbers z,w, z+ = z̄ + w̄ and zw = z̄w̄). So ᾱ is also a root of
f(X). Thus, f(X) is divisible in C[X] by

(X− α)(X− ᾱ) = (X− u− iv)(X− u+ iv) = (X− u)2 + v2 = aX2 + bX+ c,

where a = 1, b = −2u and c = u2 + v2 (all real). Thus, f(X) = (aX2 + bX + c)g(X) with
g(X) ∈ C[X]. Calculating g(X) by polynomial division, we see that as f(X), aX2 +bX+c ∈
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R[X], also g(X) ∈ R[X]. Thus, as f(X) is irreducible in R[X], we find f(X) = aX2 + X + c,
so is quadratic. □

6. The rings Z[
√
d] and Q[

√
d]

We consider d ∈ Z with d ̸= 0, 1, and d square-free, that is, for any prime p ∈ Z, p2 ̸ |d.

Lemma 6.1. If a,b ∈ Q are not both zero then a2 − db2 ̸= 0.

Proof. Suppose a2 = db2. Multiplying out denominators, we may suppose a,b ∈ Z. We
may also suppose (a,b) = 1, by factoring out any common factors. Let p|d. Then p|a2, so
p2|a2. (Note here that if a = pa1

1 . . .par
r , expressed as a product of distinct prime powers

pi,then a2 = p2a1
1 . . .p2ar

r so for each i, p2
i |a

2.) Thus, p2|db2, so as p2 ̸ |d, p|b2. Hence p|b,
which contradicts the assumption that (a,b) = 1. □

Definition 6.2. Define Q[
√
d] := {a+ b

√
d : a,b ∈ Q} and Z[

√
d] := {a+ b

√
d : a,b ∈ Z}.

It is really Z[
√
d] that we are interested in. But first note

Proposition 6.3. Q[
√
d] is a field.

Proof. We just need to check the existence of multiplicative inverses. But

(a+ b
√
d)−1 =

1
a+ b

√
d

=
a− b

√
d

(a+ b
√
d)(a− b

√
d)

=
a

a2 − db2 −
b

a2 − db2

√
d.

Note here that a2 − db2 ̸= 0, by Lemma 6.1. □

Definition 6.4. In Z[
√
d] (or in Q[

√
d]) define the norm N(α) as follows. Let α = a+b

√
d ∈

Z[
√
d]. Then

N(α) := |a2 − db2| = |(a+ b
√
d)(a− b

√
d)|.

Example 6.5. If d = −1, then Z[
√
d] = Z[i] and if α = a + bi, then N(α) = |a2 + b2|, the

square of the modulus (in the sense of complex numbers).

Recall that modulus has nice properties, such as |zw| = |z|.|w|. Fortunately, this gener-
alises.

Lemma 6.6. Let α,β ∈ Z[
√
d]. Then

(i) N(αβ) = N(α)N(β),
(ii) N(α) = 0 ⇔ α = 0,
(iii) N(α) is a non-negative integer.

Proof. (i) Let α = a+ b
√
d and β = a ′ + b ′

√
d. Then

αβ = (aa ′ + dbb ′) + (ab ′ + ba ′)
√
d, so

N(αβ) = |(aa ′ + dbb ′)2 − (ab ′ + ba ′)2d|

= |(a2 − db2)(a ′2 − db ′2)|

|a2 − db2|.|a ′2 − db ′2| = N(α)N(β).
(ii) See Lemma 6.1.
(iii) This is immediate from the definition of ‘norm’. □
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The idea of norm is that, because of (i) in the last lemma, it reduces multiplicative
questions in Z[

√
d] to similar but easier questions in Z. Also, N behaves a bit like absolute

value in Z or the degree of a polynomial in Q[X], so perhaps there is a version of the
Division Algorithm for rings Z[

√
d].

We first give a nice consequence of Lemma 6.6.

Example 6.7. If n,m ∈ Z can be written in the form a2 + 5b2, so can nm.
Indeed, let n = a2 + 5b2, m = e2 + 5f2. Then, working in the ring Z[

√
−5], n =

N(a+ b
√
−5) and m = N(e+ f

√
−5), so

nm = N((a+ b
√
−5)(e+ f

√
−5))

= N((ae− 5bf) + (af+ be
√
−5))

= (ae− 5bf)2 + 5(af+ be)2.

Example 6.8. Write 10824 = 88 × 123 in the form a2 + 2b2, for a,b ∈ Z.
We have 88 = 42 + 2 × 62 and 123 = 52 + 2 × 72. So, working in Z[

√
−2],

10824 = 88 × 123 = N(4 + 6
√
−2)N(5 + 7

√
−2)

= N((4 + 6
√
−2)(5 + 7

√
−2))

= N(−64 + 58
√
−2)

= 642 + 2 × 582.

We can find other expressions for 10824 in form a2 + 2b2. For also

10824 = N(4 − 6
√
−2)N(5 + 7

√
−2)

N((4 − 6
√
−2)(5 + 7

√
−2)

= N(104 − 2
√
−2)

= 1042 + 2 × 22.

We now investigate units, a possible division algorithm, primes, irreducibles, and
uniqueness of factorisation in the rings Z[

√
d]. It turns out that the results depend cru-

cially on the choice of d.

Lemma 6.9. α ∈ Z[
√
d] is a unit if and only if N(α) = 1.

Proof. If α is a unit then there is β ∈ Z[
√
d] with αβ = 1. Then N(αβ) = N(α)N(β) =

N(1) = 1. As N(α), N(β) are non-negative integers, this forces N(α) = 1.
Conversely, if α = a + b

√
d then, working in Q[

√
d], α−1 = a

a2−db2 − b
a2−db2

√
d (see

the proof of Proposition 6.3). By our assumption, a2 − db2 = ±1, so α−1 ∈ Z[
√
d]. □

Theorem 6.10. In the rings Z[
√
d], the units are:

(i) 1,−1, i,−i if d = −1,
(ii) 1,−1 if d < −1,
(ii) 1,−1 and infinitely many others, if d > 1.
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Proof. (i) We must solve N(a + b
√
−1) = a2 + b2 = 1 in Z. The only solutions are

(a,b) = (1, 0), (−1, 0), (0, 1), (0,−1), so α = 1,−1, i,−i, respectively.
(ii) We must here solve (in Z) a2−db2 = 1, where d < −1. This forces a = 1 and b = 0.
(iii) I do not give a general proof, but suppose for example d = 3. Now 22 −3×12 = 1,

so (2 +
√

3)(2 −
√

3) = 1. Hence 2 +
√

3 and 2 −
√

3 are units. But also, for every integer
n > 1, (2 +

√
3)n is a unit, as

(2 +
√

3)n(2 −
√

3)n = [(2 +
√

3)(2 −
√

3)]n = 1n = 1.

Clearly the real numbers (2 +
√

3)n are all distinct, as n varies. □

We now show that in all the rings Z[
√
d], all primes are irreducible. In the other

direction, all irreducibles are primes only for special values of d.
Recall that an integral domain is a commutative ring with a 1 and with no zero-divisors:

that is, if ab = 0 then a = 0 or b = 0 (unlike say the elements 2̂, 3̂ in Z6.) The proof below
is basically the same as the proof of the corresponding direction of Theorem 1.20.

Theorem 6.11. Let D be an integral domain. Then every prime of D is irreducible.

Proof. Suppose that p is prime and p = ab, where a,b ∈ D. We must show that one of
a,b is a unit. Now p|ab (as p.1 = ab), so by the definition of ‘prime’, p|a or p|b. We
suppose p|a (the other case is similar). Then a = pc for some c ∈ D. So

p = ab = pcb = p.1,

so p(cb − 1) = 0. As D is an integral domain it has no zero divisors, so as p ̸= 0, this
forces cb− 1 = 0. Hence cb = 1, so b is a unit. □

The (partial) converse, which we now give, requires a stronger assumption.

Theorem 6.12. Let R be a principal ideal domain. Then every irreducible of R is prime.

Proof. Suppose that r is irreducible, and r|ab, where a,b ∈ R. We must show r|a or r|b,
so suppose r ̸ |a. As R is a PID, the ideal [r,a] of R is a principal ideal, so has the form
[d] for some d ∈ R. Now d|r, so there is m ∈ R with dm = r, and as r is irreducible, one
of d,m is a unit.

Claim. d is a unit.

Proof of Claim. If m is a unit, then m−1 exists, so d = rm−1. Then as d|a we get r|a, a
contradiction. Hence d is a unit. □

Now choose e with de = 1. As [r,a] = [d], there are s, t ∈ R with rs+ at = d. Then

rse+ ate = de = 1, so

rseb+ ateb = b.

Hence, as r|ab we have r|rseb+ ateb, so r|b. □

Theorem 6.13 (Division Algorithm ). Let α,β ∈ Z[
√
−2]. Then there are m, r ∈ Z[

√
−2]

with α = mβ+ r and 0 ⩽ N(r) < N(β).

Remark. The proof below also works for d = 2, 3,−1.
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Corollary 6.14. (i) Z[
√
d] is a PID for d = −2,−1, 2, 3.

(ii) For d = −2,−1, 2, 3, ‘prime’=‘irreducible’.
(iii) In any ring Z[

√
d], every prime is irreducible.

Proof. (i) Apply the method of proof of Theorems 5.3 and 5.6.
(ii) Use (i) and Theorem 6.12.
(iii) This is direct from Theorem 6.11. □

Proof of Theorem 6.13. Let α = a+ b
√
−2 and β = c+ d

√
−2. Then

α

β
=

a+ b
√
−2

c+ d
√
−2

=
(a+ b

√
−2)(c− d

√
−2)

(c+ d
√
−2)(c− d

√
−2)

=
x

c2 + 2d2 for some x,

= u+ v
√
−2 where u, v ∈ Q.

Let U be the nearest integer to u, so |u−U| ⩽ 1
2 , and let V be the nearest integer to v, so

|V − v| ⩽ 1
2 . Then

α

β
= u+ v

√
−2 = (U+ V

√
−2) + [(u−U) + (v− V)

√
−2].

Multiplying out by β, we get

α = (U+ V
√
−2)β+ [(u−U) + (v− V)

√
−2]β,

= mβ+ r where m = U+ V
√
−2 and r = [(u−U) + (v− V)

√
−2]β.

As r = α−mβ and m ∈ Z[
√
−2], we get r ∈ Z[

√
−2]. Now

N(r) = N(β)N[(u−U) + (v− V)
√
−2]

= N(β)[(u−U)2 + 2(v− V)2]

⩽ N(β)[(
1
2
)2 + 2(

1
2
)2] =

3
4
N(β) < N(β).

□

The above proof wouldn’t work for Z[
√
−3], as ( 1

2 )
2 + 3( 1

2 )
2 = 1. The proof also works

for d =
√

2,
√

3,
√
−1.

Definition 6.15. A unique factorisation domain (UFD) is an integral domain R such that
(i) every element not equal to 0 or a unit is a product of irreducibles, and
(ii) if x = p1 . . .pn = q1 . . .qm where the pi and qj are irreducible, then n = m and

the pi and qj can be paired so that corresponding pairs are associates of each other.

Remark. Z is a UFD, by Theorem 1.22. Infact

Theorem 6.16. Every PID is a UFD.

Proof. (i) Existence of factorisation into irreducibles. Let D be a principal ideal domain, and
a ∈ D be a non-zero non-unit. Suppose for a contradiction that a is not a product of
irreducibles. Then a is not irreducible, so a = a1b1 say, and a1,b1 are non-units. By
assumption, one of a1,b1, say a1, is not a product of irreducibles, so there are non-units
a2,b2 such that a1 = a2b2. One of a2,b2 is not a product of irreducibles (otherwise a1 is,
a contradiction), so there are non-units a3,b3 such that a2 = a3b3. We continue in this
way forever. We always find ai+1|ai, so we obtain a sequence of ideals

[a] ⊆ [a1] ⊆ [a2] ⊆ [a3] ⊆ . . . .
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The union of this sequence of ideals of D is again an ideal of D (check this!), denoted
I, say, and since D is a principal ideal domain, I = [d] for some d ∈ D. Now d ∈ I, so
d ∈ [aj] for some j. Thus, [d] ⊆ [aj] ⊆ [aj+1] ⊆ [d], so [aj] = [aj+1]. Hence aj+1 ∈ [aj], so
there is c ∈ D such that aj+1 = ajc. But aj = aj+1bj+1, so aj+1 = aj+1bj+1c. Since D is
an integral domain, it follows that bj+1 is a unit, a contradiction.

(ii) Uniqueness of factorisation into irreducibles. This is almost exactly as in the proof of
Theorem 1.22 (using that primes are the same as irreducibles, which holds by Theorems
6.11 and 6.12).

□

Example 6.17. We work in Z[
√
−7]. We have

8 = 2 × 2 × 2 = (1 +
√
−7)(1 −

√
−7).

Claim. Each of 2, 1 +
√
−7, 1 −

√
−7 is irreducible in Z[

√
−7].

Proof of Claim. By Theorem 6.10(ii), they are not units. We’ll show 1 +
√
−7 is irreducible

using the norm, which reduces questions about Z[
√
−7] to questions about Z. (The proofs

for 2 and 1−
√
−7 are similar.) So suppose α = 1+

√
−7 = βγ, where β = a+b

√
−7 and

γ = e+ f
√
−7. Then

N(α) = 8 = N(β)N(γ) = (a2 + 7b2)(e2 + 7f2), an equation in Z.

The only such factorisations are 8 = 8× 1, 4× 2, 2× 4, 1× 8. We cannot solve a2 + 7b2 = 2
in Z, so we must have a2 + 7b2 = 1 (so a = ±1,b = 0 and β is a unit) or e2 + 7f2 = 1 (so
γ is a unit).

However, 2 is not prime in Z[
√
−7]. For 2|8 = (1 +

√
−7)(1 −

√
−7), but 2 ̸ |1 +

√
−7

and 2 ̸ |1−
√
−7. Indeed, suppose that 2(p+q

√
−7) = 1+

√
−7. Then we have 2p = 1, so

p ̸∈ Z. □

Similar arguments show that 1 +
√
−7 and 1 −

√
−7 are not prime. So in the ring

Z[
√
−7], every prime is irreducible (by Theorem 6.11), but some irreducibles are not

prime. Also, Z[
√
−7] is not a UFD, since we have two essentially different factorisations

of 8 into irreducibles. Hence, by Theorem 6.16, Z[
√
−7] is not a PID.

Example 6.18. We work in Z[i] so d = −1. The units are ±1,±i, by Theorem 6.10(i). As
noted after the proof of Theorem 5.5, Z[i] has a Division Algorithm, so it is also a UFD.

(i) Find the g.c.d.in Z[i] of α = 5 + 8i and β = 3 + 5i. We use the Division Algorithm
(which holds in Z[i] by Theorem 6.13) and Euclid’s Algorithm. (Actually, some of the
equations below could be written down directly, without recourse to Euclid’s Algorithm,
but we aim to illustrate the general technique.)

First,
α

β
=

5 + 8i
3 + 5i

=
(5 + 8i)(3 − 5i)
(3 + 5i)(3 − 5i)

=
55 − i

34
= 1 +

21 − i

34
. So

α = β + r1 where r1 = (21−i)β
34 = 2 + 3i (note that r must lie in Z[i]). Next, divide r1 into

β. We find

β

r1
=

3 + 5i
2 + 3i

=
(3 + 5i)(2 − 3i)
(2 + 3i)(2 − 3i)

=
21 + i

13
= 1 +

8 + i

13
. Multiplying out,
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(3 + 5i) = (2 + 3i) +
(8 + i)(2 + 3i)

13
= (2 + 3i) + r2 where r2 = 1 + 2i.

Now
r1

r2
=

2 + 3i
1 + 2i

=
8 − i

5
= 1 +

3 − i

5
, so multiplying out

(2 + 3i) = (1 + 2i) +
(3 − i)(1 + 2i)

5
= (1 + 2i) + r3 where r3 = 1 + i.

Similarly, (1 + 2i) = (1 + i) + i (so r4 = i), and (1 + i) = i(1 − i), so r5 = 0. Thus, the last
non-zero remainder is i, the g.c.d..

In Euclid’s Algorithm above, we obtained the equations

(5 + 8i) = (3 + 5i) + (2 + 3i)

(3 + 5i) = (2 + 3i) + (1 + 2i)
(2 + 3i) = (1 + 2i) + (1 + i)

(1 + 2i) = (1 + i) + i.
Going back up these equations, we find

i = (1 + 2i) − (1 + i) = (1 + 2i) − [(2 + 3i) − (1 + 2i)] = −(2 + 3i) + 2(1 + 2i)

= −(2+ 3i)+ 2[(3+ 5i)− (2+ 3i)] = 2(3+ 5i)− 3(2+ 3i) = 2(3+ 5i)− 3[(5+ 8i)− (3+ 5i)]
= 5(3 + 5i) − 3(5 + 8i).

Thus, we have expressed the g.c.d. i in the form i = s(3+ 5i) + t(5+ 8i) where s = 5 and
t = −3. Of course, the associates of i, namely 1,−1,−i, are also g.c.d.’s of 5 + 8i, 3 + 5i.
In particular, 5 + 8i and 3 + 5i are coprime.

We have 1 = −5i(3 + 5i) + 3i(5 + 8i).
(ii) Factorise 20 into primes of Z[i] (remember that in Z[i], primes are the same as

irreducibles).
We have 20 = 2 × 2 × 5, and

2 = (1 + i)(1 − i)

5 = (2 + i)(2 − i).
So, 20 = (1 + i)2(1 − i)2(2 + i)(2 − i).

Are these irreducible? Well, suppose 1 + i = αβ, a factorisation in Z[i]. Taking norms,
2 = N(α)N(β), so either N(α) = 1 (when α is a unit, by 6.9), or N(β) = 1, and β is a unit.
Thus, 1 + i, and similarly 1 − i, are irreducible.

Likewise, 2 + i is irreducible, as N(2 + i) = 5 is an irreducible of Z.
Another factorisation of 20 into irreducibles is

20 = (1 + i)3(−1 + i)(−1 + 2i)(2 − i).

These factorisations are not really different, as they can be matched into associate pairs.
For (−1 + i) = i(1 + i), (1 + i) = i(1 − i), and (−1 + 2i) = i(2 + i). So though we appear
to have two different factorisations of 20 in Z[i], this does not contradict the fact that Z[i]
is a UFD.
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