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ABSTRACT. This is lecture notes for several courses on Functional Analysis at
School of Mathematics of University of Leeds. They are based on the notes of
Dr. Matt Daws, Prof. Jonathan R. Partington, Dr. David Salinger, and Prof. Alex
Strohmaier used in the previous years. Some sections are borrowed from the text-
books, which I used since being a student myself. However all misprints, omis-
sions, and errors are only my responsibility. I am very grateful to Filipa Soares de
Almeida, Eric Borgnet, Pasc Gavruta for pointing out some of them. Please let me
know if you find more.

The notes are available also for download in PDF.
The suggested textbooks are [1, 9, 12, 13]. The other nice books with many inter-

esting problems are [3, 11].
Exercises with stars are not a part of mandatory material but are nevertheless

worth to hear about. And they are not necessarily difficult, try to solve them!
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NOTATIONS AND ASSUMPTIONS

Z+, R+ denotes non-negative integers and reals.
x,y, z, . . . denotes vectors.
λ,µ,ν, . . . denotes scalars.
ℜz, ℑz stand for real and imaginary parts of a complex number z.

Integrability conditions. In this course, the functions we consider will be real or
complex valued functions defined on the real line which are locally Riemann integ-
rable. This means that they are Riemann integrable on any finite closed interval
[a,b]. (A complex valued function is Riemann integrable iff its real and imagin-
ary parts are Riemann-integrable.) In practice, we shall be dealing mainly with
bounded functions that have only a finite number of points of discontinuity in any
finite interval. We can relax the boundedness condition to allow improper Riemann
integrals, but we then require the integral of the absolute value of the function to
converge.

We mention this right at the start to get it out of the way. There are many fascin-
ating subtleties connected with Fourier analysis, but those connected with technical
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aspects of integration theory are beyond the scope of the course. It turns out that
one needs a “better” integral than the Riemann integral: the Lebesgue integral, and
I commend the module, Linear Analysis 1, which includes an introduction to that
topic which is available to MM students (or you could look it up in Real and Com-
plex Analysis by Walter Rudin). Once one has the Lebesgue integral, one can start
thinking about the different classes of functions to which Fourier analysis applies:
the modern theory (not available to Fourier himself) can even go beyond functions
and deal with generalized functions (distributions) such as the Dirac delta function
which may be familiar to some of you from quantum theory.

From now on, when we say “function”, we shall assume the conditions of the
first paragraph, unless anything is stated to the contrary.

0. MOTIVATING EXAMPLE: FOURIER SERIES

0.1. Fourier series: basic notions. Before proceed with an abstract theory we con-
sider a motivating example: Fourier series.

0.1.1. 2π-periodic functions. In this part of the course we deal with functions (as
above) that are periodic.

We say a function f : R → C is periodic with period T > 0 if f(x + T) = f(x) for
all x ∈ R. For example, sin x, cos x, eix(= cos x + i sin x) are periodic with period
2π. For k ∈ R \ {0}, sinkx, cos kx, and eikx are periodic with period 2π/|k|. Constant
functions are periodic with period T , for any T > 0. We shall specialize to periodic
functions with period 2π: we call them 2π-periodic functions, for short. Note that
cosnx, sinnx and einx are 2π-periodic for n ∈ Z. (Of course these are also 2π/|n|-
periodic.)

Any half-open interval of length T is a fundamental domain of a periodic function f
of period T . Once you know the values of f on the fundamental domain, you know
them everywhere, because any point x in R can be written uniquely as x = w+ nT
where n ∈ Z andw is in the fundamental domain. Thus f(x) = f(w+(n−1)T+T) =
· · · = f(w+ T) = f(w).

For 2π-periodic functions, we shall usually take the fundamental domain to be
] − π,π]. By abuse of language, we shall sometimes refer to [−π,π] as the funda-
mental domain. We then have to be aware that f(π) = f(−π).

0.1.2. Integrating the complex exponential function. We shall need to calculate
∫b
a
eikx dx,

for k ∈ R. Note first that when k = 0, the integrand is the constant function 1, so the
result is b−a. For non-zero k,

∫b
a
eikx dx =

∫b
a
(cos kx+ i sinkx)dx = (1/k)[(sinkx−

i cos kx)]ba = (1/ik)[(coskx+ i sinkx)]ba = (1/ik)[eikx]ba = (1/ik)(eikb − eika). Note
that this is exactly the result you would have got by treating i as a real constant
and using the usual formula for integrating eax. Note also that the cases k = 0 and
k ̸= 0 have to be treated separately: this is typical.
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Definition 0.1. Let f : R → C be a 2π-periodic function which is Riemann
integrable on [−π,π]. For each n ∈ Z we define the Fourier coefficient f̂(n) by

f̂(n) =
1

2π

π∫
−π

f(x)e−inx dx .

Remark 0.2. (i) f̂(n) is a complex number whose modulus is the amplitude
and whose argument is the phase (of that component of the original
function).

(ii) If f and g are Riemann integrable on an interval, then so is their product,
so the integral is well-defined.

(iii) The constant before the integral is to divide by the length of the interval.
(iv) We could replace the range of integration by any interval of length 2π,

without altering the result, since the integrand is 2π-periodic.
(v) Note the minus sign in the exponent of the exponential. The reason for

this will soon become clear.

Example 0.3. (i) f(x) = c then f̂(0) = c and f̂(n) = 0 when n ̸= 0.
(ii) f(x) = eikx, where k is an integer. f̂(n) = δnk.

(iii) f is 2π periodic and f(x) = x on ] − π,π]. (Diagram) Then f̂(0) = 0 and,
for n ̸= 0,

f̂(n) =
1

2π

π∫
−π

xe−inx dx=

[
−xe−inx

2πin

]π
−π

+
1

in

1

2π

π∫
−π

einx dx=
(−1)ni

n
.

Proposition 0.4 (Linearity). If f and g are 2π-periodic functions and c and d are
complex constants, then, for all n ∈ Z,

(cf+ dg)̂ (n) = cf̂(n) + dĝ(n) .

Corollary 0.5. If p(x) is a trigonometric polynomial, p(x) =
∑k

−k cne
inx,

then p̂(n) = cn for |n| ⩽ k and = 0, for |n| ⩾ k.

p(x) =
∑
n∈Z

p̂(n)einx .

This follows immediately from Ex. 0.3(ii) and Prop.0.4.
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Remark 0.6. (i) This corollary explains why the minus sign is natural in the
definition of the Fourier coefficients.

(ii) The first part of the course will be devoted to the question of how far
this result can be extended to other 2π-periodic functions, that is, for
which functions, and for which interpretations of infinite sums is it true
that

(0.1) f(x) =
∑
n∈Z

f̂(n)einx .

Definition 0.7.
∑

n∈Z f̂(n)e
inx is called the Fourier series of the 2π-periodic

function f.

For real-valued functions, the introduction of complex exponentials seems arti-
ficial: indeed they can be avoided as follows. We work with (0.1) in the case of a
finite sum: then we can rearrange the sum as

f̂(0) +
∑
n>0

(f̂(n)einx + f̂(−n)e−inx)

= f̂(0) +
∑
n>0

[(f̂(n) + f̂(−n)) cosnx+ i(f̂(n) − f̂(−n)) sinnx]

=
a0

2
+

∑
n>0

(an cosnx+ bn sinnx)

Here

an = (f̂(n) + f̂(−n)) =
1

2π

π∫
−π

f(x)(e−inx + einx)dx

=
1

π

π∫
−π

f(x) cosnxdx

for n > 0 and

bn = i((f̂(n) − f̂(−n)) =
1

π

π∫
−π

f(x) sinnxdx

for n > 0. a0 = 1
π

π∫
−π

f(x)dx, the constant chosen for consistency.

The an and bn are also called Fourier coefficients: if it is necessary to distinguish
them, we may call them Fourier cosine and sine coefficients, respectively.

We note that if f is real-valued, then the an and bn are real numbers and so
ℜf̂(n) = ℜf̂(−n), ℑf̂(−n) = −ℑf̂(n): thus f̂(−n) is the complex conjugate of f̂(n).
Further, if f is an even function then all the sine coefficients are 0 and if f is an odd
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function, all the cosine coefficients are zero. We note further that the sine and cosine
coefficients of the functions coskx and sinkx themselves have a particularly simple
form: ak = 1 in the first case and bk = 1 in the second. All the rest are zero.

For example, we should expect the 2π-periodic function whose value on ] −π,π]

is x to have just sine coefficients: indeed this is the case: an = 0 and bn = i(f̂(n) −

f̂(−n)) = (−1)n+12/n for n > 0.
The above question can then be reformulated as “to what extent is f(x) represen-

ted by the Fourier series a0/2+
∑

n>0(an cos x+ bn sin x)?” For instance how well
does

∑
(−1)n+1(2/n) sinnx represent the 2π-periodic sawtooth function f whose

value on ] − π,π] is given by f(x) = x. The easy points are x = 0, x = π, where the
terms are identically zero. This gives the ‘wrong’ value for x = π, but, if we look at
the periodic function near π, we see that it jumps from π to −π, so perhaps the mean
of those values isn’t a bad value for the series to converge to. We could conclude
that we had defined the function incorrectly to begin with and that its value at the
points (2n + 1)π should have been zero anyway. In fact one can show (ref. ) that
the Fourier series converges at all other points to the given values of f, but I shan’t
include the proof in this course. The convergence is not at all uniform (it can’t be,
because the partial sums are continuous functions, but the limit is discontinuous.)
In particular we get the expansion

π

2
= 2(1− 1/3+ 1/5− · · · )

which can also be deduced from the Taylor series for tan−1.

0.2. The vibrating string. In this subsection we shall discuss the formal solutions
of the wave equation in a special case which Fourier dealt with in his work.

We discuss the wave equation

(0.2)
∂2y

∂x2
=

1

K2

∂2y

∂t2
,

subject to the boundary conditions

(0.3) y(0, t) = y(π, t) = 0,

for all t ⩾ 0, and the initial conditions

y(x, 0) = F(x),

yt(x, 0) = 0.

This is a mathematical model of a string on a musical instrument (guitar, harp,
violin) which is of length π and is plucked, i.e. held in the shape F(x) and released at
time t = 0. The constant K depends on the length, density and tension of the string.
We shall derive the formal solution (that is, a solution which assumes existence and
ignores questions of convergence or of domain of definition).
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0.2.1. Separation of variables. We first look (as Fourier and others before him did) for
solutions of the form y(x, t) = f(x)g(t). Feeding this into the wave equation (0.2)
we get

f′′(x)g(t) =
1

K2
f(x)g′′(t)

and so, dividing by f(x)g(t), we have

(0.4)
f′′(x)

f(x)
=

1

K2

g′′(t)

g(t)
.

The left-hand side is an expression in x alone, the right-hand side in t alone. The
conclusion must be that they are both identically equal to the same constant C, say.

We have f′′(x) − Cf(x) = 0 subject to the condition f(0) = f(π) = 0. Working
through the method of solving linear second order differential equations tells you
that the only solutions occur when C = −n2 for some positive integer n and the
corresponding solutions, up to constant multiples, are f(x) = sinnx.

Returning to equation (0.4) gives the equation g′′(t)+K2n2g(t) = 0 which has the
general solution g(t) = an cosKnt + bn sinKnt. Thus the solution we get through
separation of variables, using the boundary conditions but ignoring the initial con-
ditions, are

yn(x, t) = sinnx(an cosKnt+ bn sinKnt) ,

for n ⩾ 1.

0.2.2. Principle of Superposition. To get the general solution we just add together all
the solutions we have got so far, thus

(0.5) y(x, t) =

∞∑
n=1

sinnx(an cosKnt+ bn sinKnt)

ignoring questions of convergence. (We can do this for a finite sum without dif-
ficulty because we are dealing with a linear differential equation: the iffy bit is to
extend to an infinite sum.)

We now apply the initial condition y(x, 0) = F(x) (note F has F(0) = F(π) = 0).
This gives

F(x) =

∞∑
n=1

an sinnx .

We apply the reflection trick: the right-hand side is a series of odd functions so if
we extend F to a function G by reflection in the origin, giving

G(x) :=

{
F(x) , if 0 ⩽ x ⩽ π;
−F(−x) , if − π < x < 0.

we have

G(x) =

∞∑
n=1

an sinnx ,
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for −π ⩽ x ⩽ π.
If we multiply through by sin rx and integrate term by term, we get

ar =
1

π

π∫
−π

G(x) sin rxdx

so, assuming that this operation is valid, we find that the an are precisely the sine
coefficients of G. (Those of you who took Real Analysis 2 last year may remember
that a sufficient condition for integrating term-by -term is that the series which is
integrated is itself uniformly convergent.)

If we now assume, further, that the right-hand side of (0.5) is differentiable (term
by term) we differentiate with respect to t, and set t = 0, to get

(0.6) 0 = yt(x, 0) =

∞∑
n=1

bnKn sinnx.

This equation is solved by the choice bn = 0 for all n, so we have the following
result

Proposition 0.8 (Formal). Assuming that the formal manipulations are valid,
a solution of the differential equation (0.2) with the given boundary and initial
conditions is

(2.11) y(x, t) =

∞∑
1

an sinnx cosKnt ,

where the coefficients an are the Fourier sine coefficients

an =
1

π

π∫
−π

G(x) sinnxdx

of the 2π periodic function G, defined on ] − π,π] by reflecting the graph of F in the
origin.

Remark 0.9. This leaves us with the questions
(i) For which F are the manipulations valid?

(ii) Is this the only solution of the differential equation? (which I’m not
going to try to answer.)

(iii) Is bn = 0 all n the only solution of (0.6)? This is a special case of the
uniqueness problem for trigonometric series.

0.3. Historic: Joseph Fourier. Joseph Fourier, Civil Servant, Egyptologist, and math-
ematician, was born in 1768 in Auxerre, France, son of a tailor. Debarred by birth
from a career in the artillery, he was preparing to become a Benedictine monk (in
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order to be a teacher) when the French Revolution violently altered the course of
history and Fourier’s life. He became president of the local revolutionary commit-
tee, was arrested during the Terror, but released at the fall of Robespierre.

Fourier then became a pupil at the Ecole Normale (the teachers’ academy) in
Paris, studying under such great French mathematicians as Laplace and Lagrange.
He became a teacher at the Ecole Polytechnique (the military academy).

He was ordered to serve as a scientist under Napoleon in Egypt. In 1801, Four-
ier returned to France to become Prefect of the Grenoble region. Among his most
notable achievements in that office were the draining of some 20 thousand acres of
swamps and the building of a new road across the alps.

During that time he wrote an important survey of Egyptian history (“a master-
piece and a turning point in the subject”).

In 1804 Fourier started the study of the theory of heat conduction, in the course
of which he systematically used the sine-and-cosine series which are named after
him. At the end of 1807, he submitted a memoir on this work to the Academy of
Science. The memoir proved controversial both in terms of his use of Fourier series
and of his derivation of the heat equation and was not accepted at that stage. He
was able to resubmit a revised version in 1811: this had several important new fea-
tures, including the introduction of the Fourier transform. With this version of his
memoir, he won the Academy’s prize in mathematics. In 1817, Fourier was finally
elected to the Academy of Sciences and in 1822 his 1811 memoir was published as
“Théorie de la Chaleur”.

For more details see Fourier Analysis by T.W. Körner, 475-480 and for even more,
see the biography by J. Herivel Joseph Fourier: the man and the physicist.

What is Fourier analysis. The idea is to analyse functions (into sine and cosines
or, equivalently, complex exponentials) to find the underlying frequencies, their
strengths (and phases) and, where possible, to see if they can be recombined (syn-
thesis) into the original function. The answers will depend on the original prop-
erties of the functions, which often come from physics (heat, electronic or sound
waves). This course will give basically a mathematical treatment and so will be
interested in mathematical classes of functions (continuity, differentiability proper-
ties).

1. BASICS OF METRIC SPACES

1.1. Metric Spaces.

1.1.1. Metric spaces: definition and examples. In Analysis and Calculus the definition
of convergence was based on the notion of a distance between points, namely the
standard distance between two real numbers is given by

d(x,y) = |x− y|.
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Similarly, the distance between two points in the plane, given by

d(x, y) = d((x1, x2), (y1,y2)) =
√
(x1 − y1)2 + (x2 − y2)2.

A metric space formalises this notion. This will give us the flexibility to talk
about distances on function spaces, for example, or introduce other notions of dis-
tance on spaces.

Definition 1.1 (Metric Space). A metric space (X,d) is a set X together with a
function d : X× X→ R that satisfies the following properties

(i) d(x,y) ⩾ 0; and d(x,y) = 0 ⇐⇒ x = y (positive definite);
(ii) d(x,y) = d(y, x) (symmetric);

(iii) d(x, z) ⩽ d(x,y) + d(y, z) (triangle inequality).
The function d is called the metric. The word distance will be used inter-
changeably with the same meaning.

Example 1.2. (i) X = R. The standard metric is given by d1(x,y) = |x − y|.
There are many other metrics on R, for example

d(x,y) = |ex − ey|;

d(x,y) =

{
|x− y| if |x− y| ⩽ 1,

1 if |x− y| ⩾ 1.

(ii) Let X be any set whatsoever, then we can define the discrete metric

d(x,y) =

{
1 if x ̸= y,
0 if x = y.

(iii) X = Rm. The standard metric is the Euclidean metric: if x =
(x1, x2, . . . , xm) and y = (y1,y2, . . . ,ym) then

d2(x, y) =
√
(x1 − y1)2 + (x2 − y2)2 + . . .+ (xm − ym)2.

This is linked to the inner-product (scalar product), x · y = x1y1 +

x2y2+ . . .+xmym, since it is just
√

(x− y).(x− y). We will study inner
products more carefully later, so for the moment we won’t prove the
(well-known) fact that it is indeed a metric.

Other possible metrics include

d∞(x, y) = max{|x1 − y1|, |x2 − y2|, . . . , |xm − ym|}.

Another metric on Rm comes from the generalisation of our first ex-
ample:

d1(x, y) = |x1 − y1|+ |x2 − y2|+ . . .+ |xm − ym|.
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These metrics d1, d2, d∞ are all translation-invariant (i.e., d(x + z, y +
z) = d(x, y)), and positively homogeneous (i.e., d(kx,ky) = |k|d(x, y)), see
Ex. 1.8 for further discussion.

(iv) Take X = C[a,b]. Here are three metrics similar to above ones:

d2(f,g) =

√√√√√b∫
a

|f(x) − g(x)|2 dx.

Again, this is linked to the idea of an inner product, so we will delay
proving that it is a metric.

d1(f,g) =

b∫
a

|f(x) − g(x)|dx,

the area between two graphs

d∞(f,g) = max{|f(x) − g(x)| : a ⩽ x ⩽ b},

the maximum vertical separation between two graphs.

Example 1.3. On C[0, 1] take f(x) = x and g(x) = x2 and calculate

d2(f,g) =

 1∫
0

(x− x2)2 dx

1/2

=
√

1/30,

d1(f,g) =

1∫
0

|x− x2|dx = 1/6, and

d∞(f,g) = max
x∈[0,1]

|x− x2| = 1/4.

Remark 1.4. Any subset of a metric space is again a metric space its own right,
by restricting the distance function to the subset.

Example 1.5. (i) The interval [a,b] with d(x,y) = |x − y| is a subspace of
R.

(ii) The unit circle {(x1, x2) ∈ R2 : x21 + x22 = 1} with d2(x,y) =√
(x1 − y1)2 + (x2 − y2)2 is a subspace of R2.

(iii) The space of polynomials P is a metric space with any of the metrics
inherited from C[a,b] above.
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Definition 1.6. A normed space (V, ∥ · ∥) is a real vector space V with a map
∥ · ∥ : V → R (called norm) satisfying

(i) ∥v∥ ⩾ 0, and (∥v∥ = 0 ⇔ v = 0),
(ii) ∥λv∥ = |˘|∥v∥,

(iii) ∥v + w∥ ⩽ ∥v∥+ ∥w∥.

Exercise 1.7. Prove that V is a metric space with metric d(v,w) := ∥v − w∥.

Exercise 1.8. (i) Write norms ∥·∥1, ∥·∥2, ∥·∥∞ on Rm which produces met-
rics d1, d2, d∞ from Ex. 1.2.1.2(iii).
Hint: see (2.4) and (2.2) below.

(ii) Show, that the following are norms on the vector space V = C[a,b]:

∥f∥1 =

b∫
a

|f(x)|dx,

∥f∥2 =

b∫
a

|f(x)|2 dx,

∥f∥∞ = sup
x∈[a,b]

|f(x)|.

Furthermore, these norms generate the respective metrics d1, d2 and
d∞ from Ex. 1.2(1.2(iv)) as indicated in the previous exercise.

Definition 1.9. An inner product space(V, ⟨·, ·⟩) is a real vector space V with
a map ⟨·, ·⟩ : V × V → R (called inner product) satisfying

(i) ⟨λv,w⟩ = ˘⟨v,w⟩,
(ii) ⟨v1 + v2,w⟩ = ⟨v1,w⟩+ ⟨v2,w⟩,

(iii) ⟨v,w⟩ = ⟨w, v⟩,
(iv) ⟨v, v⟩ ⩾ 0, and (⟨v, v⟩ = 0 ⇔ v = 0).

Exercise 1.10. (i) Prove that the Cauchy–Schwarz inequality |⟨v,w⟩|2 ⩽
⟨v, v⟩⟨w,w⟩ holds.
Hint: start by considering the expression ⟨v + ˘w, v + ˘w⟩ ⩾ 0 and ana-
lyse the discriminant of the quadratic expression for λ.

(ii) Then prove that V is a normed space with norm ∥v∥ := ⟨v, v⟩ 1
2 .

(iii) Which of the above norms ∥·∥1, ∥·∥2, ∥·∥∞ from Ex. 1.8 can be obtained
from an inner product as described in the previous item?

There is a natural name for a class of maps, which preserve metrics:
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Definition 1.11 (Isometry). Let (X,dX) and (Y,dY) be two metric spaces. A
map ϕ : X→ Y is an isometry if

dY(ϕ(x1),ϕ(x2)) = dX(x1, x2) for all x1, x2 ∈ X.
A metric space (X,dX) is isometric to a metric space (Y,dY) if there is an
isometry bijection between X and Y.

1.1.2. Open and closed sets.

Definition 1.12 (Open and closed balls). Let (X,d) be a metric space, let
x ∈ X and let r > 0. The open ball centred at x, with radius r, is the set

Br(x) = {y ∈ X : d(x,y) < r},

and the closed ball is the set

Br(x) = {y ∈ X : d(x,y) ⩽ r}.

A trivial but useful observation is: x ∈ Br(x) ⊂ Br(x) for all x ∈ X and r > 0.
Note that in R with the usual metric the open ball is Br(x) = (x − r, x + r), an

open interval, and the closed ball is Br(x) = [x− r, x+ r], a closed interval.
For the d2 metric on R2, the unit ball, B1(0), is disc centred at the origin, excluding

the boundary. You may like to think about what you get for other metrics on R2.

Definition 1.13 (Open sets). A subset U of a metric space (X,d) is said to be
open, if for each point x ∈ U there is an r > 0 such that the open ball Br(x) is
contained in U (“room to swing a cat”).

Clearly X itself is an open set, that is the whole metric space is open in itself. Also
by convention the empty set ∅ is also considered to be open.

Remark 1.14. Note that the property “be open” of a set depends on the metric
space. For example if we consider the set [0, 1] it is open in the metric space [0, 1]
with the standard metric, but not open in the set R with standard metric.

Proposition 1.15. Every “open ball” Br(x) is an open set.

Proof. For if y ∈ Br(x), choose δ = r− d(x,y). We claim that Bδ(y) ⊂ Br(x).
If z ∈ Bδ(y), i.e., d(z,y) < δ, then by the triangle inequality

d(z, x) ⩽ d(z,y) + d(y, x) < δ+ d(x,y) = r.
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So z ∈ Br(x). □

Definition 1.16 (Closed set). A subset F of (X,d) is said to be closed, if its
complement X \ F is open.

Note that closed does not mean “not open”. In a metric space the sets ∅ and X
are both open and closed. In R we have:
(a,b) is open.
[a,b] is closed, since its complement (−∞,a) ∪ (b,∞) is open.
[a,b) is not open, since there is no open ball B(a, r) contained in the set. Nor it

is closed, since its complement (−∞,a)∪ [b,∞) isn’t open (no ball centred
at b can be contained in the set).

Remark 1.17. As it can be seen from the definitions the property of a subset F to
be open or closed depends from the surrounding space X. For example:

• The interval [0, 1) is open as a subset of the space [0, 2] and is not open
as a subset of R (both are taken with the usual metric).

• The same interval [0, 1) is closed as a subset of the space (−1, 1) and is
not open as subset R (again, both are taken with the usual metric).

Example 1.18. If we take the discrete metric,

d(x,y) =

{
1 if x ̸= y,
0 if x = y,

then each point {x} = B1/2(x) so is an open set. Hence every set U is open, since
for x ∈ Uwe have B1/2(x) ⊆ U. Hence, by taking complements, every set is also
closed.

Theorem 1.19. In a metric space, every one-point set {x0} is closed.

Proof. We need to show that the set U = {x ∈ X : x ̸= x0} is open, so take a
point x ∈ U. Now d(x, x0) > 0, and the ball Br(x) is contained in U for every
0 < r < d(x, x0). □

Theorem 1.20. Let (Uα)α∈A be any collection of open subsets of a metric space
(X,d) (not necessarily finite!). Then

⋃
α∈AUα is open. Let U and V be open

subsets of a metric space (X,d). Then U ∩ V is open. Hence (by induction) any
finite intersection of open subsets is open.
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Proof. If x ∈ ⋃
α∈AUα then there is an α with x ∈ Uα. Now Uα is open, so

Br(x) ⊂ Uα for some r > 0. Then Br(x) ⊂
⋃

α∈AUα so the union is open.
If now U and V are open and x ∈ U ∩ V , then ∃r > 0 and s > 0 such that
Br(x) ⊂ U and B(x, s) ⊂ V , since U and V are open. Then B(x, t) ⊂ U ∩ V if
t ⩽ min(r, s). □

Remark 1.21. Here we used a common property, which is helpful to remember:
the minimum of a finite set of positive numbers is always positive. However,
the infimum of an infinite set of positive numbers can be zero, e.g. inf{ 1

n
: n ∈

N} = 0. Therefore, a transition from a given infinite set to a suitable finite set
will be a reacquiring theme in our course, cf. compact set later in the course.

So the collection of open sets is preserved by arbitrary unions and finite intersec-
tions.

However, an arbitrary intersection of open sets is not always open; for example
(− 1

n
, 1
n
) is open for each n = 1, 2, 3, . . ., but

⋂∞
n=1(−

1
n
, 1
n
) = {0}, which is not an

open set.
For closed sets we swap union and intersection.

Theorem 1.22. Let (Fα)α∈A be any collection of closed subsets of a metric space
(X,d) (not necessarily finite!). Then

⋂
α∈A Fα is closed. Let F and G be closed

subsets of a metric space (X,d). Then F ∪ G is closed. Hence (by induction) any
finite union of closed subsets is closed.

Proof. To prove this we recall de Morgan’s laws. We use the notation Sc for the
complement X \ S of a set S ⊂ X.

x ̸∈
⋃
α

Aα ⇐⇒ x ̸∈ Aα for all α, so (
⋃
Aα)

c =
⋂
Ac

α.

x ̸∈
⋂
α

Aα ⇐⇒ x ̸∈ Aα for some α, so (
⋂
Aα)

c =
⋃
Ac

α.

Write Uα = Fcα = X \ Fα which is open. So
⋃

α∈AUα is open by Theorem 1.20.
Now, by de Morgan’s laws, (

⋂
α∈A Fα)

c =
⋃

α∈A F
c
α. This is just

⋃
α∈AUα. Since

its complement is open,
⋂

α∈A Fα is closed.
Similarly, the complement of F ∪ G is Fc ∩ Gc, which is the intersection of two
open sets and hence open by Theorem 1.20. Hence F ∪G is closed. □

Infinite unions of closed sets do not need to be closed. An example is

∞⋃
n=1

[
1

n
,∞) = (0,∞),
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which is open but not closed.

Definition 1.23 (Closure of a set). The closure of S, written S, is the smallest
closed set containing S, and is contained in all other closed sets containing
S.

The above smallest closed set containing S does exist, because we can define

S =
⋂

{F : F ⊃ S, F closed},

the intersection of all closed sets containing S. There is at least one, namely X itself.

Example 1.24. In the metric space R the closure of S = [0, 1) is [0, 1]. This is
closed, and there is nothing smaller that is closed and contains S.

Definition 1.25 (Dense subset). A subset S ⊂ X is dense in X if S = X.

Theorem 1.26. The set Q of rationals is dense in R, with the usual metric.

Proof. Suppose that F is a closed subset of R which contains Q: we claim that it
F = R.
For U = R \ F is open and contains no points of Q. But an open set U (unless it
is empty) must contain an interval Br(x) for some x ∈ U, and hence a rational
number.
Our only conclusion is that U = ∅ and F = R, so that Q = R. □

Definition 1.27 (Neighbourhood). We say that V is a neighbourhood (nbh) of
x if there is an open set U such that x ∈ U ⊆ V ; this means that ∃δ > 0 s.t.
Bδ(x) ⊆ V . Thus a set is open precisely when it is a neighbourhood of each
of its points.

Example 1.28. The half-open interval [0, 1) is a neighbourhood of every point in
it except for 0.

Theorem 1.29. For a subset S of a metric space X, we have x ∈ S iff V ∩ S ̸= ∅ for
all nhds V of x (i.e., all neighbourhoods of x meet S).
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Proof. If there is a neighbourhood of x that doesn’t meet S, then there is an open
subset Uwith x ∈ U and U ∩ S = ∅.
But then X \ U is a closed set containing S and so S ⊂ X \ U, and then x /∈ S
because x ∈ U.
Conversely, if every neighbourhood of x does meet S, then x ∈ S, as otherwise
X \ S is as open neighbourhood of x that doesn’t meet S. □

Definition 1.30 (Interior). The interior of S, intS, is the largest open set con-
tained in S, and can be written as

intS =
⋃

{U : U ⊂ S,U open}.

the union of all open sets contained in S. There is at least one, namely ∅.

We see that S is open exactly when S = intS, otherwise intS is smaller.

Example 1.31. (i) In the metric space R we have int[0, 1) = (0, 1); clearly
this is open and there is no larger open set contained in [0, 1).

(ii) intQ = ∅. For any non-empty open set must contain an interval Br(x)
and then it contains an irrational number, so isn’t contained in Q.

Proposition 1.32. intS = X \ (X \ S).

Proof. By De Morgan’s laws,

intS =
⋃

{U : U ⊂ S,U open}

= X \
⋂

{Uc : U ⊂ S,U open}

= X \
⋂

{F : F ⊃ X \ S, F closed} = X \ (X \ S).

This is because U ⊂ S if and only if Uc = X \ U ⊃ X \ S. Also F = Uc is closed
precisely when U is open. That is, there is a correspondence between open sets
contained in S and closed sets containing its complement. □

1.1.3. Convergence and continuity. Let (xn) be a sequence in a metric space (X,d),
i.e., x1, x2, . . .. (Sometimes we may start counting at x0.)

Definition 1.33 (Convergence). We say xn → x (i.e., xn converges to x) if
d(xn, x) → 0 as n→ ∞.
In other words: xn → x if for any ε > 0 there exists N ∈ N such that for all
n > Nwe have d(x, xn) < ε.
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This is the usual notion of convergence if we think of points in Rd with the
Euclidean metric.

Theorem 1.34. Let (xn) be a sequence in a metric space (X,d). Then the following
are equivalent:

(i) xn → x;
(ii) for every open U with x ∈ U, there exists an N > 0 such that (n >

N) =⇒ xn ∈ U;
(iii) for every ε > 0 there exists an N > 0 such that (n > N) =⇒ xn ∈

Bε(x).

Proof. 1.34(i) ⇒ 1.34(ii) If xn → x and x ∈ U, then there is a ball Bε(x) ⊂ U, since
U is open. But xn → x so d(xn, x) < ε for n sufficiently large, i.e., xn ∈ U for n
sufficiently large.
1.34(ii) ⇒ 1.34(iii) is obvious.
Finally, 1.34(iii) ⇒ 1.34(i). If the 1.34(iii) condition works for a given ε > 0 and
large n the inclusion xn ∈ Bε(x) implies d(xn, x) < ε. □

Theorem 1.35. Let S be a subset of the metric space X. Then x ∈ S if and only if
there is a sequence (xn) of points of S with xn → x.

Proof. If x ∈ S, then for each n we have B 1
n
(x) ∩ S ̸= ∅ by Theorem 1.29. So

choose xn ∈ B 1
n
(x) ∩ S. Clearly d(xn, x) → 0, i.e., xn → x.

Conversely, if x ̸∈ S, then there is a neighbourhood U of x with U ∩ S = ∅. Now
no sequence in S can get into U so it cannot converge to x. □

This can also be phrased as follows, characterising closed set in terms of se-
quences.

Corollary 1.36 (Closedness under taking limits). A subset Y ⊂ X of a metric
space (X,d) is closed if and only if for every sequence (xn) in Y that is convergent
in X its limit is also in Y.

Hence, the closure S is obtained from S by adding all possible limit points of
sequences in S.

Example 1.37. (i) Take (R2,d1), where d1(x,y) = |x1−y1|+|x2−y2|, where
x = (x1, x2) and y = (y1,y2), and consider the sequence ( 1

n
, 2n+1

n+1 ). We
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guess its limit is (0, 2). To see if this is right, look at

d1

((
1

n
,
2n+ 1

n+ 1

)
, (0, 2)

)
=

∣∣∣∣ 1n
∣∣∣∣+ ∣∣∣∣2n+ 1

n+ 1
− 2

∣∣∣∣ = 1

n
+

1

n+ 1
→ 0

as n→ ∞. So the limit is (0, 2).
(ii) In C[0, 1] let fn(t) = tn and f(t) = 0 for 0 ⩽ t ⩽ 1. Does fn → f, (a) in

d1, and (b) in d∞?

(a)

d1(fn, f) =

1∫
0

tn dt =
1

n+ 1
→ 0

as n→ ∞. So fn → f in d1.

(b)
d∞(fn, f) = max{tn : 0 ⩽ t ⩽ 1} = 1 ̸→ 0

as n→ ∞. So fn ̸→ f in d∞.

Note: Say gn → g pointwise on [a,b] as n → ∞ if gn(x) → g(x)

for all x ∈ [a,b]. If we define g(x) =

{
0 for 0 ⩽ x < 1,

1 for x = 1,
then fn → g

pointwise on [0, 1]. But g ̸∈ C[0, 1], as it is not continuous at 1.
(iii) Take the discrete metric

d0(x,y) =

{
1 if x ̸= y,
0 if x = y.

Then xn → x ⇐⇒ d0(xn, x) → 0. But since d0(xn, x) = 0 or 1, this
happens if and only if d0(xn, x) = 0 for n sufficiently large. That is,
there is an n0 such that xn = x for all n ⩾ n0.

All convergent sequences in this metric are eventually constant. So,
for example d0(1/n, 0) ̸→ 0.

A result on convergence in Rm.

Proposition 1.38. Take R2 with any of the metrics d1, d2 and d∞. Then a sequence
xn = (an,bn) converges to x = (a,b) if and only if an → a and bn → b.

Proof. A useful observation is that for any xn and x:

d1(xn, x) ⩾ d2(xn, x) ⩾ d∞(xn, x).
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If an → a and bn → b, then for any ε > 0 there are Na and Nb such that for
N > Na we have |an − a| < ε/2 and for n > Nb |bn − b| < ε/2. Thus for any
n > N = max(Na,Nb):

ε > |an − a|+ |bn − b| = d1(xn, x) ⩾ d2(xn, x) ⩾ d∞(xn, x),

which shows the convergence in all three metrics.
To show the opposite, WLOG assume towards a contradiction that an ̸→ a, that
is, there exits ε > 0 such that for anyN there exists n > N such that |an − a| > ε.
Then:

d1(xn, x) ⩾ d2(xn, x) ⩾ d∞(xn, x) = max{|an − a| , |bn − b|} > |an − a| > ε

showing the divergence in all three norms.
□

A similar result holds for Rm in general.
Now let’s look at continuous functions again.

Theorem 1.39. If fn → f in (C[a,b],d∞), then fn → f in (C[a,b],d1).
Informally speaking, d∞ convergence is stronger than d1 convergence.

Proof. d∞(fn, f) = max{|fn(x) − f(x)| : a ⩽ x ⩽ b} → 0 as n → ∞, so, given
ε > 0 there is an N so that d∞(fn, f) < ε for n ⩾ N. It follows that if n ⩾ N then

d1(fn, f) =

b∫
a

|fn(x) − f(x)|dx ⩽

b∫
a

ε dx = ε(b− a),

so d1(fn, f) → 0 as n→ ∞. □

Remark 1.40. It is also true that if d∞(fn, f) → 0 then fn → f point-wise on [a,b].
The converse is false, cf. 1.37(1.37(ii)).

Now we look at continuous functions between general metric spaces.

Definition 1.41 (Continuity). Let f : (X,dX) → (Y,dY) be a map between
metric spaces. We say that f is continuous at x ∈ X if for each ε > 0 there is
a δε,x > 0 such that dY(f(x ′), f(x)) < ε for all x ′ ∈ X whenever dX(x ′, x) <
δε,x.

Another way of saying the same is that for every ε > 0 there exists a δ > 0 such
that

f(Bδ(x)) ⊂ Bε(f(x)).

The map f is continuous, if it is continuous at all points of X.
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Theorem 1.42 (Sequential continuity). For f as above, f is continuous at a if
and only if, whenever a sequence xn → a, then f(xn) → f(a).
In short, f is continuous at a if and only if f permutes with the limit:

(1.1) f
(
lim
n→∞ xn

)
= lim

n→∞ f (xn)
for any sequence xn → a.

Proof. Same proof as in real analysis, more or less. If f is continuous at a and
xn → a, then for each ε > 0 we have a δ > 0 such that dY(f(x), f(a)) < ε
whenever dX(x,a) < δ.
Then there’s an n0 with d(xn,a) < δ for all n ⩾ n0, and so d(f(xn), f(a)) < ε for
all n ⩾ n0. Thus f(xn) → f(x).
Conversely, if f is not continuous at a, then there is an ε for which no δ will do,
so we can find xn with d(xn,a) < 1

n
, but d(f(xn), f(a)) ⩾ ε. Then xn → a but

f(xn) ̸→ f(a). □

But there is a nicer way to define continuity. For a mapping f : X → Y and a set
U ⊂ Y, let f−1(U) be the set

f−1(U) = {x ∈ X : f(x) ∈ U}.
This makes sense even if f−1 is not defined as a function.

Theorem 1.43 (Continuity and open sets). A function f : X→ Y is continuous
if and only if f−1(U) is open in X for every open subsetU ⊂ Y. In short: the inverse
image of an open set is open.

Proof. Suppose that f is continuous, that U ⊂ Y is open, and that x0 ∈ f−1(U),
so f(x0) ∈ U. Now there is a ball Bε(f(x0)) ⊂ U, since U is open, and then by
continuity there is a δ > 0 such that dY(f(x), f(x0)) < ε whenever dX(x, x0) < δ.
This means that for d(x, x0) < δ, f(x) ∈ U and so x ∈ f−1(U). That is, f−1(U) is
open.
Conversely, if the inverse image of an open set is open, and x0 ∈ X, let ε > 0 be
given. We know that Bε(f(x0)) is open, so f−1(B(f(x0), ε)) is open, and contains
x0. So it contains some Bδ(x0) with δ > 0.
But now if d(x, x0) < δ, we have x ∈ Bδ(x0) ⊂ f−1(Bε(f(x0))) so f(x) ∈ Bε(f(x0))
and we have d(f(x), f(x0)) < ε. □

Remark 1.44. Note that for f continuous we do not expect f(U) to be open for all
open subsets of X, for example f : R → R, f ≡ 0, then f(R) = {0}, not open.
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Example 1.45. Let X = R with the discrete metric, and Y any metric space. Then
all functions f : X→ Y are continuous! Indeed, in either way:

• Because the inverse image of an open set is an open set, since all sets
are open.

• Because whenever xn → x0 we have xn = x0 for n large, so obviously
f(xn) → f(x0).

Exercise 1.46. Which functions from a metric spaceX to the discrete metric space
Y = R are continuous?

Proposition 1.47. Let X and Y be metric spaces.
(i) A function f : X → Y is continuous if and only if f−1(F) is closed

whenever F is a closed subset of Y.
(ii) If f : X → Y and g : Y → Z are continuous, then so is the composition

g ◦ f : X→ Z defined by (g ◦ f)(x) = g(f(x)).

Proof. (i) We can do this by complements, as if F is closed, then U = Fc is
open, and f−1(F) = f−1(U)c (a point is mapped into F if and only if it
isn’t mapped into U).

Then f−1(F) is always closed when F is closed ⇐⇒ f−1(U) is always
open when U is open.

(ii) Take U ⊂ Z open; then (g ′f)−1(U) = f−1(g−1(U)); for these are the
points which map under f into g−1(U) so that they map under g ′f into
U.

Now g−1(U) is open in Y, as g is continuous, and then f−1(g−1(U))
is open in X since f is continuous.

□

In many cases we may need a stronger notion.

Definition 1.48 (Uniform continuity). A function f : (X,dX) → (Y,dY) is
called uniformly continuous if for each ε > 0 there exists δε > 0 such that
whenever x, x ′ ∈ X satisfy dX(x, x ′) ⩽ δε, we have that dY(f(x), f(x ′)) ⩽ ε.

Note, that here the same δε shall work for all x ∈ X. Thus any uniformly continu-
ous function is continuous at every point. On the other hand the function f(x) = 1

x

on (0, 1) is continuous but not uniformly continuous.

1.2. Useful properties of metric spaces. Metric spaces may or may not have some
useful properties which we are discussing in the following subsections: completeness
and compactness.
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1.2.1. Cauchy sequences and completeness. Recall that if (X,d) is a metric space, then
a sequence (xn) of elements of X converges to x ∈ X if d(xn, x) → 0, i.e., if given
ε > 0 there exists N such that d(xn, x) < ε whenever n ⩾ N. Thus, to show that a
sequence is convergent from the definition we need to present its limit xwhich may
not belong to the sequence (xn). It would be convenient to deduce convergence of
(xn) just through its own properties without a reference to extraneous x. This is
possible for complete metric spaces studied in this subsection.

Often we think of convergent sequences as ones where xn and xm are close to-
gether when n and m are large. This is almost, but not quite, the same thing in a
general metric space.

Definition 1.49 (Cauchy Sequence). A sequence (xn) in a metric space (X,d)
is a Cauchy sequence if for any ε > 0 there is anN such that d(xn, xm) < ε for
all n,m ⩾ N.

Example 1.50. Take xn = 1/n in R with the usual metric. Now d(xn, xm) =∣∣ 1
n
− 1

m

∣∣. Suppose that n and m are both at least as big as N; then d(xn, xm) ⩽
1/N. Hence if ε > 0 and we take N > 1/ε, we have d(xn, xm) ⩽ 1/N < ε
whenever n andm are both ⩾ N.

In fact all convergent sequences are Cauchy sequences, by the following result.

Theorem 1.51. Suppose that (xn) is a convergent sequence in a metric space
(X,d), i.e., there is a limit point x such that d(xn, x) → 0. Then (xn) is a Cauchy
sequence.

Proof. Take ε > 0. Then there is an N such that d(xn, x) < ε/2 whenever n ⩾ N.
Now suppose both n ⩾ N andm ⩾ N. Then

d(xn, xm) ⩽ d(xn, x) + d(x, xm) = d(xn, x) + d(xm, x) < ε/2+ ε/2 = ε,

and we are done. □

Proposition 1.52. Every subsequence of a Cauchy sequence is a Cauchy sequence.

Proof. If (xn) is Cauchy and (xnk
) is a subsequence, then given ε > 0 there is

an N such that d(xn, xm) < ε whenever n,m ⩾ N. Now there is a K such that
nk ⩾ Nwhenever k ⩾ K. So d(xnk

, xnl
) < εwhenever k, l ⩾ K. □

Does every Cauchy sequence converge?
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Example 1.53. (i) (X,d) = Q, as a subspace of R with the usual metric.
Take x0 = 2 and define xn+1 = xn

2 + 1
xn

. The sequence continues 3/2,
17/12, 577/408, . . . and indeed the sequence converges in R as xn → x

where x = x
2 + 1

x
, i.e., x2 = 2. But this isn’t in Q.

Thus (xn) is Cauchy in R, since it converges to
√
2 when we think of

it as a sequence in R. So it is Cauchy in Q, but doesn’t converge to a
point of Q.

(ii) Easier. Take (X,d) = (0, 1). Then
(
1
n

)
is a Cauchy sequence in X (since

it is Cauchy in R, as seen above), and has no limit in X.
In each case there are “points missing from X”.

Definition 1.54 (Completeness). A metric space (X,d) is complete if every
Cauchy sequence in X converges to a limit in X.

Theorem 1.55. The metric space R is complete.

Remark 1.56. In parts of the literature R is simply defined as the completion of
Q. In this case one does not have to prove that R is complete, but it is complete
by construction. One then has to work a bit to show that it is also a field.

This is a result from the first year. Since its proof depends on the definition of R
we will not demonstrate it here.

Example 1.57. (i) Open intervals in R are not complete; closed intervals
are complete.

(ii) What about C[a,b] with d1, d2 or d∞?
Following our consideration in Ex. 1.37.1.37(ii), define fn in C[0, 2]

by

fn(x) =

{
xn for 0 ⩽ x ⩽ 1,

1 for 1 ⩽ x ⩽ 2.

[DIAGRAM]
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Then

d1(fn, fm) =

2∫
0

|fn(x) − fm(x)|dx

=

1∫
0

|xn − xm|dx

=

1∫
0

(xm − xn)dx if n ⩾ m

=
1

m+ 1
−

1

n+ 1
⩽

1

m+ 1
→ 0,

and hence (fn) is Cauchy in (C[0, 2],d1). Does the sequence converge?

If there is an f ∈ C[0, 2] with fn → f as n → ∞, then

2∫
0

|fn(x) −

f(x)|dx → 0, so

1∫
0

and

2∫
1

both tend to zero. So fn → f in (C[0, 1],d1),

which means that f(x) = 0 on [0, 1] (from an example we did earlier).
Likewise, f = 1 on [1, 2], which doesn’t give a continuous limit.

(iii) Similarly, (C[a,b],d1) is incomplete in general. Also it is incomplete in
the d2 metric, as the same example shows (a similar calculation with
squares of functions). We will see later that it is complete in the d∞
metric.

Remark 1.58. Note that R2 is also complete with any of the metrics d1, d2 and
d∞; since a Cauchy/ convergent sequence (vn) = (xn,yn) in R2 is just one in
which both (xn) and (yn) are Cauchy/ convergent sequences in R (cf. Prop.
1.38).
Similar arguments show that Rk is also complete for k = 1, 2, 3, . . ., and (with
the same proof as for Corollary) all closed subsets of Rk are complete.

If a metric space (X,d) is not complete one can always pass to its abstract com-
pletion in the following sense.

Proposition 1.59 (Abstract completion). Any metric space (X,d) is isometric to
a dense subspace of a complete metric space, which is called its abstract completion
if (X,d).
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Sketch of proof. We describe a metric space (X
′
,d

′
) in which X is isometric to a

dense subset. Consider the space X̃ of Cauchy sequences of X. We define an
equivalence relation ∼ on X̃ by

(xn) ∼ (yn) ⇔ d(xn,yn) → 0.

The set X
′

is defined to be the set of equivalence classes [(xn)]. It has a well
defined metric given by

d
′
([(xn)], [(yn)]) := lim

n→∞d(xn,yn).
One checks easily that this is metric and is well defined (does not depend on
the chosen representative xn of [(xn)]). Now there is an injective map X →
X

′
defined by sending x to the constant sequence (x, x, x, . . .). This map is an

isometry. We can therefore think of (X,d) as a subset of (X
′
,d

′
). This subset is

dense because every Cauchy sequence can be approximated by a sequence of
constant sequences. So the only difficult bit in this construction is to show that
(X

′
,d

′
) is complete. We will sketch the construction of a limit here. It turns out

that it verifies completeness on a dense set.

Lemma 1.60. Suppose that (X,d) is a metric space and let Y ⊂ X be a dense
set with the property that every Cauchy sequence in Y has a limit in X. Then
(X,d) is complete.

Proof. Let (xn) be a Cauchy sequence in X. Now replace xn with another
sequence yn in Y such that d(xn,yn) < 1

n
. Then, by the triangle inequality,

yn is again a Cauchy sequence and converges, by assumption, to some x ∈ X.
Then also xn converges to x. □

Let us turn to the proof of completeness of X ′. Suppose that (xn)
is a Cauchy sequence in X. Then, in X ′ this sequence has the form
((x1, x1, . . .), (x2, x2, . . .), (x3, x3, . . .), . . .). This sequence has a limit, namely, (xn)
itself. □

Exercise 1.61 (Extension by continuity). Let (X,d) be a metric space and X1 be
a dense subset of X. Let f : X1 → Y be a uniformly continuous function to a
complete metric space (Y,d ′). Show that there is a unique function f̃ : X → Y
which satisfies two properties:

(i) restriction of f̃ to X1 coincides with f, that is f̃(x) = f(x) for all x ∈ X1;
(ii) f̃ is continuous on X.

Furthermore, it can be shown that f̃ is uniformly continuous on X. We will call f̃
the extension of f by continuity and will often keep the same letter f to denote f̃.

There are many important consequences of Ex. 1.61, in particular the following.
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Corollary 1.62. All abstract completions of a metric space (X,d) are isometric, in
other words, the abstract completions is unique up to isometry.

1.2.2. Compactness. Accordingly to a dictionary: compact—closely and firmly united
or packed together. For a metric space a meaning of “closely and firmly united”
can be defined in several different forms—through open coverings or convergent
subsequences—and we will see that these interpretations are equivalent.

An open cover of a metric space (X,d) is a family of open sets (Uα)α∈I such that⋃
α∈I

Uα = X.

A subcover of a cover is a subset I ′ ⊂ I of the index set such that (Uα)α∈I′ is still a
cover.

Definition 1.63 (Compactness). A metric space (X,d) is called compact if
every open cover has a finite subcover.

Informally: a space is compact if any infinite open covering is excessive and can
be reduced just to a finite one. An example of a compact set is [0, 1] and example of
non-compact—all reals or the open interval (0, 1). An importance of this concept is
clarified by Rem. 1.21.

Definition 1.64 (Sequential Compactness). A metric space (X,d) is called
sequentially compact if every sequence (xn)n∈N in X has a convergent sub-
sequence.

Informally: a space is sequentially compact if there is no room to place infinite
number of points sufficiently apart from each other to avoid their condensation to a
limit. Taking the sequence xn = n shows that the set of all reals is not sequentially
compact. On the other hand, we know from previous years that bounded closed
set in Rn every sequence has a convergent subsequence. Therefore, bounded closed
sets in Rn are sequentially compact.

Exercise 1.65. What are compact sets in a discrete metric space? What are se-
quentially compact sets in a discrete metric space?

Lemma 1.66. Let (X,d) be a sequentially compact metric space. Then for every
ε > 0 there exist finitely many points x1, . . . , xn such that {Bε(xi) | i = 1, . . . ,n}
is a cover.
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Proof. Suppose this were not the case. Then there would exist an ε > 0 such that
for any finite number of points x1, . . . , xn the collection of balls Bε(xi) does not
cover, i.e.

n⋃
i=1

Bε(xi) ̸= X.

Starting with n = 1 and then inductively adding points that are in the comple-
ment of ∪n

i=1Bε(xi) we end up with an infinite sequence of points xi such that
d(xi, xk) ⩾ ε. This sequence cannot have a Cauchy subsequence (required for
convergence) in contradiction with the sequential compactness of X. □

Theorem 1.67. A metric space (X,d) is compact if and only if it is sequentially
compact.

Proof. We show the two directions separately.
Compactness implies sequential compactness: Suppose that X is compact and
let (xi)i∈N be a sequence. We want to show that it has a convergent subsequence.
Suppose (xi) did not have a convergent subsequence. Then no point x is an
accumulation point, i.e. a limit of a subsequence. Therefore, for each x ∈ X there
exists an ε(x) > 0 such that only finitely many i ∈ N for which xi ∈ Bε(x). Since
(Bε(x))x∈X is an open cover it has a finite subcover, that is a finite number of
balls with a finite number of xi in each. This contradicts to the infinite number
of elements in the sequence (xi).
Sequential compactness implies compactness: This implication is quite tricky.
The proof is again by contradiction. Let us assume our space is sequentially
compact and there exists a cover Uα that does not have a finite subcover. By
the above lemma there are finitely many points x1, . . . , xN1

such that B1(xi) is a
cover. Each of the balls B1(xi) is covered by Uα as well. Since our cover does
not have a finite subcover one of the balls B1(xi) does not have a finite subcover.
Denote the relevant point xi by z1.
Again there are finitely many points x ′1, . . . , x ′N2

such that B 1
2
(xi) is a cover of

X. The collection of sets B1(z1) ∩ B 1
2
(xi), with i = 1, . . . ,N2 is also a covering

of B1(z1). In the same way as before there is at least one of the xi, such that
B1(z1)∩B 1

2
(z2) can not be covered by a finite subcover ofUα. Call that point z2.

Continuing like this we construct a sequence of points zi such that none of the
sets

B1(z1) ∩ B 1
2
(z2) ∩ . . . ∩ B 1

N
(zN)

can be covered by a finite subcover of Uα.
By assumption the sequence (zi) has a convergent subsequence. Say z is a limit
point of that subsequence. Since Uα is an open cover the point z is contained
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in one of the Uα and of course that means that an open ball Bε(z) around z is
contained in Uα for some ε > 0.
Now we show that there exits an N ∈ N such that B 1

N
(zN) is a subset of Uα

(this will be the desired contradiction!). Indeed, choose N large enough so that
d(zN, z) + 1

N
< ε. Then x ∈ B 1

N
(zN) implies that d(x, z) ⩽ d(zN, z) + d(x, zN) <

d(zN, z) + 1
N
< ε. This means in particular that

B1(z1) ∩ B 1
2
(z2) ∩ . . . ∩ B 1

N
(zN)

is a subset of Uα. Thus, there is a subcover of the set B1(z1) ∩ . . . ∩ B 1
N
(zN)

consisting of one element Uα. This is a contradiction as we constructed the
sequence of balls in such a way that these sets cannot be covered by a finite
number of the Uα. □

Definition 1.68 (Boundedness). A subset A ⊂ X of a metric space is called
bounded if there exists x0 ∈ X and C > 0 such that for all x ∈ A we have
d(x0, x) ⩽ C.

Remark 1.69. One can easily see, using the triangle inequality, that the reference
point x0 can be chosen as any point in X. This means if A ⊂ X is bounded and
x0 ∈ X, then there exist a C > 0 such that d(x0, x) ⩽ C for any x ∈ A.

Theorem 1.70. Suppose that A ⊂ X is a compact subset of a metric space. Then A
is closed and bounded.

Proof. First we show A is bounded. Choose any x0 ∈ X and note that the set
Bn(x0) indexed by n ∈ N is an open cover of A. Hence, there exists a finite sub-
cover¡ Bn1

(x0), . . . ,BnN
(x0). Hence, A ⊂ BC(x0), where C = max{n1, . . . , cN}.

Hence, A is bounded.
Next assume that (xk) is a sequence inA that converges in X. SinceA is compact
there exists a subsequence that converges in A. Hence, the limit of xk must also
be in A. Therefore, A is closed. □

The converse of this statement is not correct in general. It is however famously
correct in Rm.

Theorem 1.71 (Heine–Borel). A subset K ⊂ Rm is compact if and only if it is
closed and bounded.

Proof. We just need to combine the above statements. We have already shown
that compactness implies closedness and boundedness. If K is closed and
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bounded we know from Analysis that it is sequentially compact. Therefore it
is compact. □

As an illustration of further nice properties of compact spaces we mention the
following result:

Exercise 1.72. (i) Any continuous function on a compact set is bounded.
(ii) Any continuous function f : K→ X from a compact space K to a metric

space X is uniformly continuous.

Remark 1.73. Note that there are two different sorts of properties of metric
spaces:

• the first sort of absolute properties can be verified on a metric space it-
self;

• the second sort of relative properties is meaningful only for subsets of
another metric spaces. Such a property may be true for X as a subspace
of X but false if X is considered as a subspace of a different space Z.

Completeness and compactness are of the first sort, closedness is of the second,
cf. Rem 1.17.

2. BASICS OF LINEAR SPACES

A person is solely the concentration of an infinite set of interre-
lations with another and others, and to separate a person from
these relations means to take away any real meaning of the
life.

Vl. Soloviev

A space around us could be described as a three dimensional Euclidean space.
To single out a point of that space we need a fixed frame of references and three real
numbers, which are coordinates of the point. Similarly to describe a pair of points
from our space we could use six coordinates; for three points—nine, end so on.
This makes it reasonable to consider Euclidean (linear) spaces of an arbitrary finite
dimension, which are studied in the courses of linear algebra.

The basic properties of Euclidean spaces are determined by its linear and metric
structures. The linear space (or vector space) structure allows to add and subtract vec-
tors associated to points as well as to multiply vectors by real or complex numbers
(scalars).

The metric space structure assign a distance—non-negative real number—to a pair
of points or, equivalently, defines a length of a vector defined by that pair. A metric
(or, more generally a topology) is essential for definition of the core analytical no-
tions like limit or continuity. The importance of linear and metric (topological)
structure in analysis sometime encoded in the formula:

(2.1) Analysis = Algebra + Geometry .

math1060.html
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On the other hand we could observe that many sets admit a sort of linear and
metric structures which are linked each other. Just few among many other ex-
amples are:

• The set of convergent sequences;
• The set of continuous functions on [0, 1].

It is a very mathematical way of thinking to declare such sets to be spaces and call their
elements points.

But shall we lose all information on a particular element (e.g. a sequence {1/n})
if we represent it by a shapeless and size-less “point” without any inner config-
uration? Surprisingly not: all properties of an element could be now retrieved not
from its inner configuration but from interactions with other elements through linear
and metric structures. Such a “sociological” approach to all kind of mathematical
objects was codified in the abstract category theory.

Another surprise is that starting from our three dimensional Euclidean space and
walking far away by a road of abstraction to infinite dimensional Hilbert spaces we
are arriving just to yet another picture of the surrounding space—that time on the
language of quantum mechanics.

The distance from Manchester to Liverpool is 35 miles—just
about the mileage in the opposite direction!

A tourist guide to England

2.1. Banach spaces (basic definitions only). The following definition generalises
the notion of distance known from the everyday life.

Definition 2.1. A metric (or distance function) d on a set M is a function d :
M×M→ R+ from the set of pairs to non-negative real numbers such that:

(i) d(x,y) ⩾ 0 for all x, y ∈M, d(x,y) = 0 implies x = y .
(ii) d(x,y) = d(y, x) for all x and y inM.

(iii) d(x,y)+d(y, z) ⩾ d(x, z) for all x, y, and z inM (triangle inequality).

Exercise 2.2. Let M be the set of UK’s cities are the following function are met-
rics onM:

(i) d(A,B) is the price of 2nd class railway ticket from A to B.
(ii) d(A,B) is the off-peak driving time from A to B.

The following notion is a useful specialisation of metric adopted to the linear
structure.

Definition 2.3. Let V be a (real or complex) vector space. A norm on V is a
real-valued function, written ∥x∥, such that

http://plato.stanford.edu/entries/category-theory/
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(i) ∥x∥ ⩾ 0 for all x ∈ V , and ∥x∥ = 0 implies x = 0.
(ii) ∥λx∥ = |λ| ∥x∥ for all scalar λ and vector x.

(iii) ∥x+ y∥ ⩽ ∥x∥+ ∥y∥ (triangle inequality).
A vector space with a norm is called a normed space.

The connection between norm and metric is as follows:

Proposition 2.4. If ∥·∥ is a norm on V , then it gives a metric on V by d(x,y) =
∥x− y∥.

(a)

d(a, c)

d(a, b)

d(b, c)

(b)

~x+ ~y

~y

~x

FIGURE 1. Triangle inequality in metric (a) and normed (b) spaces.

Proof. This is a simple exercise to derive items 2.1(i)–2.1(iii) of Definition 2.1
from corresponding items of Definition 2.3. For example, see the Figure 1 to
derive the triangle inequality. □

An important notions known from real analysis are limit and convergence. Par-
ticularly we usually wish to have enough limiting points for all “reasonable” se-
quences.

Definition 2.5. A sequence {xk} in a metric space (M,d) is a Cauchy sequence,
if for every ϵ > 0, there exists an integer n such that k, l > n implies that
d(xk, xl) < ϵ.

Definition 2.6. (M,d) is a complete metric space if every Cauchy sequence in
M converges to a limit inM.
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For example, the set of integers Z and reals R with the natural distance functions
are complete spaces, but the set of rationals Q is not. The complete normed spaces
deserve a special name.

Definition 2.7. A Banach space is a complete normed space.

Exercise∗ 2.8. A convenient way to define a norm in a Banach space is as fol-
lows. The unit ball U in a normed space B is the set of x such that ∥x∥ ⩽ 1. Prove
that:

(i) U is a convex set, i.e. x, y ∈ U and λ ∈ [0, 1] the point λx + (1 − λ)y is
also in U.

(ii) ∥x∥ = inf{λ ∈ R+ | λ−1x ∈ U}.
(iii) U is closed if and only if the space is Banach.

Example 2.9. Here is some examples of normed spaces.
(i) ℓn2 is either Rn or Cn with norm defined by

(2.2) ∥(x1, . . . , xn)∥2 =

√
|x1|

2 + |x2|
2 + · · ·+ |xn|

2.

(ii) ℓn1 is either Rn or Cn with norm defined by

(2.3) ∥(x1, . . . , xn)∥1 = |x1|+ |x2|+ · · ·+ |xn|.

(iii) ℓn∞ is either Rn or Cn with norm defined by

(2.4) ∥(x1, . . . , xn)∥∞ = max(|x1| , |x2| , · · · , |xn|).
(iv) Let X be a topological space, then Cb(X) is the space of continuous

bounded functions f : X→ C with norm ∥f∥∞ = supX |f(x)|.
(v) Let X be any set, then ℓ∞(X) is the space of all bounded (not necessarily

continuous) functions f : X→ C with norm ∥f∥∞ = supX |f(x)|.
All these normed spaces are also complete and thus are Banach spaces. Some
more examples of both complete and incomplete spaces shall appear later.

—We need an extra space to accommodate this product!
A manager to a shop assistant

2.2. Hilbert spaces. Although metric and norm capture important geometric in-
formation about linear spaces they are not sensitive enough to represent such geo-
metric characterisation as angles (particularly orthogonality). To this end we need a
further refinements.

From courses of linear algebra known that the scalar product ⟨x,y⟩ = x1y1 +

· · · + xnyn is important in a space Rn and defines a norm ∥x∥2 = ⟨x, x⟩. Here is a
suitable generalisation:
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(i)

1

1

(ii)

1

1

(iii)

1

1

FIGURE 2. Different unit balls defining norms in R2 from Example 2.9.

Definition 2.10. A scalar product (or inner product) on a real or complex vector
space V is a mapping V × V → C, written ⟨x,y⟩, that satisfies:

(i) ⟨x, x⟩ ⩾ 0 and ⟨x, x⟩ = 0 implies x = 0.
(ii) ⟨x,y⟩ = ⟨y, x⟩ in complex spaces and ⟨x,y⟩ = ⟨y, x⟩ in real ones for

all x, y ∈ V .
(iii) ⟨λx,y⟩ = λ ⟨x,y⟩, for all x, y ∈ V and scalar λ. (What is ⟨x, λy⟩?).
(iv) ⟨x+ y, z⟩ = ⟨x, z⟩+⟨y, z⟩, for all x, y, and z ∈ V . (What is ⟨x,y+ z⟩?).

Last two properties of the scalar product is oftenly encoded in the phrase: “it is
linear in the first variable if we fix the second and anti-linear in the second if we fix
the first”.
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Definition 2.11. An inner product space V is a real or complex vector space
with a scalar product on it.

Example 2.12. Here is some examples of inner product spaces which demon-
strate that expression ∥x∥ =

√
⟨x, x⟩ defines a norm.

(i) The inner product for Rn was defined in the beginning of this section.
The inner product for Cn is given by ⟨x,y⟩ = ∑n

1 xjȳj. The norm ∥x∥ =√∑n
1 |xj|

2 makes it ℓn2 from Example 2.9(i).
(ii) The extension for infinite vectors: let ℓ2 be

(2.5) ℓ2 = {sequences {xj}∞1 |

∞∑
1

|xj|
2 <∞}.

Let us equip this set with operations of term-wise addition and multi-
plication by scalars, then ℓ2 is closed under them. Indeed it follows from
the triangle inequality and properties of absolutely convergent series.
From the standard Cauchy–Bunyakovskii–Schwarz inequality follows
that the series

∑∞
1 xjȳj absolutely converges and its sum defined to be

⟨x,y⟩.
(iii) Let Cb[a,b] be a space of continuous functions on the interval [a,b] ∈

R. As we learn from Example 2.9(iv) a normed space it is a normed
space with the norm ∥f∥∞ = sup[a,b] |f(x)|. We could also define an
inner product:

(2.6) ⟨f,g⟩ =
b∫
a

f(x)ḡ(x)dx and ∥f∥2 =

b∫
a

|f(x)|2 dx


1
2

.

Now we state, probably, the most important inequality in analysis.

Theorem 2.13 (Cauchy–Schwarz–Bunyakovskii inequality). For vectors x
and y in an inner product space V let us define ∥x∥ =

√
⟨x, x⟩ and ∥y∥ =

√
⟨y,y⟩

then we have

(2.7) |⟨x,y⟩| ⩽ ∥x∥ ∥y∥ ,
with equality if and only if x and y are scalar multiple each other.

Proof. For simplicity we start from a real vector space. Let we have two vectors
u and v and want to define an inner product on the two-dimensional vector
space spanned by them. That is we need to know a value of ⟨au+ bv, cu+ dv⟩
for all possible scalars a, b, c, d.
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By the linearity ⟨au+ bv, cu+ dv⟩ = ac ⟨u,u⟩+(bc+ad) ⟨u, v⟩+db ⟨v, v⟩, thus
everything is defined as soon as we know three inner products ⟨u,u⟩, ⟨u, v⟩ and
⟨v, v⟩. First of all we need to demand ⟨u,u⟩ ⩾ 0 and ⟨v, v⟩ ⩾ 0.
Furthermore, they shall be such that ⟨au+ bv,au+ bv⟩ ⩾ 0 for all scalar a and
b. If a = 0, that is reduced to the previous case ⟨v, v⟩ ⩾ 0. If a is non-zero we
note ⟨au+ bv,au+ bv⟩ = a2 ⟨u+ (b/a)v,u+ (b/a)v⟩ and letting λ = b/a we
reduce our consideration to the quadratic expression

⟨u+ λv,u+ λv⟩ = λ2 ⟨v, v⟩+ 2λ ⟨u, v⟩+ ⟨u,u⟩ .
The graph of this function of λ is an upward parabolabecause ⟨v, v⟩ ⩾ 0. Thus,
it will be non-negative for all λ if its lowest value is non-negative. From the
theory of quadratic expressions, the latter is achieved at λ = − ⟨u, v⟩ / ⟨v, v⟩ and
is equal to

⟨u, v⟩2

⟨v, v⟩2
⟨v, v⟩− 2

⟨u, v⟩
⟨v, v⟩ ⟨u, v⟩+ ⟨u,u⟩ = −

⟨u, v⟩2
⟨v, v⟩ + ⟨u,u⟩

If − ⟨u,v⟩2
⟨v,v⟩ + ⟨u,u⟩ ⩾ 0 then ⟨v, v⟩ ⟨u,u⟩ ⩾ ⟨u, v⟩2.

Therefore, the Cauchy-Schwarz inequality is necessary and sufficient condition for
the non-negativity of the inner product defined by the three values ⟨u,u⟩, ⟨u, v⟩
and ⟨v, v⟩.
After the previous discussion it is easy to get the result for complex vector space
as well. For any x, y ∈ V and any t ∈ R we have:

0 < ⟨x+ ty, x+ ty⟩ = ⟨x, x⟩+ 2tℜ ⟨y, x⟩+ t2 ⟨y,y⟩),
Thus, the discriminant of this quadratic expression in t is non-positive:
(ℜ ⟨y, x⟩)2 − ∥x∥2 ∥y∥2 ⩽ 0, that is |ℜ ⟨x,y⟩| ⩽ ∥x∥ ∥y∥. Replacing y by eiαy
for an arbitrary α ∈ [−π,π] we get

∣∣ℜ(eiα ⟨x,y⟩)
∣∣ ⩽ ∥x∥ ∥y∥, this implies the

desired inequality.
□

Corollary 2.14. Any inner product space is a normed space with norm ∥x∥ =√
⟨x, x⟩ (hence also a metric space, Prop. 2.4).

Proof. Just to check items 2.3(i)–2.3(iii) from Definition 2.3. □

Again complete inner product spaces deserve a special name

Definition 2.15. A complete inner product space is Hilbert space.

The relations between spaces introduced so far are as follows:
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Hilbert spaces ⇒ Banach spaces ⇒ Complete metric spaces
⇓ ⇓ ⇓

inner product spaces ⇒ normed spaces ⇒ metric spaces.
How can we tell if a given norm comes from an inner product?

~x ~x

~y

~y

~x− ~y

~x+ ~y

FIGURE 3. To the parallelogram identity.

Theorem 2.16 (Parallelogram identity). In an inner product space H we have
for all x and y ∈ H (see Figure 3):

(2.8) ∥x+ y∥2 + ∥x− y∥2 = 2 ∥x∥2 + 2 ∥y∥2 .

Proof. Just by linearity of inner product:

⟨x+ y, x+ y⟩+ ⟨x− y, x− y⟩ = 2 ⟨x, x⟩+ 2 ⟨y,y⟩ ,
because the cross terms cancel out. □

Exercise 2.17. Show that (2.8) is also a sufficient condition for a norm to arise
from an inner product. Namely, for a norm on a complex Banach space satisfy-
ing to (2.8) the formula

⟨x,y⟩ =
1

4

(
∥x+ y∥2 − ∥x− y∥2 + i ∥x+ iy∥2 − i ∥x− iy∥2

)
(2.9)

=
1

4

3∑
0

ik
∥∥x+ iky∥∥2

defines an inner product. What is a suitable formula for a real Banach space?

Divide and rule!
Old but still much used recipe

2.3. Subspaces. To study Hilbert spaces we may use the traditional mathematical
technique of analysis and synthesis: we split the initial Hilbert spaces into smaller
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and probably simpler subsets, investigate them separately, and then reconstruct the
entire picture from these parts.

As known from the linear algebra, a linear subspace is a subset of a linear space
is its subset, which inherits the linear structure, i.e. possibility to add vectors and
multiply them by scalars. In this course we need also that subspaces inherit topo-
logical structure (coming either from a norm or an inner product) as well.

Definition 2.18. By a subspace of a normed space (or inner product space)
we mean a linear subspace with the same norm (inner product respectively).
We write X ⊂ Y or X ⊆ Y.

Example 2.19. (i) Cb(X) ⊂ ℓ∞(X) where X is a metric space.
(ii) Any linear subspace of Rn or Cn with any norm given in Ex-

ample 2.9(i)–2.9(iii).
(iii) Let c00 be the space of finite sequences, i.e. all sequences (xn) such that

existNwith xn = 0 for n > N. This is a subspace of ℓ2 since
∑∞

1 |xj|
2 is

a finite sum, so finite.

We also wish that the both inhered structures (linear and topological) should be
in agreement, i.e. the subspace should be complete. Such inheritance is linked to
the property be closed.

A subspace need not be closed—for example the sequence

x = (1, 1/2, 1/3, 1/4, . . .) ∈ ℓ2 because
∑

1/k2 <∞
and xn = (1, 1/2, . . . , 1/n, 0, 0, . . .) ∈ c00 converges to x thus x ∈ c00 ⊂ ℓ2.

Proposition 2.20. (i) Any closed subspace of a Banach/Hilbert space is com-
plete, hence also a Banach/Hilbert space.

(ii) Any complete subspace is closed.
(iii) The closure of subspace is again a subspace.

Proof. (i) This is true in any metric space X: any Cauchy sequence from Y

has a limit x ∈ X belonging to Ȳ, but if Y is closed then x ∈ Y.
(ii) Let Y is complete and x ∈ Ȳ, then there is sequence xn → x in Y and it

is a Cauchy sequence. Then completeness of Y implies x ∈ Y.
(iii) If x, y ∈ Ȳ then there are xn and yn in Y such that xn → x and yn → y.

From the triangle inequality:

∥(xn + yn) − (x+ y)∥ ⩽ ∥xn − x∥+ ∥yn − y∥ → 0,

so xn + yn → x + y and x + y ∈ Ȳ. Similarly x ∈ Ȳ implies λx ∈ Ȳ for
any λ.



INTRODUCTION TO FUNCTIONAL ANALYSIS 41

□

Hence c00 is an incomplete inner product space, with inner product ⟨x,y⟩ =∑∞
1 xkȳk (this is a finite sum!) as it is not closed in ℓ2.

(a)
1

1

1
2
− 1

n
1
2
+ 1

n (b)

1

1

1
2

FIGURE 4. Jump function on (b) as a L2 limit of continuous func-
tions from (a).

SimilarlyC[0, 1] with inner product norm ∥f∥ =

(
1∫
0

|f(t)|2 dt

)1/2

is incomplete—

take the large space X of functions continuous on [0, 1] except for a possible jump at
1
2 (i.e. left and right limits exists but may be unequal and f(12 ) = limt→ 1

2+
f(t). Then

the sequence of functions defined on Figure 4(a) has the limit shown on Figure 4(b)
since:

∥f− fn∥ =

1
2+

1
n∫

1
2−

1
n

|f− fn|
2 dt <

2

n
→ 0.

Obviously f ∈ C[0, 1] \ C[0, 1].

Exercise 2.21. Show alternatively that the sequence of function fn from Fig-
ure 4(a) is a Cauchy sequence in C[0, 1] but has no continuous limit.
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Similarly the space C[a,b] is incomplete for any a < b if equipped by the inner
product and the corresponding norm:

⟨f,g⟩ =

b∫
a

f(t)ḡ(t)dt(2.10)

∥f∥2 =

b∫
a

|f(t)|2 dt

1/2

.(2.11)

Definition 2.22. Define a Hilbert space L2[a,b] to be the smallest complete
inner product space containing space C[a,b] with the restriction of inner
product given by (2.10).

It is practical to realise L2[a,b] as a certain space of “functions” with the inner
product defined via an integral. There are several ways to do that and we mention
just two:

(i) Elements of L2[a,b] are equivalent classes of Cauchy sequences f(n) of
functions from C[a,b].

(ii) Let integration be extended from the Riemann definition to the wider Le-
besgue integration (see Section 13). Let L be a set of square integrable in
Lebesgue sense functions on [a,b] with a finite norm (2.11). Then L2[a,b]
is a quotient space of L with respect to the equivalence relation f ∼ g ⇔
∥f− g∥2 = 0.

Example 2.23. Let the Cantor function on [0, 1] be defined as follows:

f(t) =

{
1, t ∈ Q;
0, t ∈ R \Q.

This function is not integrable in the Riemann sense but does have the
Lebesgue integral. The later however is equal to 0 and as an L2-function
the Cantor function equivalent to the function identically equal to 0.

(iii) The third possibility is to map L2(R) onto a space of “true” functions but
with an additional structure. For example, in quantum mechanics it is useful
to work with the Segal–Bargmann space of analytic functions on C with the
inner product [4–6]:

⟨f1, f2⟩ =
∫
C
f1(z)f̄2(z)e

−|z|2 dz.
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Theorem 2.24. The sequence space ℓ2 is complete, hence a Hilbert space.

Proof. Take a Cauchy sequence x(n) ∈ ℓ2, where x(n) = (x
(n)
1 , x

(n)
2 , x

(n)
3 , . . .).

Our proof will have three steps: identify the limit x; show it is in ℓ2; show x(n) →
x.

(i) If x(n) is a Cauchy sequence in ℓ2 then x(n)
k is also a Cauchy sequence

of numbers for any fixed k:∣∣∣x(n)
k − x

(m)
k

∣∣∣ ⩽ ( ∞∑
k=1

∣∣∣x(n)
k − x

(m)
k

∣∣∣2)1/2

=
∥∥∥x(n) − x(m)

∥∥∥→ 0.

Let xk be the limit of x(n)
k .

(ii) For a given ϵ > 0 find n0 such that
∥∥x(n) − x(m)

∥∥ < ϵ for all n,m > n0.
For any K andm:

K∑
k=1

∣∣∣x(n)
k − x

(m)
k

∣∣∣2 ⩽
∥∥∥x(n) − x(m)

∥∥∥2 < ϵ2.
Letm→ ∞ then

∑K
k=1

∣∣∣x(n)
k − xk

∣∣∣2 ⩽ ϵ2.

LetK→ ∞ then
∑∞

k=1

∣∣∣x(n)
k − xk

∣∣∣2 ⩽ ϵ2. Thus x(n)−x ∈ ℓ2 and because

ℓ2 is a linear space then x = x(n) − (x(n) − x) is also in ℓ2.
(iii) We saw above that for any ϵ > 0 there is n0 such that

∥∥x(n) − x
∥∥ < ϵ

for all n > n0. Thus x(n) → x.
Consequently ℓ2 is complete. □

All good things are covered by a thick layer of chocolate (well,
if something is not yet–it certainly will)

2.4. Linear spans. As was explained into introduction 2, we describe “internal”
properties of a vector through its relations to other vectors. For a detailed descrip-
tion we need sufficiently many external reference points.

Let A be a subset (finite or infinite) of a normed space V . We may wish to up-
grade it to a linear subspace in order to make it subject to our theory.

Definition 2.25. The linear span of A, write Lin(A), is the intersection of all
linear subspaces of V containing A, i.e. the smallest subspace containing A,
equivalently the set of all finite linear combination of elements of A. The
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closed linear span of A write CLin(A) is the intersection of all closed linear
subspaces of V containing A, i.e. the smallest closed subspace containing A.

Exercise∗ 2.26. (i) Show that ifA is a subset of finite dimension space then
Lin(A) = CLin(A).

(ii) Show that for an infinite A spaces Lin(A) and CLin(A)could be differ-
ent. (Hint: use Example 2.19(iii).)

Proposition 2.27. Lin(A) = CLin(A).

Proof. Clearly Lin(A) is a closed subspace containing A thus it should contain
CLin(A). Also Lin(A) ⊂ CLin(A) thus Lin(A) ⊂ CLin(A) = CLin(A). Therefore
Lin(A) = CLin(A). □

Consequently CLin(A) is the set of all limiting points of finite linear combination
of elements of A.

Example 2.28. Let V = C[a,b] with the sup norm ∥·∥∞. Then:
Lin{1, x, x2, . . .} = {all polynomials}
CLin{1, x, x2, . . .} = C[a,b] by the Weierstrass approximation theorem proved
later.

Remark 2.29. Note, that the relation P ⊂ CLin(Q) between two sets P and Q is
transitive: if P ⊂ CLin(Q) andQ ⊂ CLin(R) then P ⊂ CLin(R). This observation
is often used in the following way. To show that P ⊂ CLin(R) we introduce
some intermediate sets Q1, . . . , Qn such that P ⊂ CLin(Q1), Qj ⊂ CLin(Qj+1)
and Qn ⊂ CLin(R), see the proof of Weierstrass Approximation Thm. 5.17 or
§ 14.2 for an illustration.

The following simple result will be used later many times without comments.

Lemma 2.30 (about Inner Product Limit). Suppose H is an inner product space
and sequences xn and yn have limits x and y correspondingly. Then ⟨xn,yn⟩ →
⟨x,y⟩ or equivalently:

lim
n→∞ ⟨xn,yn⟩ =

〈
lim
n→∞ xn, lim

n→∞yn
〉
.



INTRODUCTION TO FUNCTIONAL ANALYSIS 45

Proof. Obviously by the Cauchy–Schwarz inequality:

|⟨xn,yn⟩− ⟨x,y⟩| = |⟨xn − x,yn⟩+ ⟨x,yn − y⟩|
⩽ |⟨xn − x,yn⟩|+ |⟨x,yn − y⟩|
⩽ ∥xn − x∥ ∥yn∥+ ∥x∥ ∥yn − y∥ → 0,

since ∥xn − x∥ → 0, ∥yn − y∥ → 0, and ∥yn∥ is bounded. □

3. ORTHOGONALITY

Pythagoras is forever!
The catchphrase from TV commercial of Hilbert Spaces course

As was mentioned in the introduction the Hilbert spaces is an analog of our 3D
Euclidean space and theory of Hilbert spaces similar to plane or space geometry.
One of the primary result of Euclidean geometry which still survives in high school
curriculum despite its continuous nasty de-geometrisation is Pythagoras’ theorem
based on the notion of orthogonality1.

So far we was concerned only with distances between points. Now we would
like to study angles between vectors and notably right angles. Pythagoras’ theorem
states that if the angle C in a triangle is right then c2 = a2 + b2, see Figure 5 .

a

b
c

FIGURE 5. The Pythagoras’ theorem c2 = a2 + b2

It is a very mathematical way of thinking to turn this property of right angles into
their definition, which will work even in infinite dimensional Hilbert spaces.

Look for a triangle, or even for a right triangle
A universal advice in solving problems from elementary

geometry.

3.1. Orthogonal System in Hilbert Space. In inner product spaces it is even more
convenient to give a definition of orthogonality not from Pythagoras’ theorem but
from an equivalent property of inner product.

1Some more “strange” types of orthogonality can be seen in the paper Elliptic, Parabolic and Hyperbolic
Analytic Function Theory–1: Geometry of Invariants.

http://v-v-kisil.scienceontheweb.net/courses/math3263.html
http://arxiv.org/abs/math.CV/0512416
http://arxiv.org/abs/math.CV/0512416
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Definition 3.1. Two vectors x and y in an inner product space are orthogonal
if ⟨x,y⟩ = 0, written x ⊥ y.
An orthogonal sequence (or orthogonal system) en (finite or infinite) is one in
which en ⊥ em whenever n ̸= m.
An orthonormal sequence (or orthonormal system) en is an orthogonal sequence
with ∥en∥ = 1 for all n.

Exercise 3.2. (i) Show that if x ⊥ x then x = 0 and consequently x ⊥ y for
any y ∈ H.

(ii) Show that if all vectors of an orthogonal system are non-zero then they
are linearly independent.

Example 3.3. These are orthonormal sequences:
(i) Basis vectors (1, 0, 0), (0, 1, 0), (0, 0, 1) in R3 or C3.

(ii) Vectors en = (0, . . . , 0, 1, 0, . . .) (with the only 1 on the nth place) in ℓ2.
(Could you see a similarity with the previous example?)

(iii) Functions en(t) = 1/(
√
2π)eint , n ∈ Z in C[0, 2π]:

(3.1) ⟨en, em⟩ =
2π∫
0

1

2π
einte−imtdt =

{
1, n = m;
0, n ̸= m.

Exercise 3.4. Let A be a subset of an inner product space V and x ⊥ y for any
y ∈ A. Prove that x ⊥ z for all z ∈ CLin(A).

Theorem 3.5 (Pythagoras’). If x ⊥ y then ∥x+ y∥2 = ∥x∥2 + ∥y∥2. Also if e1,
. . . , en is orthonormal then∥∥∥∥∥

n∑
1

akek

∥∥∥∥∥
2

=

〈
n∑
1

akek,

n∑
1

akek

〉
=

n∑
1

|ak|
2 .

Proof. A one-line calculation. □

The following theorem provides an important property of Hilbert spaces which
will be used many times. Recall, that a subset K of a linear space V is convex if for all
x, y ∈ K and λ ∈ [0, 1] the point λx+ (1− λ)y is also in K. Particularly any subspace
is convex and any unit ball as well (see Exercise 2.8(i)).
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Theorem 3.6 (about the Nearest Point). Let K be a non-empty convex closed
subset of a Hilbert space H. For any point x ∈ H there is the unique point y ∈ K
nearest to x.

Proof. Let d = infy∈K d(x,y), where d(x,y)—the distance coming from the norm
∥x∥ =

√
⟨x, x⟩ and let yn a sequence points in K such that limn→∞ d(x,yn) = d.

Then yn is a Cauchy sequence. Indeed from the parallelogram identity for the
parallelogram generated by vectors x− yn and x− ym we have:

∥yn − ym∥2 = 2 ∥x− yn∥2 + 2 ∥x− ym∥2 − ∥2x− yn − ym∥2 .
Note that ∥2x− yn − ym∥2 = 4

∥∥x− yn+ym

2

∥∥2 ⩾ 4d2 since yn+ym

2 ∈ K by
its convexity. For sufficiently large m and n we get ∥x− ym∥2 ⩽ d + ϵ and
∥x− yn∥2 ⩽ d + ϵ, thus ∥yn − ym∥ ⩽ 4(d2 + ϵ) − 4d2 = 4ϵ, i.e. yn is a Cauchy
sequence.
Let y be the limit of yn, which exists by the completeness of H, then y ∈ K since
K is closed. Then d(x,y) = limn→∞ d(x,yn) = d. This show the existence of
the nearest point. Let y ′ be another point in K such that d(x,y ′) = d, then the
parallelogram identity implies:

∥y− y ′∥2 = 2 ∥x− y∥2 + 2 ∥x− y ′∥2 − ∥2x− y− y ′∥2 ⩽ 4d2 − 4d2 = 0.

This shows the uniqueness of the nearest point. □

Exercise∗ 3.7. The essential rôle of the parallelogram identity in the above proof
indicates that the theorem does not hold in a general Banach space.

(i) Show that in R2 with either norm ∥·∥1 or ∥·∥∞ form Example 2.9 the
nearest point could be non-unique;

(ii) Could you construct an example (in Banach space) when the nearest
point does not exists?

Liberte, Egalite, Fraternite!
A longstanding ideal approximated in the real life by

something completely different

3.2. Bessel’s inequality. For the case then a convex subset is a subspace we could
characterise the nearest point in the term of orthogonality.

Theorem 3.8 (on Perpendicular). Let M be a subspace of a Hilbert space H and
a point x ∈ H be fixed. Then z ∈M is the nearest point to x if and only if x − z is
orthogonal to any vector inM.
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(i)

M

x

z
ǫy (ii)

e1

e2
z

x

y

FIGURE 6. (i) A smaller distance for a non-perpendicular direction;
and
(ii) Best approximation from a subspace

Proof. Let z is the nearest point to x existing by the previous Theorem. We claim
that x− z orthogonal to any vector inM, otherwise there exists y ∈M such that
⟨x− z,y⟩ ≠ 0. Then

∥x− z− ϵy∥2 = ∥x− z∥2 − 2ϵℜ ⟨x− z,y⟩+ ϵ2 ∥y∥2

< ∥x− z∥2 ,
if ϵ is chosen to be small enough and such that ϵℜ ⟨x− z,y⟩ is positive, see
Figure 6(i). Therefore we get a contradiction with the statement that z is closest
point to x.
On the other hand if x − z is orthogonal to all vectors in H1 then particularly
(x − z) ⊥ (z − y) for all y ∈ H1, see Figure 6(ii). Since x − y = (x − z) + (z − y)
we got by the Pythagoras’ theorem:

∥x− y∥2 = ∥x− z∥2 + ∥z− y∥2 .
So ∥x− y∥2 ⩾ ∥x− z∥2 and the are equal if and only if z = y. □

Exercise 3.9. The above proof does not work if ⟨x− z,y⟩ is an imaginary num-
ber, what to do in this case?

Consider now a basic case of approximation: let x ∈ H be fixed and e1, . . . , en be
orthonormal and denote H1 = Lin{e1, . . . , en}. We could try to approximate x by a
vector y = λ1e1 + · · ·+ λnen ∈ H1.
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Corollary 3.10. The minimal value of ∥x− y∥ for y ∈ H1 is achieved when y =∑n
1 ⟨x, ei⟩ ei.

Proof. Let z =
∑n

1 ⟨x, ei⟩ ei, then ⟨x− z, ei⟩ = ⟨x, ei⟩ − ⟨z, ei⟩ = 0. By the previ-
ous Theorem z is the nearest point to x. □

0

6.3

y

0 6.3
x

FIGURE 7. Best approximation by three trigonometric polynomials

Example 3.11. (i) In R3 find the best approximation to (1, 0, 0) from the
plane V : {x1 + x2 + x3 = 0}. We take an orthonormal basis e1 =

(2−1/2,−2−1/2, 0), e2 = (6−1/2, 6−1/2,−2 · 6−1/2) of V (Check this!).
Then:

z = ⟨x, e1⟩ e1 + ⟨x, e2⟩ e2 =

(
1

2
,−

1

2
, 0

)
+

(
1

6
,
1

6
,−

1

3

)
=

(
2

3
,−

1

3
,−

1

3

)
.

(ii) In C[0, 2π] what is the best approximation to f(t) = t by functions a +
beit + ce−it? Let

e0 =
1√
2π

, e1 =
1√
2π
eit, e−1 =

1√
2π
e−it.
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We find:

⟨f, e0⟩ =

2π∫
0

t√
2π
dt =

[
t2

2

1√
2π

]2π
0

=
√
2π3/2;

⟨f, e1⟩ =

2π∫
0

te−it

√
2π
dt = i

√
2π (Check this!)

⟨f, e−1⟩ =

2π∫
0

teit√
2π
dt = −i

√
2π (Why we may not check this one?)

Then the best approximation is (see Figure 7):

f0(t) = ⟨f, e0⟩ e0 + ⟨f, e1⟩ e1 + ⟨f, e−1⟩ e−1

=

√
2π3/2√
2π

+ ieit − ie−it = π− 2 sin t.

Corollary 3.12 (Bessel’s inequality). If (ei) is orthonormal then

∥x∥2 ⩾
n∑

i=1

|⟨x, ei⟩|2 .

Proof. Let z =
∑n

1 ⟨x, ei⟩ei then x − z ⊥ ei for all i therefore by Exercise 3.4
x− z ⊥ z. Hence:

∥x∥2 = ∥z∥2 + ∥x− z∥2

⩾ ∥z∥2 =

n∑
i=1

|⟨x, ei⟩|2 .

□

—Did you say “rice and fish for them”?
A student question

3.3. The Riesz–Fischer theorem. When (ei) is orthonormal we call ⟨x, en⟩ the nth
Fourier coefficient of x (with respect to (ei), naturally).

Theorem 3.13 (Riesz–Fisher). Let (en)∞1 be an orthonormal sequence in a Hilbert
spaceH. Then

∑∞
1 λnen converges inH if and only if

∑∞
1 |λn|

2 <∞. In this case
∥∑∞

1 λnen∥
2
=

∑∞
1 |λn|

2.
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Proof. Necessity: Let xk =
∑k

1 λnen and x = limk→∞ xk. So ⟨x, en⟩ =
limk→∞ ⟨xk, en⟩ = λn for all n. By the Bessel’s inequality for all k

∥x∥2 ⩾
k∑
1

|⟨x, en⟩|2 =

k∑
1

|λn|
2 ,

hence
∑k

1 |λn|
2 converges and the sum is at most ∥x∥2.

Sufficiency: Consider ∥xk − xm∥ =
∥∥∥∑k

m λnen

∥∥∥ =
(∑k

m |λn|
2
)1/2

for k > m.

Since
∑k

m |λn|
2 converges xk is a Cauchy sequence in H and thus has a limit x.

By the Pythagoras’ theorem ∥xk∥2 =
∑k

1 |λn|
2 thus for k → ∞ ∥x∥2 =

∑∞
1 |λn|

2

by the Lemma about inner product limit. □

Observation: the closed linear span of an orthonormal sequence in any Hilbert
space looks like ℓ2, i.e. ℓ2 is a universal model for a Hilbert space.

By Bessel’s inequality and the Riesz–Fisher theorem we know that the series∑∞
1 ⟨x, ei⟩ ei converges for any x ∈ H. What is its limit?
Let y = x−

∑∞
1 ⟨x, ei⟩ ei, then

(3.2) ⟨y, ek⟩ = ⟨x, ek⟩−
∞∑
1

⟨x, ei⟩ ⟨ei, ek⟩ = ⟨x, ek⟩− ⟨x, ek⟩ = 0 for all k.

Definition 3.14. An orthonormal sequence (ei) in a Hilbert space H is com-
plete if the identities ⟨y, ek⟩ = 0 for all k imply y = 0.
A complete orthonormal sequence is also called orthonormal basis in H.

Theorem 3.15 (on Orthonormal Basis). Let ei be an orthonormal basis in a Hil-
ber space H. Then for any x ∈ H we have

x =

∞∑
n=1

⟨x, en⟩ en and ∥x∥2 =

∞∑
n=1

|⟨x, en⟩|2 .

Proof. By the Riesz–Fisher theorem, equation (3.2) and definition of orthonormal
basis. □

There are constructive existence theorems in mathematics.
An example of pure existence statement

3.4. Construction of Orthonormal Sequences. Natural questions are: Do orthonor-
mal sequences always exist? Could we construct them?
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Theorem 3.16 (Gram–Schmidt). Let (xi) be a sequence of linearly independent
vectors in an inner product space V . Then there exists orthonormal sequence (ei)
such that

Lin{x1, x2, . . . , xn} = Lin{e1, e2, . . . , en}, for all n.

Proof. We give an explicit algorithm working by induction. The base of induc-
tion: the first vector is e1 = x1/ ∥x1∥. The step of induction: let e1, e2, . . . , en are
already constructed as required. Let yn+1 = xn+1 −

∑n
i=1 ⟨xn+1, ei⟩ ei. Then

by (3.2) yn+1 ⊥ ei for i = 1, . . . ,n. We may put en+1 = yn+1/ ∥yn+1∥ because
yn+1 ̸= 0 due to linear independence of xk’s. Also

Lin{e1, e2, . . . , en+1} = Lin{e1, e2, . . . ,yn+1}

= Lin{e1, e2, . . . , xn+1}

= Lin{x1, x2, . . . , xn+1}.

So (ei) are orthonormal sequence. □

Example 3.17. Consider C[0, 1] with the usual inner product (2.10) and apply
orthogonalisation to the sequence 1, x, x2, . . . . Because ∥1∥ = 1 then e1(x) = 1.
The continuation could be presented by the table:

e1(x) = 1

y2(x) = x− ⟨x, 1⟩ 1 = x−
1

2
, ∥y2∥2 =

1∫
0

(x−
1

2
)2 dx =

1

12
, e2(x) =

√
12(x−

1

2
)

y3(x) = x
2 −

〈
x2, 1

〉
1−

〈
x2, x−

1

2

〉
(x−

1

2
) · 12, . . . , e3 =

y3

∥y3∥
. . . . . . . . .

Example 3.18. Many famous sequences of orthogonal polynomials, e.g. Cheby-
shev, Legendre, Laguerre, Hermite, can be obtained by orthogonalisation of 1,
x, x2, . . . with various inner products.

(i) Legendre polynomials in C[−1, 1] with inner product

(3.3) ⟨f,g⟩ =
1∫

−1

f(t)g(t)dt.

(ii) Chebyshev polynomials in C[−1, 1] with inner product

(3.4) ⟨f,g⟩ =
1∫

−1

f(t)g(t)
dt√
1− t2
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FIGURE 8. Five first Legendre Pi and Chebyshev Ti polynomials

(iii) Laguerre polynomials in the space of polynomials P[0,∞) with inner
product

⟨f,g⟩ =
∞∫
0

f(t)g(t)e−t dt.

See Figure 8 for the five first Legendre and Chebyshev polynomials. Observe
the difference caused by the different inner products (3.3) and (3.4). On the other
hand note the similarity in oscillating behaviour with different “frequencies”.

Another natural question is: When is an orthonormal sequence complete?

Proposition 3.19. Let (en) be an orthonormal sequence in a Hilbert space H. The
following are equivalent:

(i) (en) is an orthonormal basis.
(ii) CLin((en)) = H.

(iii) ∥x∥2 =
∑∞

1 |⟨x, en⟩|2 for all x ∈ H.

Proof. Clearly 3.19(i) implies 3.19(ii) because x =
∑∞

1 ⟨x, en⟩ en in CLin((en))

and ∥x∥2 =
∑∞

1 ⟨x, en⟩ en by Theorem 3.15. The same theorem tells that 3.19(i)
implies 3.19(iii).
If (en) is not complete then there exists x ∈ H such that x ̸= 0 and ⟨x, ek⟩ = 0 for
all k, so 3.19(iii) fails, consequently 3.19(iii) implies 3.19(i).
Finally if ⟨x, ek⟩ = 0 for all k then ⟨x,y⟩ = 0 for all y ∈ Lin((en)) and moreover
for all y ∈ CLin((en)), by the Lemma on continuity of the inner product. But
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then x ̸∈ CLin((en)) and 3.19(ii) also fails because ⟨x, x⟩ = 0 is not possible. Thus
3.19(ii) implies 3.19(i). □

Corollary 3.20. A separable Hilbert space (i.e. one with a countable dense set)
can be identified with either ℓn2 or ℓ2, in other words it has an orthonormal basis
(en) (finite or infinite) such that

x =

∞∑
n=1

⟨x, en⟩ en and ∥x∥2 =

∞∑
n=1

|⟨x, en⟩|2 .

Proof. Take a countable dense set (xk), then H = CLin((xk)), delete all vectors
which are a linear combinations of preceding vectors, make orthonormalisation
by Gram–Schmidt the remaining set and apply the previous proposition. □

Most pleasant compliments are usually orthogonal to our real
qualities.

An advise based on observations

3.5. Orthogonal complements. Orthogonality allow us split a Hilbert space into
subspaces which will be “independent from each other” as much as possible.

Definition 3.21. Let M be a subspace of an inner product space V . The
orthogonal complement, writtenM⊥, ofM is

M⊥ = {x ∈ V : ⟨x,m⟩ = 0 ∀m ∈M}.

Theorem 3.22. IfM is a closed subspace of a Hilbert space H thenM⊥ is a closed
subspace too (hence a Hilbert space too).

Proof. ClearlyM⊥ is a subspace of H because x, y ∈M⊥ implies ax+by ∈M⊥:

⟨ax+ by,m⟩ = a ⟨x,m⟩+ b ⟨y,m⟩ = 0.

Also if all xn ∈ M⊥ and xn → x then x ∈ M⊥ due to inner product limit
Lemma. □

Theorem 3.23. Let M be a closed subspace of a Hilber space H. Then for any
x ∈ H there exists the unique decomposition x = m + n with m ∈ M, n ∈ M⊥

and ∥x∥2 = ∥m∥2 + ∥n∥2. Thus H =M⊕M⊥ and (M⊥)⊥ =M.
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Proof. For a given x there exists the unique closest pointm inM by the Theorem
on nearest point and by the Theorem on perpendicular (x−m) ⊥ y for all y ∈M.
So x = m + (x −m) = m + n with m ∈ M and n ∈ M⊥. The identity ∥x∥2 =

∥m∥2 + ∥n∥2 is just Pythagoras’ theorem andM∩M⊥ = {0} because null vector
is the only vector orthogonal to itself.
Finally (M⊥)⊥ =M. We haveH =M⊕M⊥ = (M⊥)⊥⊕M⊥, for any x ∈ (M⊥)⊥

there is a decomposition x = m + n with m ∈ M and n ∈ M⊥, but then n is
orthogonal to itself and therefore is zero. □

4. DUALITY OF LINEAR SPACES

Everything has another side

Orthonormal basis allows to reduce any question on Hilbert space to a question
on sequence of numbers. This is powerful but sometimes heavy technique. Some-
time we need a smaller and faster tool to study questions which are represented
by a single number, for example to demonstrate that two vectors are different it is
enough to show that there is a unequal values of a single coordinate. In such cases
linear functionals are just what we needed.

–Is it functional?
–Yes, it works!

4.1. Dual space of a normed space.

Definition 4.1. A linear functional on a vector space V is a linear mapping
α : V → C (or α : V → R in the real case), i.e.

α(ax+ by) = aα(x) + bα(y), for all x,y ∈ V and a,b ∈ C.

Exercise 4.2. Show that α(0) is necessarily 0.

We will not consider any functionals but linear, thus below functional always
means linear functional.

Example 4.3. (i) Let V = Cn and ck, k = 1, . . . ,n be complex numbers.
Then α((x1, . . . , xn)) = c1x1 + · · ·+ c2x2 is a linear functional.

(ii) On C[0, 1] a functional is given by α(f) =
1∫
0

f(t)dt.

(iii) On a Hilbert space H for any x ∈ H a functional αx is given by αx(y) =
⟨y, x⟩.



56 VLADIMIR V. KISIL

Theorem 4.4. Let V be a normed space and α is a linear functional. The following
are equivalent:

(i) α is continuous (at any point of V).
(ii) α is continuous at point 0.

(iii) sup{|α(x)| : ∥x∥ ⩽ 1} <∞, i.e. α is a bounded linear functional.

Proof. Implication 4.4(i) ⇒ 4.4(ii) is trivial.
Show 4.4(ii) ⇒ 4.4(iii). By the definition of continuity: for any ϵ > 0 there exists
δ > 0 such that ∥v∥ < δ implies |α(v) − α(0)| < ϵ. Take ϵ = 1 then |α(δx)| < 1
for all x with norm less than 1 because ∥δx∥ < δ. But from linearity of α the
inequality |α(δx)| < 1 implies |α(x)| < 1/δ <∞ for all ∥x∥ ⩽ 1.
4.4(iii) ⇒ 4.4(i). Let mentioned supremum be M. For any x, y ∈ V such that
x ̸= y vector (x − y)/ ∥x− y∥ has norm 1. Thus |α((x− y)/ ∥x− y∥)| < M.
By the linearity of α this implies that |α(x) − α(y)| < M ∥x− y∥. Thus α is
continuous. □

Definition 4.5. The dual space X∗ of a normed space X is the set of continuous
linear functionals on X. Define a norm on it by

(4.1) ∥α∥ = sup
∥x∥=1

|α(x)| .

Exercise 4.6. (i) Show that the chain of inequalities:

∥α∥ ⩽ sup
∥x∥⩽1

|α(x)| ⩽ sup
x̸=0

|α(x)|

∥x∥ ⩽ ∥α∥ .

Deduce that any of the mentioned supremums deliver the norm of α.
Which of them you will prefer if you need to show boundedness of α?
Which of them is better to use if boundedness of α is given?

(ii) Show that |α(x)| ⩽ ∥α∥ · ∥x∥ for all x ∈ X, α ∈ X∗.

The important observations is that linear functionals form a normed space as
follows:

Exercise 4.7. (i) Show that X∗ is a linear space with natural (point-wise)
operations.

(ii) Show that (4.1) defines a norm on X∗.

Furthermeore, X∗ is always complete, regardless of properties of X!
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Theorem 4.8. X∗ is a Banach space with the defined norm (even if X was incom-
plete).

Proof. Due to Exercise 4.7 we only need to show that X∗ is complete. Let (αn)
be a Cauchy sequence in X∗, then for any x ∈ X scalars αn(x) form a Cauchy
sequence, since |αm(x) − αn(x)| ⩽ ∥αm − αn∥ · ∥x∥. Thus the sequence has a
limit and we define α by α(x) = limn→∞ αn(x). Clearly α is a linear functional
onX. We should show that it is bounded andαn → α. Given ϵ > 0 there existsN
such that ∥αn − αm∥ < ϵ for all n, m ⩾ N. If ∥x∥ ⩽ 1 then |αn(x) − αm(x)| ⩽ ϵ,
letm→ ∞ then |αn(x) − α(x)| ⩽ ϵ, so

|α(x)| ⩽ |αn(x)|+ ϵ ⩽ ∥αn∥+ ϵ,
i.e. ∥α∥ is finite and ∥αn − α∥ ⩽ ϵ, thus αn → α. □

Definition 4.9. The kernel of linear functional α, write kerα, is the set all vec-
tors x ∈ X such that α(x) = 0.

Exercise 4.10. Show that
(i) kerα is a subspace of X.

(ii) If α ̸≡ 0 then obviously kerα ̸= X. Furthermore, if X has at least two
linearly independent vectors then kerα ̸= {0}, thus kerα is a proper sub-
space of X.

(iii) If α is continuous then kerα is closed.

Study one and get any other for free!
Hilbert spaces sale

4.2. Self-duality of Hilbert space.

Lemma 4.11 (Riesz–Fréchet). LetH be a Hilbert space and α a continuous linear
functional on H, then there exists the unique y ∈ H such that α(x) = ⟨x,y⟩ for all
x ∈ H. Also ∥α∥H∗ = ∥y∥H.

Proof. Uniqueness: if ⟨x,y⟩ = ⟨x,y ′⟩ ⇔ ⟨x,y− y ′⟩ = 0 for all x ∈ H then y − y ′

is self-orthogonal and thus is zero (Exercise 3.2(i)).
Existence: we may assume that α ̸≡ 0 (otherwise take y = 0), then M = kerα
is a closed proper subspace of H. Since H = M ⊕M⊥, there exists a non-zero
z ∈M⊥, by scaling we could get α(z) = 1. Then for any x ∈ H:

x = (x− α(x)z) + α(x)z, with x− α(x)z ∈M, α(x)z ∈M⊥.
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Because ⟨x, z⟩ = α(x) ⟨z, z⟩ = α(x) ∥z∥2 for any x ∈ Hwe set y = z/ ∥z∥2.
Equality of the norms ∥α∥H∗ = ∥y∥H follows from the Cauchy–Bunyakovskii–
Schwarz inequality in the form α(x) ⩽ ∥x∥ · ∥y∥ and the identity α(y/ ∥y∥) =
∥y∥. □

Example 4.12. On L2[0, 1] let α(f) =
〈
f, t2

〉
=

1∫
0

f(t)t2 dt. Then

∥α∥ =
∥∥t2∥∥ =

 1∫
0

(t2)2 dt

1/2

=
1√
5
.

5. FOURIER ANALYSIS

All bases are equal, but some are more equal then others.

As we saw already any separable Hilbert space posses an orthonormal basis
(infinitely many of them indeed). Are they equally good? This depends from our
purposes. For solution of differential equation which arose in mathematical physics
(wave, heat, Laplace equations, etc.) there is a proffered choice. The fundamental
formula: d

dx
eax = aeax reduces the derivative to a multiplication by a. We could

benefit from this observation if the orthonormal basis will be constructed out of
exponents. This helps to solve differential equations as was demonstrated in Sub-
section 0.2.

7.40pm Fourier series: Episode II
Today’s TV listing

5.1. Fourier series. Now we wish to address questions stated in Remark 0.9. Let us
consider the space L2[−π,π]. As we saw in Example 3.3(iii) there is an orthonormal
sequence en(t) = (2π)−1/2eint in L2[−π,π]. We will show that it is an orthonormal
basis, i.e.

f(t) ∈ L2[−π,π] ⇔ f(t) =

∞∑
k=−∞ ⟨f, ek⟩ ek(t),

with convergence in L2 norm. To do this we show that CLin{ek : k ∈ Z} = L2[−π,π].
Let CP[−π,π] denote the continuous functions f on [−π,π] such that f(π) =

f(−π). We also define f outside of the interval [−π,π] by periodicity.

Lemma 5.1. The space CP[−π,π] is dense in L2[−π,π].

Proof. Let f ∈ L2[−π,π]. Given ϵ > 0 there exists g ∈ C[−π,π] such that
∥f− g∥ < ϵ/2. From continuity of g on a compact set follows that there is M
such that |g(t)| < M for all t ∈ [−π,π].
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δ
−π π

FIGURE 9. A modification of continuous function to periodic

We can now replace g by periodic g̃, which coincides with g on [−π,π − δ] for
an arbitrary δ > 0 and has the same bounds: |g̃(t)| < M, see Figure 9. Then

∥g− g̃∥22 =

π∫
π−δ

|g(t) − g̃(t)|2 dt ⩽ (2M)2δ.

So if δ < ϵ2/(4M)2 then ∥g− g̃∥ < ϵ/2 and ∥f− g̃∥ < ϵ. □

Now if we could show that CLin{ek : k ∈ Z} includes CP[−π,π] then it also
includes L2[−π,π].

Notation 5.2. Let f ∈ CP[−π,π],write

(5.1) fn =

n∑
k=−n

⟨f, ek⟩ ek, for n = 0, 1, 2, . . .

the partial sum of the Fourier series for f.

We want to show that ∥f− fn∥2 → 0. To this end we define nth Fejér sum by the
formula

(5.2) Fn =
f0 + f1 + · · ·+ fn

n+ 1
,

and show that
∥Fn − f∥∞ → 0.

Then we conclude

∥Fn − f∥2 =

 π∫
−π

|Fn(t) − f|
2

1/2

⩽ (2π)1/2 ∥Fn − f∥∞ → 0.

Since Fn ∈ Lin((en)) then f ∈ CLin((en)) and hence f =
∑∞

−∞ ⟨f, ek⟩ ek.

Remark 5.3. It is not always true that ∥fn − f∥∞ → 0 even for f ∈ CP[−π,π].

Exercise 5.4. Find an example illustrating the above Remark.
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The summation method used in (5.2) us useful not only in the context of Fourier
series but for many other cases as well. In such a wider framework the method is
known as Cesàro summation.

It took 19 years of his life to prove this theorem

5.2. Fejér’s theorem.

Proposition 5.5 (Fejér, age 19). Let f ∈ CP[−π,π]. Then

Fn(x) =
1

2π

π∫
−π

f(t)Kn(x− t)dt, where(5.3)

Kn(t) =
1

n+ 1

n∑
k=0

k∑
m=−k

eimt,(5.4)

is the Fejér kernel.

Proof. From notation (5.1):

fk(x) =

k∑
m=−k

⟨f, em⟩ em(x)

=

k∑
m=−k

π∫
−π

f(t)
e−imt

√
2π

dt
eimx

√
2π

=
1

2π

π∫
−π

f(t)

k∑
m=−k

eim(x−t) dt.

Then from (5.2):

Fn(x) =
1

n+ 1

n∑
k=0

fk(x)

=
1

n+ 1

1

2π

n∑
k=0

π∫
−π

f(t)

k∑
m=−k

eim(x−t) dt

=
1

2π

π∫
−π

f(t)
1

n+ 1

n∑
k=0

k∑
m=−k

eim(x−t) dt,

which finishes the proof. □

https://en.wikipedia.org/wiki/Ces%C3%A0ro_summation
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Lemma 5.6. The Fejér kernel is 2π-periodic, Kn(0) = n+ 1 and can be expressed
as:

(5.5) Kn(t) =
1

n+ 1

sin2 (n+1)t
2

sin2 t
2

, for t ̸∈ 2πZ.

1
z−1 1 z

z−2 z−1 1 z z2

...
...

...
...

...
...

. . .

TABLE 1. Counting powers in rows and columns

Proof. Let z = eit, then:

Kn(t) =
1

n+ 1

n∑
k=0

(z−k + · · ·+ 1+ z+ · · ·+ zk)

=
1

n+ 1

n∑
j=−n

(n+ 1− |j|)zj,

by switch from counting in rows to counting in columns in Table 1. Let w =

eit/2, i.e. z = w2, then

Kn(t) =
1

n+ 1
(w−2n + 2w−2n+2 + · · ·+ (n+ 1) + nw2 + · · ·+w2n)

=
1

n+ 1
(w−n +w−n+2 + · · ·+wn−2 +wn)2(5.6)

=
1

n+ 1

(
w−n−1 −wn+1

w−1 −w

)2

Could you sum a geometric progression?

=
1

n+ 1

(
2i sin (n+1)t

2

2i sin t
2

)2

,

if w ̸= ±1. For the value of Kn(0) we substitute w = 1 into (5.6). □

The first eleven Fejér kernels are shown on Figure 10, we could observe that:

Lemma 5.7. Fejér’s kernel has the following properties:
(i) Kn(t) ⩾ 0 for all t ∈ R and n ∈ N.
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(ii)
π∫
−π

Kn(t)dt = 2π.

(iii) For any δ ∈ (0,π)

−δ∫
−π

+

π∫
δ

Kn(t)dt→ 0 as n→ ∞.

Proof. The first property immediately follows from the explicit formula (5.5). In
contrast the second property is easier to deduce from expression with double

−3 −2 −1 0 1 2 3
x
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−1

0

1

2
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8

9

y

−3 −2 −1 0 1 2 3
x
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−1
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1
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4

5
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y

FIGURE 10. A family of Fejér kernels with the parameter m run-
ning from 0 to 9 is on the left picture. For a comparison unregular-
ised Fourier kernels are on the right picture.
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sum (5.4):
π∫

−π

Kn(t)dt =

π∫
−π

1

n+ 1

n∑
k=0

k∑
m=−k

eimt dt

=
1

n+ 1

n∑
k=0

k∑
m=−k

π∫
−π

eimt dt

=
1

n+ 1

n∑
k=0

2π

= 2π,

since the formula (3.1).
Finally if |t| > δ then sin2(t/2) ⩾ sin2(δ/2) > 0 by monotonicity of sinus on
[0,π/2], so:

0 ⩽ Kn(t) ⩽
1

(n+ 1) sin2(δ/2)

implying:

0 ⩽
∫

δ⩽|t|⩽π

Kn(t)dt ⩽
1(π− δ)

(n+ 1) sin2(δ/2)
→ 0 as n→ 0.

Therefore the third property follows from the squeeze rule. □

Theorem 5.8 (Fejér Theorem). Let f ∈ CP[−π,π]. Then its Fejér sums Fn (5.2)
converges in supremum norm to f on [−π,π] and hence in L2 norm as well.

Proof. Idea of the proof: if in the formula (5.3)

Fn(x) =
1

2π

π∫
−π

f(t)Kn(x− t)dt,

t is long way from x, Kn is small (see Lemma 5.7 and Figure 10), for t near x, Kn

is big with total “weight” 2π, so the weighted average of f(t) is near f(x).
Here are details. Using property 5.7(ii) and periodicity of f and Kn we could
express trivially

f(x) = f(x)
1

2π

x+π∫
x−π

Kn(x− t)dt =
1

2π

x+π∫
x−π

f(x)Kn(x− t)dt.
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Similarly we rewrite (5.3) as

Fn(x) =
1

2π

x+π∫
x−π

f(t)Kn(x− t)dt,

then

|f(x) − Fn(x)| =
1

2π

∣∣∣∣∣∣
x+π∫
x−π

(f(x) − f(t))Kn(x− t)dt

∣∣∣∣∣∣
⩽

1

2π

x+π∫
x−π

|f(x) − f(t)|Kn(x− t)dt.

Given ϵ > 0 split into three intervals: I1 = [x − π, x − δ], I2 = [x − δ, x + δ],
I3 = [x + δ, x + π], where δ is chosen such that |f(t) − f(x)| < ϵ/2 for t ∈ I2,
which is possible by continuity of f. So

1

2π

∫
I2

|f(x) − f(t)|Kn(x− t)dt ⩽
ϵ

2

1

2π

∫
I2

Kn(x− t)dt <
ϵ

2
.

And
1

2π

∫
I1∪I3

|f(x) − f(t)|Kn(x− t)dt ⩽ 2 ∥f∥∞ 1

2π

∫
I1∪I3

Kn(x− t)dt

=
∥f∥∞
π

∫
δ<|u|<π

Kn(u)du

<
ϵ

2
,

if n is sufficiently large due to property 5.7(iii) of Kn. Hence |f(x) − Fn(x)| < ϵ
for a large n independent of x. □

Remark 5.9. The above properties 5.7(i)–5.7(iii) and their usage in the last proof
can be generalised to the concept of approximation of the identity. See § 15.4 for a
further example.

We almost finished the demonstration that en(t) = (2π)−1/2eint is an orthonor-
mal basis of L2[−π,π]:

Corollary 5.10 (Fourier series). Let f ∈ L2[−π,π], with Fourier series
∞∑

n=−∞ ⟨f, en⟩ en =

∞∑
n=−∞ cne

int where cn =
⟨f, en⟩√

2π
=

1√
2π

π∫
−π

f(t)e−int dt.
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Then the series
∑∞

−∞ ⟨f, en⟩ en =
∑∞

−∞ cneint converges in L2[−π,π] to f, i.e

lim
k→∞

∥∥∥∥∥f−
k∑

n=−k

cne
int

∥∥∥∥∥
2

= 0.

Proof. This follows from the previous Theorem, Lemma 5.1 about density of CP
in L2, and Theorem 3.15 on orthonormal basis. □

Remark 5.11. There is a reason why we had used the Fejér kernel and the Cezàro
summation Fn (5.2) instead of plain partial sums fn (5.1) of the Fourier series.
It can be shown that point-wise convergence fn → f does not hold for every
continuous function f, cf. Cor. 16.31.

5.3. Parseval’s formula. The following result first appeared in the framework of
L2[−π,π] and only later was understood to be a general property of inner product
spaces.

Theorem 5.12 (Parseval’s formula). If f, g ∈ L2[−π,π] have Fourier series

f =

∞∑
n=−∞ cne

int and g =

∞∑
n=−∞dne

int, then

(5.7) ⟨f,g⟩ =
π∫

−π

f(t)g(t)dt = 2π

∞∑
−∞ cndn.

More generally if f and g are two vectors of a Hilbert space H with an orthonormal
basis (en)∞−∞ then

⟨f,g⟩ =
∞∑

k=−∞ cndn, where cn = ⟨f, en⟩ , dn = ⟨g, en⟩ ,

are the Fourier coefficients of f and g.

Proof. In fact we could just prove the second, more general, statement—the first
one is its particular realisation. Let fn =

∑n
k=−n ckek and gn =

∑n
k=−n dkek

will be partial sums of the corresponding Fourier series. Then from orthonor-
mality of (en) and linearity of the inner product:

⟨fn,gn⟩ =
〈

n∑
k=−n

ckek,

n∑
k=−n

dkek

〉
=

n∑
k=−n

ckdk.
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This formula together with the facts that fk → f and gk → g (following from
Corollary 5.10) and Lemma about continuity of the inner product implies the
assertion. □

Corollary 5.13. A integrable function f belongs to L2[−π,π] if and only if its
Fourier series is convergent and then ∥f∥2 = 2π

∑∞
−∞ |ck|

2.

Proof. The necessity, i.e. implication f ∈ L2 ⇒ ⟨f, f⟩ = ∥f∥2 = 2π
∑

|ck|
2, follows

from the previous Theorem. The sufficiency follows by Riesz–Fisher Theorem.
□

Remark 5.14. The actual rôle of the Parseval’s formula is shadowed by the or-
thonormality and is rarely recognised until we meet the wavelets or coherent
states. Indeed the equality (5.7) should be read as follows:

Theorem 5.15 (Modified Parseval). The map W : H → ℓ2 given by the
formula [Wf](n) = ⟨f, en⟩ is an isometry for any orthonormal basis (en).

We could find many other systems of vectors (ex), x ∈ X (very different from
orthonormal bases) such that the map W : H → L2(X) given by the simple
universal formula

(5.8) [Wf](x) = ⟨f, ex⟩
will be an isometry of Hilbert spaces. The map (5.8) is oftenly called wavelet
transform and most famous is the Cauchy integral formula in complex analysis.
The majority of wavelets transforms are linked with group representations, see
our postgraduate course Wavelets in Applied and Pure Maths.

Heat and noise but not a fire?
Answer: “ApplicationofFourierSeries”

5.4. Some Application of Fourier Series. We are going to provide now few ex-
amples which demonstrate the importance of the Fourier series in many questions.
The first two (Example 5.16 and Theorem 5.17) belong to pure mathematics and last
two are of more applicable nature.

Example 5.16. Let f(t) = t on [−π,π]. Then

⟨f, en⟩ =
π∫

−π

te−int dt =

{
(−1)n 2πi

n
, n ̸= 0

0, n = 0
(check!),

http://v-v-kisil.scienceontheweb.net/courses/wavelets.html
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so f(t) ∼
∑∞

−∞(−1)n(i/n)eint. By a direct integration:

∥f∥22 =

π∫
−π

t2 dt =
2π3

3
.

On the other hand by the previous Corollary:

∥f∥22 = 2π
∑
n̸=0

∣∣∣∣ (−1)ni

n

∣∣∣∣2 = 4π

∞∑
n=1

1

n2
.

Thus we get a beautiful formula ∞∑
1

1

n2
=
π2

6
.

Here is another important result.

Theorem 5.17 (Weierstrass Approximation Theorem). For any function f ∈
C[a,b] and any ϵ > 0 there exists a polynomial p such that ∥f− p∥∞ < ϵ.

Proof. Change variable: t = 2π(x − a+b
2 )/(b − a) this maps x ∈ [a,b] onto

t ∈ [−π,π]. Let P denote the subspace of polynomials inC[−π,π]. Then eint ∈ P̄
for any n ∈ Z since Taylor series converges uniformly in [−π,π]. Consequently
P contains the closed linear span in (supremum norm) of eint, any n ∈ Z, which
is CP[−π,π] by the Fejér theorem. Thus P̄ ⊇ CP[−π,π] and we extend that to
non-periodic function as follows (why we could not make use of Lemma 5.1
here, by the way?).
For any f ∈ C[−π,π] let λ = (f(π) − f(−π))/(2π) then f1(t) = f(t) − λt ∈
CP[−π,π] and could be approximated by a polynomial p1(t) from the above
discussion. Then f(t) is approximated by the polynomial p(t) = p1(t) + λt. □

It is easy to see, that the rôle of exponents eint in the above prove is rather mod-
est: they can be replaced by any functions which has a Taylor expansion. The real
glory of the Fourier analysis is demonstrated in the two following examples.

Example 5.18. The modern history of the Fourier analysis starts from the works
of Fourier on the heat equation. As was mentioned in the introduction to this
part, the exceptional role of Fourier coefficients for differential equations is ex-
plained by the simple formula ∂xeinx = ineinx. We shortly review a solution of
the heat equation to illustrate this.
Let we have a rod of the length 2π. The temperature at its point x ∈ [−π,π] and
a moment t ∈ [0,∞) is described by a function u(t, x) on [0,∞) × [−π,π]. The
mathematical equation describing a dynamics of the temperature distribution
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FIGURE 11. The dynamics of a heat equation:
x—coordinate on the rod,
t—time,
T—temperature.

is:

(5.9)
∂u(t, x)

∂t
=
∂2u(t, x)

∂x2
or, equivalently,

(
∂t − ∂

2
x

)
u(t, x) = 0.

For any fixed moment t0 the function u(t0, x) depends only from x ∈ [−π,π]
and according to Corollary 5.10 could be represented by its Fourier series:

u(t0, x) =

∞∑
n=−∞ ⟨u, en⟩ en =

∞∑
n=−∞ cn(t0)e

inx,

where

cn(t0) =
⟨u, en⟩√

2π
=

1√
2π

π∫
−π

u(t0, x)e
−inx dx,

with Fourier coefficients cn(t0) depending from t0. We substitute that decom-
position into the heat equation (5.9) to receive:(

∂t − ∂
2
x

)
u(t, x) =

(
∂t − ∂

2
x

) ∞∑
n=−∞ cn(t)e

inx

=

∞∑
n=−∞

(
∂t − ∂

2
x

)
cn(t)e

inx

=

∞∑
n=−∞(c

′
n(t) + n

2cn(t))e
inx = 0.(5.10)
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Since function einx form a basis the last equation (5.10) holds if and only if

(5.11) c ′n(t) + n
2cn(t) = 0 for all n and t.

Equations from the system (5.11) have general solutions of the form:

(5.12) cn(t) = cn(0)e
−n2t for all t ∈ [0,∞),

producing a general solution of the heat equation (5.9) in the form:

(5.13) u(t, x) =

∞∑
n=−∞ cn(0)e

−n2teinx =

∞∑
n=−∞ cn(0)e

−n2t+inx,

where constant cn(0) could be defined from boundary condition. For example,
if it is known that the initial distribution of temperature was u(0, x) = g(x) for a
function g(x) ∈ L2[−π,π] then cn(0) is the n-th Fourier coefficient of g(x).
The general solution (5.13) helps produce both the analytical study of the heat
equation (5.9) and numerical simulation. For example, from (5.13) obviously
follows that

• the temperature is rapidly relaxing toward the thermal equilibrium
with the temperature given by c0(0), however never reach it within a
finite time;

• the “higher frequencies” (bigger thermal gradients) have a bigger speed
of relaxation; etc.

The example of numerical simulation for the initial value problem with g(x) =
2 cos(2 ∗ u) + 1.5 sin(u). It is clearly illustrate our above conclusions.

FIGURE 12. Two oscillation with unharmonious frequencies and
the appearing dissonance. Click to listen the blue and green pure
harmonics and red dissonance.

Example 5.19. Among the oldest periodic functions in human culture are acous-
tic waves of musical tones. The mathematical theory of musics (including rudi-
ments of the Fourier analysis!) is as old as mathematics itself and was highly
respected already in Pythagoras’ school more 2500 years ago.

testa.wav
testb.wav
testab.wav
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bowedvibHigh ahg5mono

altoSaxHigh dizig5

vlng5 glockLow

FIGURE 13. Graphics of G5 performed on different musical instru-
ments (click on picture to hear the sound). Samples are taken from
Sound Library.

The earliest observations are that
(i) The musical sounds are made of pure harmonics (see the blue and green

graphs on the Figure 12), in our language cos and sin functions form a
basis;

bowedvibHigh.wav
ahg5mono.wav
altoSaxHigh.wav
dizig5.wav
vlng5.wav
glockLow.wav
http://www.cs.ust.hk/~layers/subpage/sound.html
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FIGURE 14. Fourier series for G5 performed on different musical
instruments (same order and colour as on the previous Figure)

(a) (b)

(c)

FIGURE 15. Limits of the Fourier analysis: different frequencies
separated in time

(ii) Not every two pure harmonics are compatible, to be their frequencies
should make a simple ratio. Otherwise the dissonance (red graph on
Figure 12) appears.
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The musical tone, say G5, performed on different instruments clearly has some-
thing in common and different, see Figure 13 for comparisons. The decomposi-
tion into the pure harmonics, i.e. finding Fourier coefficient for the signal, could
provide the complete characterisation, see Figure 14.
The Fourier analysis tells that:

(i) All sound have the same base (i.e. the lowest) frequencies which cor-
responds to the G5 tone, i.e. 788 Gz.

(ii) The higher frequencies, which are necessarily are multiples of 788 Gz
to avoid dissonance, appears with different weights for different instru-
ments.

The Fourier analysis is very useful in the signal processing and is indeed the
fundamental tool. However it is not universal and has very serious limitations.
Consider the simple case of the signals plotted on the Figure 15(a) and (b). They
are both made out of same two pure harmonics:

(i) On the first signal the two harmonics (drawn in blue and green) follow
one after another in time on Figure 15(a);

(ii) They just blended in equal proportions over the whole interval on Fig-
ure 15(b).

This appear to be two very different signals. However the Fourier performed
over the whole interval does not seems to be very different, see Figure 15(c).
Both transforms (drawn in blue-green and pink) have two major pikes cor-
responding to the pure frequencies. It is not very easy to extract differences
between signals from their Fourier transform (yet this should be possible ac-
cording to our study).
Even a better picture could be obtained if we use windowed Fourier transform,
namely use a sliding “window” of the constant width instead of the entire in-
terval for the Fourier transform. Yet even better analysis could be obtained
by means of wavelets already mentioned in Remark 5.14 in connection with
Plancherel’s formula. Roughly, wavelets correspond to a sliding window of a
variable size—narrow for high frequencies and wide for low.

6. OPERATORS

All the space’s a stage,
and all functionals and operators merely players!

All our previous considerations were only a preparation of the stage and now
the main actors come forward to perform a play. The vectors spaces are not so
interesting while we consider them in statics, what really make them exciting is the
their transformations. The natural first steps is to consider transformations which
respect both linear structure and the norm.

6.1. Linear operators.
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Definition 6.1. A linear operator T between two normed spaces X and Y is a
mapping T : X→ Y such that T(λv+µu) = λT(v)+µT(u). The kernel of linear
operator ker T and image are defined by

ker T = {x ∈ X : Tx = 0} Im T = {y ∈ Y : y = Tx, for some x ∈ X}.

Exercise 6.2. Show that kernel of T is a linear subspace of X and image of T is a
linear subspace of Y.

As usual we are interested also in connections with the second (topological)
structure:

Definition 6.3. A norm of linear operator is defined:

(6.1) ∥T∥ = sup{∥Tx∥Y : ∥x∥X ⩽ 1}.

T is a bounded linear operator if ∥T∥ = sup{∥Tx∥ : ∥x∥} <∞.

Exercise 6.4. Show that ∥Tx∥ ⩽ ∥T∥ · ∥x∥ for all x ∈ X.

Example 6.5. Consider the following examples and determine kernel and im-
ages of the mentioned operators.

(i) On a normed space X define the zero operator to a space Y by Z : x → 0
for all x ∈ X. Its norm is 0.

(ii) On a normed space X define the identity operator by IX : x → x for all
x ∈ X. Its norm is 1.

(iii) On a normed spaceX any linear functional define a linear operator from
X to C, its norm as operator is the same as functional.

(iv) The set of operators from Cn to Cm is given by n ×m matrices which
acts on vector by the matrix multiplication. All linear operators on
finite-dimensional spaces are bounded.

(v) On ℓ2, let S(x1, x2, . . .) = (0, x1, x2, . . .) be the right shift operator. Clearly
∥Sx∥ = ∥x∥ for all x, so ∥S∥ = 1.

(vi) On L2[a,b], let w(t) ∈ C[a,b] and define multiplication operator Mwf by
(Mwf)(t) = w(t)f(t). Now:

∥Mwf∥2 =

b∫
a

|w(t)|2 |f(t)|2 dt

⩽ K2

b∫
a

|f(t)|2 dt, where K = ∥w∥∞ = sup
[a,b]

|w(t)| ,
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so ∥Mw∥ ⩽ K.

Exercise 6.6. Show that for multiplication operator in fact there is
the equality of norms ∥Mw∥2 = ∥w(t)∥∞.

Theorem 6.7. Let T : X → Y be a linear operator. The following conditions are
equivalent:

(i) T is continuous on X;
(ii) T is continuous at the point 0.

(iii) T is a bounded linear operator.

Proof. Proof essentially follows the proof of similar Theorem 4.4. □

6.2. Orthoprojections. Here we will use orthogonal complement, see § 3.5, to in-
troduce a class of linear operators—orthogonal projections. Despite of (or rather
due to) their extreme simplicity these operators are among most frequently used
tools in the theory of Hilbert spaces.

Corollary 6.8 (of Thm. 3.23, about Orthoprojection). Let M be a closed linear
subspace of a hilbert space H. There is a linear map PM from H onto M (the
orthogonal projection or orthoprojection) such that

(6.2) P2M = PM, kerPM =M⊥, PM⊥ = I− PM.

Proof. Let us define PM(x) = mwhere x = m+n is the decomposition from the
previous theorem. The linearity of this operator follows from the fact that both
M andM⊥ are linear subspaces. Also PM(m) = m for allm ∈M and the image
of PM is M. Thus P2M = PM. Also if PM(x) = 0 then x ⊥ M, i.e. kerPM = M⊥.
Similarly PM⊥(x) = nwhere x = m+ n and PM + PM⊥ = I. □

Example 6.9. Let (en) be an orthonormal basis in a Hilber space and let S ⊂ N
be fixed. LetM = CLin{en : n ∈ S} andM⊥ = CLin{en : n ∈ N \ S}. Then∞∑

k=1

akek =
∑
k∈S

akek +
∑
k̸∈S

akek.

Remark 6.10. In fact there is a one-to-one correspondence between closed linear
subspaces of a Hilber space H and orthogonal projections defined by identit-
ies (6.2).

6.3. B(H) as a Banach space (and even algebra).



INTRODUCTION TO FUNCTIONAL ANALYSIS 75

Theorem 6.11. Let B(X, Y) be the space of bounded linear operators from X
and Y with the norm defined above. If Y is complete, then B(X, Y) is a Banach space.

Proof. The proof repeat proof of the Theorem 4.8, which is a particular case of
the present theorem for Y = C, see Example 6.5(iii). □

Theorem 6.12. Let T ∈ B(X, Y) and S ∈ B(Y,Z), where X, Y, and Z are normed
spaces. Then ST ∈ B(X,Z) and ∥ST∥ ⩽ ∥S∥ ∥T∥.

Proof. Clearly (ST)x = S(Tx) ∈ Z, and

∥STx∥ ⩽ ∥S∥ ∥Tx∥ ⩽ ∥S∥ ∥T∥ ∥x∥ ,
which implies norm estimation if ∥x∥ ⩽ 1. □

Corollary 6.13. Let T ∈ B(X,X) =B(X), where X is a normed space. Then for
any n ⩾ 1, Tn ∈ B(X) and ∥Tn∥ ⩽ ∥T∥n.

Proof. It is induction by n with the trivial base n = 1 and the step following
from the previous theorem. □

Remark 6.14. Some texts use notations L(X, Y) and L(X) instead of ours B(X, Y)
and B(X).

Definition 6.15. Let T ∈ B(X, Y). We say T is an invertible operator if there
exists S ∈ B(Y,X) such that

ST = IX and TS = IY .

Such an S is called the inverse operator of T .

Exercise 6.16. Show that
(i) for an invertible operator T : X→ Y we have ker T = {0} and ℑT = Y.

(ii) the inverse operator is unique (if exists at all). (Assume existence of S
and S ′, then consider operator STS ′.)

Example 6.17. We consider inverses to operators from Exercise 6.5.
(i) The zero operator is never invertible unless the pathological spaces X =
Y = {0}.

(ii) The identity operator IX is the inverse of itself.
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(iii) A linear functional is not invertible unless it is non-zero and X is one
dimensional.

(iv) An operator Cn → Cm is invertible if and only if m = n and corres-
ponding square matrix is non-singular, i.e. has non-zero determinant.

(v) The right shift S is not invertible on ℓ2 (it is one-to-one but is not onto).
But the left shift operator T(x1, x2, . . .) = (x2, x3, . . .) is its left inverse, i.e.
TS = I but TS ̸= I since ST(1, 0, 0, . . .) = (0, 0, . . .). T is not invertible
either (it is onto but not one-to-one), however S is its right inverse.

(vi) Operator of multiplicationMw is invertible if and only ifw−1 ∈ C[a,b]
and inverse is Mw−1 . For example M1+t is invertible L2[0, 1] and Mt is
not.

6.4. Adjoints.

Theorem 6.18. LetH and K be Hilbert Spaces and T ∈ B(H,K). Then there exists
operator T∗ ∈ B(K,H) such that

⟨Th,k⟩K = ⟨h, T∗k⟩H for all h ∈ H, k ∈ K.
Such T∗ is called the adjoint operator of T . Also T∗∗ = T and ∥T∗∥ = ∥T∥.

Proof. For any fixed k ∈ K the expression h :→ ⟨Th,k⟩K defines a bounded linear
functional on H. By the Riesz–Fréchet lemma there is a unique y ∈ H such that
⟨Th,k⟩K = ⟨h,y⟩H for all h ∈ H. Define T∗k = y then T∗ is linear:

⟨h, T∗(λ1k1 + λ2k2)⟩H = ⟨Th, λ1k1 + λ2k2⟩K
= λ̄1 ⟨Th,k1⟩K + λ̄2 ⟨Th,k2⟩K
= λ̄1 ⟨h, T∗k1⟩H + λ̄2 ⟨h, T∗k2⟩K
= ⟨h, λ1T∗k1 + λ2T∗k2⟩H

So T∗(λ1k1 + λ2k2) = λ1T
∗k1 + λ2T

∗k2. T∗∗ is defined by ⟨k, T∗∗h⟩ = ⟨T∗k,h⟩
and the identity ⟨T∗∗h,k⟩ = ⟨h, T∗k⟩ = ⟨Th,k⟩ for all h and k shows T∗∗ = T .
Also:

∥T∗k∥2 = ⟨T∗k, T∗k⟩ = ⟨k, TT∗k⟩
⩽ ∥k∥ · ∥TT∗k∥ ⩽ ∥k∥ · ∥T∥ · ∥T∗k∥ ,

which implies ∥T∗k∥ ⩽ ∥T∥ · ∥k∥, consequently ∥T∗∥ ⩽ ∥T∥. The opposite in-
equality follows from the identity ∥T∥ = ∥T∗∗∥. □

Exercise 6.19. (i) For operators T1 and T2 show that

(T1T2)
∗ = T∗2 T

∗
1 , (T1 + T2)

∗ = T∗1 + T∗2 (λT)∗ = λ̄T∗.

(ii) If A is an operator on a Hilbert space H then (kerA)⊥ = ImA∗.
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6.5. Hermitian, unitary and normal operators.

Definition 6.20. An operator T : H→ H is a Hermitian operator or self-adjoint
operator if T = T∗, i.e. ⟨Tx,y⟩ = ⟨x, Ty⟩ for all x, y ∈ H.

Example 6.21. (i) On ℓ2 the adjoint S∗ to the right shift operator S is given
by the left shift S∗ = T , indeed:

⟨Sx,y⟩ = ⟨(0, x1, x2, . . .), (y1,y2, . . .)⟩
= x1ȳ2 + x2ȳ3 + · · · = ⟨(x1, x2, . . .), (y2,y3, . . .)⟩
= ⟨x, Ty⟩ .

Thus S is not Hermitian.
(ii) Let D be diagonal operator on ℓ2 given by

D(x1, x2, . . .) = (λ1x1, λ2x2, . . .).

where (λk) is any bounded complex sequence. It is easy to check that
∥D∥ = ∥(λn)∥∞ = supk |λk| and

D∗(x1, x2, . . .) = (λ̄1x1, λ̄2x2, . . .),

thus D is Hermitian if and only if λk ∈ R for all k.
(iii) If T : Cn → Cn is represented by multiplication of a column vector by

a matrix A, then T∗ is multiplication by the matrix A∗—transpose and
conjugate to A.

Exercise 6.22. Show that for any bounded operator T operators Tr = 1
2 (T + T∗),

Ti = 1
2i (T − T∗), T∗T and TT∗ are Hermitians. Note, that any operator is the

linear combination of two hermitian operators: T = Tr + iTi (cf. z = ℜz+ iℑz for
z ∈ C).

To appreciate the next Theorem the following exercise is useful:

Exercise 6.23. Let H be a Hilbert space. Show that
(i) For x ∈ Hwe have ∥x∥ = sup { |⟨x,y⟩| for all y ∈ H such that ∥y∥ = 1}.

(ii) For T ∈ B(H) we have

(6.3) ∥T∥ = sup { |⟨Tx,y⟩| for all x,y ∈ H such that ∥x∥ = ∥y∥ = 1}.

The next theorem says, that for a Hermitian operator T the supremum in (6.3)
may be taken over the “diagonal” x = y only.

Theorem 6.24. Let T be a Hermitian operator on a Hilbert space. Then

∥T∥ = sup
∥x∥=1

|⟨Tx, x⟩| .
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Proof. If Tx = 0 for all x ∈ H, both sides of the identity are 0. So we suppose that
∃x ∈ H for which Tx ̸= 0.
We see that |⟨Tx, x⟩| ⩽ ∥Tx∥ ∥x∥ ⩽ ∥T∥

∥∥x2∥∥, so sup∥x∥=1 |⟨Tx, x⟩| ⩽ ∥T∥. To get
the inequality the other way around, we first write s := sup∥x∥=1 |⟨Tx, x⟩|. Then
for any x ∈ H, we have |⟨Tx, x⟩| ⩽ s

∥∥x2∥∥.
We now consider

⟨T(x+ y), x+ y⟩ = ⟨Tx, x⟩+⟨Tx,y⟩+⟨Ty, x⟩+⟨Ty,y⟩ = ⟨Tx, x⟩+2ℜ ⟨Tx,y⟩+⟨Ty,y⟩
(because T being Hermitian gives ⟨Ty, x⟩ = ⟨y, Tx⟩ = ⟨Tx,y⟩) and, similarly,

⟨T(x− y), x− y⟩ = ⟨Tx, x⟩− 2ℜ ⟨Tx,y⟩+ ⟨Ty,y⟩ .
Subtracting gives

4ℜ ⟨Tx,y⟩ = ⟨T(x+ y), x+ y⟩− ⟨T(x− y), x− y⟩
⩽ s(∥x+ y∥2 + ∥x− y∥2)
= 2s(∥x∥2 + ∥y∥2),

by the parallelogram identity.
Now, for x ∈ H such that Tx ̸= 0, we put y = ∥Tx∥−1 ∥x∥ Tx. Then ∥y∥ = ∥x∥
and when we substitute into the previous inequality, we get

4 ∥Tx∥ ∥x∥ = 4ℜ ⟨Tx,y⟩ ⩽ 4s
∥∥x2∥∥ ,

So ∥Tx∥ ⩽ s ∥x∥ and it follows that ∥T∥ ⩽ s, as required. □

Definition 6.25. We say that U : H → H is a unitary operator on a Hilbert
space H if U∗ = U−1, i.e. U∗U = UU∗ = I.

Example 6.26. (i) If D : ℓ2 → ℓ2 is a diagonal operator such that Dek =
λkek, thenD∗ek = λ̄kek andD is unitary if and only if |λk| = 1 for all k.

(ii) The shift operator S satisfies S∗S = I but SS∗ ̸= I thus S is not unitary.

Theorem 6.27. For an operator U on a complex Hilbert space H the following are
equivalent:

(i) U is unitary;
(ii) U is surjection and an isometry, i.e. ∥Ux∥ = ∥x∥ for all x ∈ H;

(iii) U is a surjection and preserves the inner product, i.e. ⟨Ux,Uy⟩ = ⟨x,y⟩
for all x, y ∈ H.

Proof. 6.27(i)⇒6.27(ii). Clearly unitarity of operator implies its invertibility and
hence surjectivity. Also

∥Ux∥2 = ⟨Ux,Ux⟩ = ⟨x,U∗Ux⟩ = ⟨x, x⟩ = ∥x∥2 .
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6.27(ii)⇒6.27(iii). Using the polarisation identity (cf. polarisation in equa-
tion (2.9)):

4 ⟨Tx,y⟩ = ⟨T(x+ y), x+ y⟩+ i ⟨T(x+ iy), x+ iy⟩
− ⟨T(x− y), x− y⟩− i ⟨T(x− iy), x− iy⟩ .

=

3∑
k=0

ik
〈
T(x+ iky), x+ iky

〉
Take T = U∗U and T = I, then

4 ⟨U∗Ux,y⟩ =

3∑
k=0

ik
〈
U∗U(x+ iky), x+ iky

〉
=

3∑
k=0

ik
〈
U(x+ iky),U(x+ iky)

〉
=

3∑
k=0

ik
〈
(x+ iky), (x+ iky)

〉
= 4 ⟨x,y⟩ .

6.27(iii)⇒6.27(i). Indeed ⟨U∗Ux,y⟩ = ⟨x,y⟩ implies ⟨(U∗U− I)x,y⟩ = 0 for all
x,y ∈ H, then U∗U = I. Since U is surjective, for any y ∈ H there is x ∈ H such
that y = Ux. Then, using the already established fact U∗U = Iwe get

UU∗y = UU∗(Ux) = U(U∗U)x = Ux = y.

Thus we have UU∗ = I as well and U is unitary. □

Definition 6.28. A normal operator T is one for which T∗T = TT∗.

Example 6.29. (i) Any self-adjoint operator T is normal, since T∗ = T .
(ii) Any unitary operator U is normal, since U∗U = I = UU∗.

(iii) Any diagonal operator D is normal , since Dek = λkek, D∗ek = λ̄kek,
and DD∗ek = D∗Dek = |λk|

2 ek.
(iv) The shift operator S is not normal.
(v) A finite matrix is normal (as an operator on ℓn2 ) if and only if it has an

orthonormal basis in which it is diagonal.

Remark 6.30. Theorems 6.24 and 6.27(ii) draw similarity between those types
of operators and multiplications by complex numbers. Indeed Theorem 6.24
said that an operator which significantly change direction of vectors (“rotates”)
cannot be Hermitian, just like a multiplication by a real number scales but do
not rotate. On the other hand Theorem 6.27(ii) says that unitary operator just
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rotate vectors but do not scale, as a multiplication by an unimodular complex
number. We will see further such connections in Theorem 7.17.

7. SPECTRAL THEORY

Beware of ghosts2 in this area!

As we saw operators could be added and multiplied each other, in some sense
they behave like numbers, but are much more complicated. In this lecture we will
associate to each operator a set of complex numbers which reflects certain (unfor-
tunately not all) properties of this operator.

The analogy between operators and numbers become even more deeper since
we could construct functions of operators (called functional calculus) in a way we build
numeric functions. The most important functions of this sort is called resolvent (see
Definition 7.5). The methods of analytical functions are very powerful in operator
theory and students may wish to refresh their knowledge of complex analysis be-
fore this part.

7.1. The spectrum of an operator on a Hilbert space. An eigenvalue of operator
T ∈ B(H) is a complex number λ such that there exists a nonzero x ∈ H, called
eigenvector with property Tx = λx, in other words x ∈ ker(T − λI).

In finite dimensions T − λI is invertible if and only if λ is not an eigenvalue. In
infinite dimensions it is not the same: the right shift operator S is not invertible but
0 is not its eigenvalue because Sx = 0 implies x = 0 (check!).

Definition 7.1. The resolvent set ρ(T) of an operator T is the set

ρ(T) = {λ ∈ C : T − λI is invertible}.

The spectrum of operator T ∈ B(H), denoted σ(T), is the complement of the
resolvent set ρ(T):

σ(T) = {λ ∈ C : T − λI is not invertible}.

Example 7.2. If H is finite dimensional the from previous discussion follows
that σ(T) is the set of eigenvalues of T for any T .
Even this example demonstrates that spectrum does not provide a complete
description for operator even in finite-dimensional case. For example, both op-

erators in C2 given by matrices
(

0 0
0 0

)
and

(
0 0
1 0

)
have a single point

spectrum {0}, however are rather different. The situation became even worst in
the infinite dimensional spaces.
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Theorem 7.3. The spectrum σ(T) of a bounded operator T is a nonempty compact
(i.e. closed and bounded) subset of C.

For the proof we will need several Lemmas.

Lemma 7.4. Let A ∈ B(H). If ∥A∥ < 1 then I − A is invertible in B(H) and
inverse is given by the Neumann series (C. Neumann, 1877):

(7.1) (I−A)−1 = I+A+A2 +A3 + . . . =

∞∑
k=0

Ak.

Proof. Define the sequence of operators Bn = I+A+ · · ·+AN—the partial sums
of the infinite series (7.1). It is a Cauchy sequence, indeed:

∥Bn − Bm∥ =
∥∥Am+1 +Am+2 + · · ·+An

∥∥ (if n < m)

⩽
∥∥Am+1

∥∥+ ∥∥Am+2
∥∥+ · · ·+ ∥An∥

⩽ ∥A∥m+1 + ∥A∥m+2 + · · ·+ ∥A∥n

⩽
∥A∥m+1

1− ∥A∥ < ϵ

for a largem. By the completeness of B(H) there is a limit, say B, of the sequence
Bn. It is a simple algebra to check that (I−A)Bn = Bn(I−A) = I−A

n+1, passing
to the limit in the norm topology, where An+1 → 0 and Bn → Bwe get:

(I−A)B = B(I−A) = I ⇔ B = (I−A)−1.

□

Definition 7.5. The resolventof an operator T is the operator valued function
defined on the resolvent set by the formula:

(7.2) R(λ, T) = (T − λI)−1.

Corollary 7.6. (i) If |λ| > ∥T∥ then λ ∈ ρ(T), hence the spectrum is
bounded.

(ii) The resolvent set ρ(T) is open, i.e for any λ ∈ ρ(T) then there exist ϵ > 0
such that all µ with |λ− µ| < ϵ are also in ρ(T), i.e. the resolvent set is
open and the spectrum is closed.

Both statements together imply that the spectrum is compact.
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Proof. (i) If |λ| > ∥T∥ then
∥∥λ−1T

∥∥ < 1 and the operator T − λI = −λ(I −

λ−1T) has the inverse

(7.3) R(λ, T) = (T − λI)−1 = −

∞∑
k=0

λ−k−1Tk.

by the previous Lemma.
(ii) Indeed:

T − µI = T − λI+ (λ− µ)I

= (T − λI)(I+ (λ− µ)(T − λI)−1).

The last line is an invertible operator because T − λI is invertible by
the assumption and I + (λ − µ)(T − λI)−1 is invertible by the previous
Lemma, since

∥∥(λ− µ)(T − λI)−1
∥∥ < 1 if ϵ <

∥∥(T − λI)−1
∥∥.

□

Exercise 7.7. (i) Prove the first resolvent identity:

(7.4) R(λ, T) − R(µ, T) = (λ− µ)R(λ, T)R(µ, T)

(ii) Use the identity (7.4) to show that (T − µI)−1 → (T − λI)−1 as µ→ λ.
(iii) Use the identity (7.4) to show that for z ∈ ρ(t) the complex derivative

d
dz
R(z, T) of the resolvent R(z, T) is well defined, i.e. the resolvent is an

analytic function operator valued function of z.

Lemma 7.8. The spectrum is non-empty.

Proof. Let us assume the opposite, σ(T) = ∅ then the resolvent function R(λ, T)
is well defined for all λ ∈ C. As could be seen from the von Neumann
series (7.3) ∥R(λ, T)∥ → 0 as λ → ∞. Thus for any vectors x, y ∈ H the function
f(λ) = ⟨R(λ, T)x,y)⟩ is analytic (see Exercise 7.7(iii)) function tensing to zero
at infinity. Then by the Liouville theorem from complex analysis R(λ, T) = 0,
which is impossible. Thus the spectrum is not empty. □

Proof of Theorem 7.3. Spectrum is nonempty by Lemma 7.8 and compact by Co-
rollary 7.6. □

Remark 7.9. Theorem 7.3 gives the maximal possible description of the spectrum,
indeed any non-empty compact set could be a spectrum for some bounded op-
erator, see Problem A.23.

7.2. The spectral radius formula. The following definition is of interest.
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Definition 7.10. The spectral radius of T is

r(T) = sup{|λ| : λ ∈ σ(T)}.

From the Lemma 7.6(i) immediately follows that r(T) ⩽ ∥T∥. The more accurate
estimation is given by the following theorem.

Theorem 7.11. For a bounded operator T we have

(7.5) r(T) = lim
n→∞ ∥Tn∥1/n .

We start from the following general lemma:

Lemma 7.12. Let a sequence (an) of positive real numbers satisfies inequalities:
0 ⩽ am+n ⩽ am + an for all m and n. Then there is a limit lim

n→∞(an/n) and its
equal to inf

n
(an/n).

Proof. The statements follows from the observation that for anyn andm = nk+l
with 0 ⩽ l ⩽ n we have am ⩽ kan + la1 thus, for big m we got am/m ⩽
an/n+ la1/m ⩽ an/n+ ϵ. □

Proof of Theorem 7.11. The existence of the limit limn→∞ ∥Tn∥1/n in (7.5) follows
from the previous Lemma since by the Lemma 6.12 log ∥Tn+m∥ ⩽ log ∥Tn∥ +
log ∥Tm∥. Now we are using some results from the complex analysis. The
Laurent series for the resolvent R(λ, T) in the neighbourhood of infinity is given
by the von Neumann series (7.3). The radius of its convergence (which is equal,
obviously, to r(T)) by the Hadamard theorem is exactly limn→∞ ∥Tn∥1/n. □

Corollary 7.13. There exists λ ∈ σ(T) such that |λ| = r(T).

Proof. Indeed, as its known from the complex analysis the boundary of the con-
vergence circle of a Laurent (or Taylor) series contain a singular point, the sin-
gular point of the resolvent is obviously belongs to the spectrum. □

Example 7.14. Let us consider the left shift operator S∗, for any λ ∈ C such
that |λ| < 1 the vector (1, λ, λ2, λ3, . . .) is in ℓ2 and is an eigenvector of S∗ with
eigenvalue λ, so the open unit disk |λ| < 1 belongs to σ(S∗). On the other hand
spectrum of S∗ belongs to the closed unit disk |λ| ⩽ 1 since r(S∗) ⩽ ∥S∗∥ = 1.
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Because spectrum is closed it should coincide with the closed unit disk, since
the open unit disk is dense in it. Particularly 1 ∈ σ(S∗), but it is easy to see that
1 is not an eigenvalue of S∗.

Proposition 7.15. For any T ∈ B(H) the spectrum of the adjoint operator is
σ(T∗) = {λ̄ : λ ∈ σ(T)}.

Proof. If (T − λI)V = V(T − λI) = I the by taking adjoints V∗(T∗ − λ̄I) = (T∗ −
λ̄I)V∗ = I. So λ ∈ ρ(T) implies λ̄ ∈ ρ(T∗), using the property T∗∗ = T we could
invert the implication and get the statement of proposition. □

Example 7.16. In continuation of Example 7.14 using the previous Proposition
we conclude that σ(S) is also the closed unit disk, but S does not have eigenval-
ues at all!

7.3. Spectrum of Special Operators.

Theorem 7.17. (i) If U is a unitary operator then σ(U) ⊆ {|z| = 1}.
(ii) If T is Hermitian then σ(T) ⊆ R.

Proof. (i) If |λ| > 1 then
∥∥λ−1U

∥∥ < 1 and then λI − U = λ(I − λ−1U) is
invertible, thus λ ̸∈ σ(U). If |λ| < 1 then ∥λU∗∥ < 1 and then λI − U =
U(λU∗ − I) is invertible, thus λ ̸∈ σ(U). The remaining set is exactly
{z : |z| = 1}.

(ii) Without lost of generality we could assume that ∥T∥ < 1, otherwise
we could multiply T by a small real scalar. Let us consider the Cayley
transform which maps real axis to the unit circle:

U = (T − iI)(T + iI)−1.

Straightforward calculations show that U is unitary if T is Hermitian.
Let us take λ ̸∈ R and λ ̸= −i (this case could be checked directly by
Lemma 7.4). Then the Cayley transform µ = (λ− i)(λ+ i)−1 of λ is not
on the unit circle and thus the operator

U− µI = (T − iI)(T + iI)−1 − (λ− i)(λ+ i)−1I = 2i(λ+ i)−1(T − λI)(T + iI)−1,

is invertible, which implies invertibility of T − λI. So λ ̸∈ R.
□

The above reduction of a self-adjoint operator to a unitary one (it can be done on
the opposite direction as well!) is an important tool which can be applied in other
questions as well, e.g. in the following exercise.



INTRODUCTION TO FUNCTIONAL ANALYSIS 85

Exercise 7.18. (i) Show that an operator U : f(t) 7→ eitf(t) on L2[0, 2π] is
unitary and has the entire unit circle {|z| = 1} as its spectrum .

(ii) Find a self-adjoint operator T with the entire real line as its spectrum.

8. COMPACTNESS

It is not easy to study linear operators “in general” and there are many ques-
tions about operators in Hilbert spaces raised many decades ago which are still
unanswered. Therefore it is reasonable to single out classes of operators which
have (relatively) simple properties. Such a class of operators more closed to finite
dimensional ones will be studied here.

These operators are so compact that we even can fit them in
our course

8.1. Compact operators. Let us recall some topological definition and results.

Definition 8.1. A compact set in a metric space is defined by the property
that any its covering by a family of open sets contains a subcovering by a
finite subfamily.

In the finite dimensional vector spaces Rn or Cn there is the following equivalent
definition of compactness (equivalence of 8.2(i) and 8.2(ii) is known as Heine–Borel
theorem):

Theorem 8.2. If a set E in Rn or Cn has any of the following properties then it has
other two as well:

(i) E is bounded and closed;
(ii) E is compact;

(iii) Any infinite subset of E has a limiting point belonging to E.

Exercise∗ 8.3. Which equivalences from above are not true any more in the in-
finite dimensional spaces?

Definition 8.4. Let X and Y be normed spaces, T ∈ B(X, Y) is a finite rank
operator if Im T is a finite dimensional subspace of Y. T is a compact operator
if whenever (xi)

∞
1 is a bounded sequence in X then its image (Txi)

∞
1 has a

convergent subsequence in Y.
The set of finite rank operators is denote by F(X, Y) and the set of compact
operators—by K(X, Y)
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Exercise 8.5. Show that both F(X, Y) and K(X, Y) are linear subspaces of B(X, Y).

We intend to show that F(X, Y) ⊂ K(X, Y).

Lemma 8.6. Let Z be a finite-dimensional normed space. Then there is a number
N and a mapping S : ℓN2 → Z which is invertible and such that S and S−1 are
bounded.

Proof. The proof is given by an explicit construction. Let N = dimZ and z1, z2,
. . . , zN be a basis in Z. Let us define

S : ℓN2 → Z by S(a1,a2, . . . ,aN) =

N∑
k=1

akzk,

then we have an estimation of norm:

∥Sa∥ =

∥∥∥∥∥
N∑

k=1

akzk

∥∥∥∥∥ ⩽
N∑

k=1

|ak| ∥zk∥

⩽

(
N∑

k=1

|ak|
2

)1/2( N∑
k=1

∥zk∥2
)1/2

.

So ∥S∥ ⩽
(∑N

1 ∥zk∥2
)1/2

and S is continuous.
Clearly S has the trivial kernel, particularly ∥Sa∥ > 0 if ∥a∥ = 1. By the Heine–
Borel theorem the unit sphere in ℓN2 is compact, consequently the continuous
function a 7→

∥∥∥∑N
1 akzk

∥∥∥ attains its lower bound, which has to be positive. This
means there exists δ > 0 such that ∥a∥ = 1 implies ∥Sa∥ > δ, or, equivalently if
∥z∥ < δ then

∥∥S−1z
∥∥ < 1. The later means that

∥∥S−1
∥∥ ⩽ δ−1 and boundedness

of S−1. □

Corollary 8.7. For any two metric spaces X and Y we have F(X, Y) ⊂ K(X, Y).

Proof. Let T ∈ F(X, Y), if (xn)∞1 is a bounded sequence in X then ((Txn)
∞
1 ⊂ Z =

Im T is also bounded. Let S : ℓN2 → Z be a map constructed in the above Lemma.
The sequence (S−1Txn)

∞
1 is bounded in ℓN2 and thus has a limiting point, say a0.

Then Sa0 is a limiting point of (Txn)∞1 . □

There is a simple condition which allows to determine which diagonal operators
are compact (particularly the identity operator IX is not compact if dimX = ∞):
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Proposition 8.8. Let T is a diagonal operator and given by identities Ten = λnen
for all n in a basis en. T is compact if and only if λn → 0.

e1
λ1e1

δe1

e2

λ2e2

δe2

FIGURE 16. Distance between scales of orthonormal vectors

Proof. If λn ̸→ 0 then there exists a subsequence λnk
and δ > 0 such that |λnk

| >
δ for all k. Now the sequence (enk

) is bounded but its image Tenk
= λnk

enk

has no convergent subsequence because for any k ̸= l:
∥λnk

enk
− λnl

enl
∥ = (|λnk

|
2 + |λnl

|
2)1/2 ⩾

√
2δ,

i.e. Tenk
is not a Cauchy sequence, see Figure 16. For the converse, note that if

λn → 0 then we can define a finite rank operator Tm,m ⩾ 1—m-“truncation” of
T by:

(8.1) Tmen =

{
Ten = λnen, 1 ⩽ n ⩽ m;
0, n > m.

Then obviously

(T − Tm)en =

{
0, 1 ⩽ n ⩽ m;
λnen, n > m,

and ∥T − Tm∥ = supn>m |λn| → 0 ifm→ ∞. All Tm are finite rank operators (so
are compact) and T is also compact as their limit—by the next Theorem. □

Theorem 8.9. Let Tm be a sequence of compact operators convergent to an operator
T in the norm topology (i.e. ∥T − Tm∥ → 0) then T is compact itself. Equivalently
K(X, Y) is a closed subspace of B(X, Y).
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|f(x)− fn(x)| < ǫ/3

|fn(x)− fn(y)| < ǫ/3

|fn(y)− f(y)| < ǫ/3

x y

fn(t)

f(t)

FIGURE 17. The ϵ/3 argument to estimate |f(x) − f(y)|.

T1x
(1)
1 T1x

(1)
2 T1x

(1)
3 . . . T1x

(1)
n . . . → a1

T2x
(2)
1 T2x

(2)
2 T2x

(2)
3 . . . T2x

(2)
n . . . → a2

T3x
(3)
1 T3x

(3)
2 T3x

(3)
3 . . . T3x

(3)
n . . . → a3

. . . . . . . . . . . . . . . . . .
Tnx

(n)
1 Tnx

(n)
2 Tnx

(n)
3 . . . Tnx

(n)
n . . . → an

. . . . . . . . . . . . . . . . . . ↓
↘

a
TABLE 2. The “diagonal argument”.

Proof. Take a bounded sequence (xn)
∞
1 . From compactness

of T1 ⇒ ∃ subsequence (x
(1)
n )∞1 of (xn)∞1 s.t. (T1x

(1)
n )∞1 is convergent.

of T2 ⇒ ∃ subsequence (x
(2)
n )∞1 of (x(1)n )∞1 s.t. (T2x

(2)
n )∞1 is convergent.

of T3 ⇒ ∃ subsequence (x
(3)
n )∞1 of (x(2)n )∞1 s.t. (T3x

(3)
n )∞1 is convergent.

. . . . . . . . . . . . . . .
Could we find a subsequence which converges for all Tm simultaneously? The
first guess “take the intersection of all above sequences (x

(k)
n )∞1 ” does not work

because the intersection could be empty. The way out is provided by the diagonal
argument (see Table 2): a subsequence (Tmx

(k)
k )∞1 is convergent for allm, because

at latest after the term x
(m)
m it is a subsequence of (x(m)

k )∞1 .
We are claiming that a subsequence (Tx

(k)
k )∞1 of (Txn)∞1 is convergent as well.

We use here ϵ/3 argument (see Figure 17): for a given ϵ > 0 choose p ∈ N such
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that ∥T − Tp∥ < ϵ/3. Because (Tpx
(k)
k ) → 0 it is a Cauchy sequence, thus there

exists n0 > p such that
∥∥∥Tpx(k)k − Tpx

(l)
l

∥∥∥ < ϵ/3 for all k, l > n0. Then:∥∥∥Tx(k)k − Tx
(l)
l

∥∥∥ =
∥∥∥(Tx(k)k − Tpx

(k)
k ) + (Tpx

(k)
k − Tpx

(l)
l ) + (Tpx

(l)
l − Tx

(l)
l )
∥∥∥

⩽
∥∥∥Tx(k)k − Tpx

(k)
k

∥∥∥+ ∥∥∥Tpx(k)k − Tpx
(l)
l

∥∥∥+ ∥∥∥Tpx(l)l − Tx
(l)
l

∥∥∥
⩽ ϵ

Thus T is compact. □

8.2. Hilbert–Schmidt operators.

Definition 8.10. Let T : H → K be a bounded linear map between two
Hilbert spaces. Then T is said to be Hilbert–Schmidt operator if there exists an
orthonormal basis in H such that the series

∑∞
k=1 ∥Tek∥2 is convergent.

Example 8.11. (i) Let T : ℓ2 → ℓ2 be a diagonal operator defined by Ten =

en/n, for alln ⩾ 1. Then
∑ ∥Ten∥2 =

∑
n−2 = π2/6 (see Example 5.16)

is finite.
(ii) The identity operator IH is not a Hilbert–Schmidt operator, unless H is

finite dimensional.

A relation to compact operator is as follows.

Theorem 8.12. All Hilbert–Schmidt operators are compact. (The opposite inclu-
sion is false, give a counterexample!)

Proof. Let T ∈ B(H,K) have a convergent series
∑ ∥Ten∥2 in an orthonormal

basis (en)∞1 ofH. We again (see (8.1)) define them-truncation of T by the formula

(8.2) Tmen =

{
Ten, 1 ⩽ n ⩽ m;
0, n > m.

Then Tm(
∑∞

1 akek) =
∑m

1 akek and each Tm is a finite rank operator because
its image is spanned by the finite set of vectors Te1, . . . , Ten. We claim that
∥T − Tm∥ → 0. Indeed by linearity and definition of Tm:

(T − Tm)

( ∞∑
n=1

anen

)
=

∞∑
n=m+1

an(Ten).
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Thus:∥∥∥∥∥(T − Tm)

( ∞∑
n=1

anen

)∥∥∥∥∥ =

∥∥∥∥∥
∞∑

n=m+1

an(Ten)

∥∥∥∥∥(8.3)

⩽
∞∑

n=m+1

|an| ∥(Ten)∥

⩽

( ∞∑
n=m+1

|an|
2

)1/2( ∞∑
n=m+1

∥(Ten)∥2
)1/2

⩽

∥∥∥∥∥
∞∑

n=1

anen

∥∥∥∥∥
( ∞∑

n=m+1

∥(Ten)∥2
)1/2

(8.4)

so ∥T − Tm∥ → 0 and by the previous Theorem T is compact as a limit of com-
pact operators. □

Corollary 8.13 (from the above proof). For a Hilbert–Schmidt operator

∥T∥ ⩽

( ∞∑
n=m+1

∥(Ten)∥2
)1/2

.

Proof. Just consider difference of T and T0 = 0 in (8.3)–(8.4). □

Example 8.14. An integral operator T on L2[0, 1] is defined by the formula:

(8.5) (Tf)(x) =

1∫
0

K(x,y)f(y)dy, f(y) ∈ L2[0, 1],

where the continuous on [0, 1] × [0, 1] function K is called the kernel of integral
operator.

Theorem 8.15. Integral operator (8.5) is Hilbert–Schmidt.

Proof. Let (en)∞−∞ be an orthonormal basis of L2[0, 1], e.g. (e2πint)n∈Z . Let us
consider the kernel Kx(y) = K(x,y) as a function of the argument y depending
from the parameter x. Then:

(Ten)(x) =

1∫
0

K(x,y)en(y)dy =

1∫
0

Kx(y)en(y)dy = ⟨Kx, ēn⟩ .
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So ∥Ten∥2 =
1∫
0

|⟨Kx, ēn⟩|2 dx. Consequently:

∞∑
−∞ ∥Ten∥2 =

∞∑
−∞

1∫
0

|⟨Kx, ēn⟩|2 dx

=

1∫
0

∞∑
1

|⟨Kx, ēn⟩|2 dx(8.6)

=

1∫
0

∥Kx∥2 dx

=

1∫
0

1∫
0

|K(x,y)|2 dxdy <∞
Exercise 8.16. Justify the exchange of summation and integration in (8.6).

□

Remark 8.17. The definition 8.14 and Theorem 8.15 work also for any T :
L2[a,b] → L2[c,d] with a continuous kernel K(x,y) on [c,d]× [a,b].

Definition 8.18. Define Hilbert–Schmidt norm of a Hilbert–Schmidt operator
A by ∥A∥2HS =

∑∞
n=1 ∥Aen∥2 (it is independent of the choice of orthonormal

basis (en)∞1 , see Question A.27).

Exercise∗ 8.19. Show that set of Hilbert–Schmidt operators with the above norm
is a Hilbert space and find the an expression for the inner product.

Example 8.20. Let K(x,y) = x− y, then

(Tf)(x) =

1∫
0

(x− y)f(y)dy = x

1∫
0

f(y)dy−

1∫
0

yf(y)dy

is a rank 2 operator. Furthermore:

∥T∥2HS =

1∫
0

1∫
0

(x− y)2 dxdy =

1∫
0

[
(x− y)3

3

]1
x=0

dy

=

1∫
0

(1− y)3

3
+
y3

3
dy =

[
−
(1− y)4

12
+
y4

12

]1
0

=
1

6
.
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On the other hand there is an orthonormal basis such that

Tf =
1√
12

⟨f, e1⟩ e1 −
1√
12

⟨f, e2⟩ e2,

and ∥T∥ = 1√
12

and
∑2

1 ∥Tek∥2 = 1
6 and we get ∥T∥ ⩽ ∥T∥HS in agreement with

Corollary 8.13.

9. THE SPECTRAL THEOREM FOR COMPACT NORMAL OPERATORS

Recall from Section 6.5 that an operator T is normal if TT∗ = T∗T ; Hermitian
(T∗ = T ) and unitary (T∗ = T−1) operators are normal.

9.1. Spectrum of normal operators.

Theorem 9.1. Let T ∈ B(H) be a normal operator then
(i) ker T = ker T∗, so ker(T − λI) = ker(T∗ − λ̄I) for all λ ∈ C

(ii) Eigenvectors corresponding to distinct eigenvalues are orthogonal.
(iii) ∥T∥ = r(T).

Proof. (i) Obviously:

x ∈ ker T ⇔ ⟨Tx, Tx⟩ = 0 ⇔ ⟨T∗Tx, x⟩ = 0

⇔ ⟨TT∗x, x⟩ = 0 ⇔ ⟨T∗x, T∗x⟩ = 0

⇔ x ∈ ker T∗.

The second part holds because normalities of T and T − λI are equival-
ent.

(ii) If Tx = λx, Ty = µy then from the previous statement T∗y = µ̄y. If
λ ̸= µ then the identity

λ ⟨x,y⟩ = ⟨Tx,y⟩ = ⟨x, T∗y⟩ = µ ⟨x,y⟩
implies ⟨x,y⟩ = 0.

(iii) Let S = T∗T , then S is Hermitian (check!). Consequently, inequality

∥Sx∥2 = ⟨Sx,Sx⟩ =
〈
S2x, x

〉
⩽
∥∥S2∥∥ ∥x∥2

implies ∥S∥2 ⩽
∥∥S2∥∥. But the opposite inequality follows from the The-

orem 6.12, thus we have the equality
∥∥S2∥∥ = ∥S∥2 and more generally

by induction:
∥∥S2m∥∥ = ∥S∥2m for allm.

Now we claim ∥S∥ = ∥T∥2. From Theorem 6.12 and 6.18 we get
∥S∥ = ∥T∗T∥ ⩽ ∥T∥2. On the other hand if ∥x∥ = 1 then

∥T∗T∥ ⩾ |⟨T∗Tx, x⟩| = ⟨Tx, Tx⟩ = ∥Tx∥2
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implies the opposite inequality ∥S∥ ⩾ ∥T∥2. Only now we use normal-
ity of T to obtain (T2

m

)∗T2
m

= (T∗T)2
m

and get the equality∥∥T2m∥∥2 =
∥∥(T∗T)2m∥∥ = ∥T∗T∥2m = ∥T∥2m+1

.

Thus:

r(T) = lim
m→∞

∥∥T2m∥∥1/2m = lim
m→∞ ∥T∥2m+1/2m+1

= ∥T∥ .

by the spectral radius formula (7.5).
□

Example 9.2. It is easy to see that normality is important in 9.1(iii), indeed the

non-normal operator T given by the matrix
(
0 1
0 0

)
in C has one-point spectrum

{0}, consequently r(T) = 0 but ∥T∥ = 1.

Lemma 9.3. Let T be a compact normal operator then
(i) The set of of eigenvalues of T is either finite or a countable sequence tending

to zero.
(ii) All the eigenspaces, i.e. ker(T − λI), are finite-dimensional for all λ ̸= 0.

Remark 9.4. This Lemma is true for any compact operator, but we will not use
that in our course.

Proof. (i) Let H0 be the closed linear span of eigenvectors of T . Then T
restricted to H0 is a diagonal compact operator with the same set of
eigenvalues λn as in H. Then λn → 0 from Proposition 8.8 .

Exercise 9.5. Use the proof of Proposition 8.8 to give a direct demon-
stration.

Solution. Or straightforwardly assume opposite: there exist an δ > 0
and infinitely many eigenvalues λn such that |λn| > δ. By the previ-
ous Theorem there is an orthonormal sequence vn of corresponding
eigenvectors Tvn = λnvn. Now the sequence (vn) is bounded but
its image Tvn = λnen has no convergent subsequence because for
any k ̸= l:

∥λkvk − λlel∥ = (|λk|
2 + |λl|

2)1/2 ⩾
√
2δ,

i.e. Tenk
is not a Cauchy sequence, see Figure 16. □

(ii) Similarly if H0 = ker(T − λI) is infinite dimensional, then restriction
of T on H0 is λI—which is non-compact by Proposition 8.8. Alternat-
ively consider the infinite orthonormal sequence (vn), Tvn = λvn as in
Exercise 9.5.
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□

Lemma 9.6. Let T be a compact normal operator. Then all non-zero points λ ∈
σ(T) are eigenvalues and there exists an eigenvalue of modulus ∥T∥.

Proof. Assume without lost of generality that T ̸= 0. Let λ ∈ σ(T), without lost
of generality (multiplying by a scalar) λ = 1.
We claim that if 1 is not an eigenvalue then there exist δ > 0 such that

(9.1) ∥(I− T)x∥ ⩾ δ ∥x∥ .
Otherwise there exists a sequence of vectors (xn) with unit norm such that (I −
T)xn → 0. Then from the compactness of T for a subsequence (xnk

) there is
y ∈ H such that Txnk

→ y, then xn → y implying Ty = y and y ̸= 0—i.e. y is
eigenvector with eigenvalue 1.
Now we claim Im(I − T) is closed, i.e. y ∈ Im(I− T) implies y ∈ Im(I − T).
Indeed, if (I − T)xn → y, then there is a subsequence (xnk

) such that Txnk
→ z

implying xnk
→ y+ z, then (I− T)(z+ y) = y by continuity of I− T .

Finally I − T is injective, i.e ker(I − T) = {0}, by (9.1). By the property 9.1(i),
ker(I−T∗) = {0} as well. But because always ker(I−T∗) = Im(I−T)⊥ (by 6.19(ii))
we got surjectivity, i.e. Im(I − T)⊥ = {0}, of I − T . Thus (I − T)−1 exists and is
bounded because (9.1) implies ∥y∥ > δ

∥∥(I− T)−1y
∥∥. Thus 1 ̸∈ σ(T).

The existence of eigenvalue λ such that |λ| = ∥T∥ follows from combination of
Lemma 7.13 and Theorem 9.1(iii). □

9.2. Compact normal operators.

Theorem 9.7 (The spectral theorem for compact normal operators). Let T be
a compact normal operator on a Hilbert space H. Then there exists an orthonormal
sequence (en) of eigenvectors of T and corresponding eigenvalues (λn) such that:

(9.2) Tx =
∑
n

λn ⟨x, en⟩ en, for all x ∈ H.

If (λn) is an infinite sequence it tends to zero.
Conversely, if T is given by a formula (9.2) then it is compact and normal.

Proof. Suppose T ̸= 0. Then by the previous Theorem there exists an eigenvalue
λ1 such that |λ1| = ∥T∥ with corresponding eigenvector e1 of the unit norm. Let
H1 = Lin(e1)

⊥. If x ∈ H1 then

(9.3) ⟨Tx, e1⟩ = ⟨x, T∗e1⟩ =
〈
x, λ̄1e1

〉
= λ1 ⟨x, e1⟩ = 0,

thus Tx ∈ H1 and similarly T∗x ∈ H1. Write T1 = T |H1
which is again a normal

compact operator with a norm does not exceeding ∥T∥. We could inductively
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repeat this procedure for T1 obtaining sequence of eigenvalues λ2, λ3, . . . with
eigenvectors e2, e3, . . . . If Tn = 0 for a finite n then theorem is already proved.
Otherwise we have an infinite sequence λn → 0. Let

x =

n∑
1

⟨x, ek⟩ ek + yn ⇒ ∥x∥2 =

n∑
1

|⟨x, ek⟩|2 + ∥yn∥2 , yn ∈ Hn,

from Pythagoras’s theorem. Then ∥yn∥ ⩽ ∥x∥ and ∥Tyn∥ ⩽ ∥Tn∥ ∥yn∥ ⩽
|λn| ∥x∥ → 0 by Lemma 9.3. Thus

Tx = lim
n→∞

(
n∑
1

⟨x, en⟩ Ten + Tyn

)
=

∞∑
1

λn ⟨x, en⟩ en

Conversely, if Tx =
∑∞

1 λn ⟨x, en⟩ en then

⟨Tx,y⟩ =
∞∑
1

λn ⟨x, en⟩ ⟨en,y⟩ =
∞∑
1

⟨x, en⟩ λn⟨y, en⟩,

thus T∗y =
∑∞

1 λ̄n ⟨y, en⟩ en. Then we got the normality of T : T∗Tx = TT∗x =∑∞
1 |λn|

2 ⟨y, en⟩ en. Also T is compact because it is a uniform limit of the finite
rank operators Tnx =

∑n
1 λn ⟨x, en⟩ en. □

Corollary 9.8. Let T be a compact normal operator on a separable Hilbert space H,
then there exists a orthonormal basis gk such that

Tx =

∞∑
1

λn ⟨x,gn⟩gn,

and λn are eigenvalues of T including zeros.

Proof. Let (en) be the orthonormal sequence constructed in the proof of the pre-
vious Theorem. Then x is perpendicular to all en if and only if its in the kernel
of T . Let (fn) be any orthonormal basis of ker T . Then the union of (en) and (fn)
is the orthonormal basis (gn) we have looked for. □

Exercise 9.9. Finish all details in the above proof.

Corollary 9.10 (Singular value decomposition). If T is any compact operator
on a separable Hilbert space then there exists orthonormal sequences (ek) and (fk)
such that Tx =

∑
k µk ⟨x, ek⟩ fk where (µk) is a sequence of positive numbers such

that µk → 0 if it is an infinite sequence.

Proof. Operator T∗T is compact and Hermitian (hence normal). From the
previous Corollary there is an orthonormal basis (ek) such that T∗Tx =
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n λn ⟨x, ek⟩ ek for some positive λn = ∥Ten∥2. Let µn = ∥Ten∥ and fn =

Ten/µn. Then fn is an orthonormal sequence (check!) and

Tx =
∑
n

⟨x, en⟩ Ten =
∑
n

⟨x, en⟩µnfn.

□

Corollary 9.11. A bounded operator in a Hilber space is compact if and only if it
is a uniform limit of the finite rank operators.

Proof. Sufficiency follows from 8.9.
Necessity: by the previous Corollary Tx =

∑
n ⟨x, en⟩µnfn thus T is a uniform

limit of operators Tmx =
∑m

n=1 ⟨x, en⟩µnfn which are of finite rank. □

10. APPLICATIONS TO INTEGRAL EQUATIONS

In this lecture we will study the Fredholm equation defined as follows. Let the
integral operator with a kernel K(x,y) defined on [a,b]× [a,b] be defined as before:

(10.1) (Tϕ)(x) =

b∫
a

K(x,y)ϕ(y)dy.

The Fredholm equation of the first and second kinds correspondingly are:

(10.2) Tϕ = f and ϕ− λTϕ = f,

for a function f on [a,b]. A special case is given by Volterra equation by an operator
integral operator (10.1) T with a kernel K(x,y) = 0 for all y > x which could be
written as:

(10.3) (Tϕ)(x) =

x∫
a

K(x,y)ϕ(y)dy.

We will consider integral operators with kernels K such that
b∫
a

b∫
a

K(x,y)dxdy <∞,

then by Theorem 8.15 T is a Hilbert–Schmidt operator and in particular bounded.
As a reason to study Fredholm operators we will mention that solutions of dif-

ferential equations in mathematical physics (notably heat and wave equations) re-
quires a decomposition of a function f as a linear combination of functions K(x,y)
with “coefficients” ϕ. This is an continuous analog of a discrete decomposition into
Fourier series.

Using ideas from the proof of Lemma 7.4 we define Neumann series for the re-
solvent:

(10.4) (I− λT)−1 = I+ λT + λ2T2 + · · · ,
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which is valid for all λ < ∥T∥−1.

Example 10.1. Solve the Volterra equation

ϕ(x) − λ

x∫
0

yϕ(y)dy = x2, on L2[0, 1].

In this case I− λTϕ = f, with f(x) = x2 and:

K(x,y) =

{
y, 0 ⩽ y ⩽ x;
0, x < y ⩽ 1.

Straightforward calculations shows:

(Tf)(x) =

x∫
0

y · y2 dy =
x4

4
,

(T2f)(x) =

x∫
0

y
y4

4
dy =

x6

24
, . . .

and generally by induction:

(Tnf)(x) =

x∫
0

y
y2n

2n−1n!
dy =

x2n+2

2n(n+ 1)!
.

Hence:

ϕ(x) =

∞∑
0

λnTnf =

∞∑
0

λnx2n+2

2n(n+ 1)!

=
2

λ

∞∑
0

λn+1x2n+2

2n+1(n+ 1)!

=
2

λ
(eλx

2/2 − 1) for all λ ∈ C \ {0},

because in this case r(T) = 0. For the Fredholm equations this is not always the
case, see Tutorial problem A.29.

Among other integral operators there is an important subclass with separable ker-
nel, namely a kernel which has a form:

(10.5) K(x,y) =

n∑
j=1

gj(x)hj(y).
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In such a case:

(Tϕ)(x) =

b∫
a

n∑
j=1

gj(x)hj(y)ϕ(y)dy

=

n∑
j=1

gj(x)

b∫
a

hj(y)ϕ(y)dy,

i.e. the image of T is spanned by g1(x), . . . , gn(x) and is finite dimensional, con-
sequently the solution of such equation reduces to linear algebra.

Example 10.2. Solve the Fredholm equation (actually find eigenvectors of T ):

ϕ(x) = λ

2π∫
0

cos(x+ y)ϕ(y)dy

= λ

2π∫
0

(cos x cosy− sin x siny)ϕ(y)dy.

Clearly ϕ(x) should be a linear combination ϕ(x) = A cos x+B sin xwith coeffi-
cients A and B satisfying to:

A = λ

2π∫
0

cosy(A cosy+ B siny)dy,

B = −λ

2π∫
0

siny(A cosy+ B siny)dy.

Basic calculus implies A = λπA and B = −λπB and the only nonzero solutions
are:

λ = π−1 A ̸= 0 B = 0

λ = −π−1 A = 0 B ̸= 0

We develop some Hilbert–Schmidt theory for integral operators.

Theorem 10.3. Suppose that K(x,y) is a continuous function on [a,b] × [a,b]

and K(x,y) = K(y, x) and operator T is defined by (10.1). Then
(i) T is a self-adjoint Hilbert–Schmidt operator.

(ii) All eigenvalues of T are real and satisfy
∑

n λ
2
n <∞.
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(iii) The eigenvectors vn of T can be chosen as an orthonormal basis of L2[a,b],
are continuous for nonzero λn and

Tϕ =

∞∑
n=1

λn ⟨ϕ, vn⟩ vn where ϕ =

∞∑
n=1

⟨ϕ, vn⟩ vn

Proof. (i) The condition K(x,y) = K(y, x) implies the Hermitian property
of T :

⟨Tϕ,ψ⟩ =

b∫
a

b∫
a

K(x,y)ϕ(y)dy

 ψ̄(x)dx
=

b∫
a

b∫
a

K(x,y)ϕ(y)ψ̄(x)dxdy

=

b∫
a

ϕ(y)

b∫
a

K(y, x)ψ(x)dx

dy
= ⟨ϕ, Tψ⟩ .

The Hilbert–Schmidt property (and hence compactness) was proved in
Theorem 8.15.

(ii) Spectrum of T is real as for any Hermitian operator, see Theorem 7.17(ii)
and finiteness of

∑
n λ

2
n follows from Hilbert–Schmidt property

(iii) The existence of orthonormal basis consisting from eigenvectors (vn) of
T was proved in Corollary 9.8. If λn ̸= 0 then:

vn(x1) − vn(x2) = λ−1
n ((Tvn)(x1) − (Tvn)(x2))

=
1

λn

b∫
a

(K(x1,y) − K(x2,y))vn(y)dy

and by Cauchy–Schwarz-Bunyakovskii inequality:

|vn(x1) − vn(x2)| ⩽
1

|λn|
∥vn∥2

b∫
a

|K(x1,y) − K(x2,y)| dy

which tense to 0 due to (uniform) continuity of K(x,y).
□
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Theorem 10.4. Let T be as in the previous Theorem. Then if λ ̸= 0 and λ−1 ̸∈
σ(T), the unique solution ϕ of the Fredholm equation of the second kind ϕ −
λTϕ = f is

(10.6) ϕ =

∞∑
1

⟨f, vn⟩
1− λλn

vn.

Proof. Let ϕ =
∑∞

1 anvn where an = ⟨ϕ, vn⟩, then

ϕ− λTϕ =

∞∑
1

an(1− λλn)vn = f =

∞∑
1

⟨f, vn⟩ vn

if and only if an = ⟨f, vn⟩ /(1−λλn) for all n. Note 1−λλn ̸= 0 since λ−1 ̸∈ σ(T).
Because λn → 0 we got

∑∞
1 |an|

2 by its comparison with
∑∞

1 |⟨f, vn⟩|2 = ∥f∥2,
thus the solution exists and is unique by the Riesz–Fisher Theorem. □

See Exercise A.30 for an example.

Theorem 10.5 (Fredholm alternative). Let T ∈ K(H) be compact normal and
λ ∈ C \ {0}. Consider the equations:

ϕ− λTϕ = 0(10.7)
ϕ− λTϕ = f(10.8)

then either
(A) the only solution to (10.7) is ϕ = 0 and (10.8) has a unique solution for

any f ∈ H; or
(B) there exists a nonzero solution to (10.7) and (10.8) can be solved if and

only if f is orthogonal all solutions to (10.7).

Proof. (A) If ϕ = 0 is the only solution of (10.7), then λ−1 is not an ei-
genvalue of T and then by Lemma 9.6 is neither in spectrum of T .
Thus I − λT is invertible and the unique solution of (10.8) is given by
ϕ = (I− λT)−1f.

(B) A nonzero solution to (10.7) means that λ−1 ∈ σ(T). Let (vn) be
an orthonormal basis of eigenvectors of T for eigenvalues (λn). By
Lemma 9.3(ii) only a finite number of λn is equal to λ−1, say they are
λ1, . . . , λN, then

(I− λT)ϕ =

∞∑
n=1

(1− λλn) ⟨ϕ, vn⟩ vn =

∞∑
n=N+1

(1− λλn) ⟨ϕ, vn⟩ vn.



INTRODUCTION TO FUNCTIONAL ANALYSIS 101

If f =
∑∞

1 ⟨f, vn⟩ vn then the identity (I − λT)ϕ = f is only possible if
⟨f, vn⟩ = 0 for 1 ⩽ n ⩽ N. Conversely from that condition we could
give a solution

ϕ =

∞∑
n=N+1

⟨f, vn⟩
1− λλn

vn + ϕ0, for any ϕ0 ∈ Lin(v1, . . . , vN),

which is again in H because f ∈ H and λn → 0.
□

Example 10.6. Let us consider

(Tϕ)(x) =

1∫
0

(2xy− x− y+ 1)ϕ(y)dy.

Because the kernel of T is real and symmetric T = T∗, the kernel is also separable:

(Tϕ)(x) = x

1∫
0

(2y− 1)ϕ(y)dy+

1∫
0

(−y+ 1)ϕ(y)dy,

and T of the rank 2 with image of T spanned by 1 and x. By direct calculations:

T : 1 7→ 1
2

T : x 7→ 1
6x+

1
6 ,

or T is given by the matrix

(
1
2

1
6

0 1
6

)
According to linear algebra decomposition over eigenvectors is:

λ1 =
1

2
with vector

(
1
0

)
,

λ2 =
1

6
with vector

(
− 1

2
1

)
with normalisation v1(y) = 1, v2(y) =

√
12(y − 1/2) and we complete it to an

orthonormal basis (vn) of L2[0, 1]. Then
• If λ ̸= 2 or 6 then (I − λT)ϕ = f has a unique solution (cf. equa-

tion (10.6)):

ϕ =

2∑
n=1

⟨f, vn⟩
1− λλn

vn +

∞∑
n=3

⟨f, vn⟩vn

=

2∑
n=1

⟨f, vn⟩
1− λλn

vn +

(
f−

2∑
n=1

⟨f, vn⟩vn)
)

= f+

2∑
n=1

λλn

1− λλn
⟨f, vn⟩ vn.



102 VLADIMIR V. KISIL

• If λ = 2 then the solutions exist provided ⟨f, v1⟩ = 0 and are:

ϕ = f+
λλ2

1− λλ2
⟨f, v2⟩ v2 + Cv1 = f+

1

2
⟨f, v2⟩ v2 + Cv1, C ∈ C.

• If λ = 6 then the solutions exist provided ⟨f, v2⟩ = 0 and are:

ϕ = f+
λλ1

1− λλ1
⟨f, v1⟩ v1 + Cv2 = f−

3

2
⟨f, v2⟩ v2 + Cv2, C ∈ C.
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11. BANACH AND NORMED SPACES

We will work with either the field of real numbers R or the complex numbers C.
To avoid repetition, we use K to denote either R or C.

11.1. Normed spaces. Recall, see Defn. 2.3, a norm on a vector space V is a map
∥·∥ : V → [0,∞) such that

(i) ∥u∥ = 0 only when u = 0;
(ii) ∥λu∥ = |λ| ∥u∥ for λ ∈ K and u ∈ V ;

(iii) ∥u+ v∥ ⩽ ∥u∥+ ∥v∥ for u, v ∈ V .
Note, that the second and third conditions imply that linear operations—multiplication
by a scalar and addition of vectors respectively—are continuous in the topology
defined by the norm.

A norm induces a metric, see Defn. 2.1, on V by setting d(u, v) = ∥u− v∥. When
V is complete, see Defn. 2.6, for this metric, we say that V is a Banach space.

Theorem 11.1. Every finite-dimensional normed vector space is a Banach space.

We will use the following simple inequality:

Lemma 11.2 (Young’s inequality). Let two real numbers 1 < p,q < ∞ are
related through 1

p
+ 1

q
= 1 then

(11.1) |ab| ⩽
|a|p

p
+

|b|q

q
,

for any complex a and b.

First proof: analytic. Obviously, it is enough to prove inequality for positive reals
a = |a| and b = |b|. If p > 1 then 0 < 1

p
< 1. Consider the function ϕ(t) =

tm − mt for an 0 < m < 1. From its derivative ϕ(t) = m(tm−1 − 1) we find
the only critical point t = 1 on [0,∞), which is its maximum for m = 1

p
< 1.

Thus write the inequality ϕ(t) ⩽ ϕ(1) for t = ap/bq and m = 1/p. After a
transformation we get a · b−q/p − 1 ⩽ 1

p
(apb−q − 1) and multiplication by bq

with rearrangements lead to the desired result. □

Second proof: geometric. Consider the plane with coordinates (x,y) and take the
curve y = xp−1 which is the same as x = yq−1. Comparing areas on the figure:
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S1

S2

0 a

b

y =
x
p−

1

we see that S1 + S2 ⩾ ab for any positive reals a and b. Elementary integration
shows:

S1 =

a∫
0

xp−1 dx =
ap

p
, S2 =

b∫
0

yq−1 dy =
bq

q
.

This finishes the demonstration. □

Remark 11.3. You may notice, that the both proofs introduced some specific aux-
iliary functions related to xp/p. It is a fruitful generalisation to conduct the
proofs for more functions and derive respective forms of Young’s inequality.

Proposition 11.4 (Hölder’s Inequality). For 1 < p <∞, let q ∈ (1,∞) be such
that 1/p+ 1/q = 1. For n ⩾ 1 and u, v ∈ Kn, we have that

n∑
j=1

|ujvj| ⩽

 n∑
j=1

|uj|
p

 1
p
 n∑

j=1

|vj|
q

 1
q

.

Proof. For reasons become clear soon we use the notation ∥u∥p =
(∑n

j=1 |uj|
p
) 1

p

and ∥v∥q =
(∑n

j=1 |vj|
q
) 1

q

and define for 1 ⩽ i ⩽ n:

ai =
ui

∥u∥p
and bi =

vi

∥v∥q
.

Summing up for 1 ⩽ i ⩽ n all inequalities obtained from (11.1):

|aibi| ⩽
|ai|

p

p
+

|bi|
q

q
,

we get the result. □

Using Hölder inequality we can derive the following one:
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Proposition 11.5 (Minkowski’s Inequality). For 1 < p < ∞, and n ⩾ 1, let
u, v ∈ Kn. Then n∑

j=1

|uj + vj|
p

1/p

⩽

 n∑
j=1

|uj|
p

1/p

+

 n∑
j=1

|vj|
p

1/p

.

Proof. For p > 1 we have:

(11.2)
n∑
1

|uk + vk|
p =

n∑
1

|uk| |uk + vk|
p−1 +

n∑
1

|vk| |uk + vk|
p−1 .

By Hölder inequality

n∑
1

|uk| |uk + vk|
p−1 ⩽

(
n∑
1

|uk|
p

) 1
p
(

n∑
1

|uk + vk|
q(p−1)

) 1
q

.

Adding a similar inequality for the second term in the right hand side of (11.2)

and division by
(∑n

1 |uk + vk|
q(p−1)

) 1
q

yields the result. □

Minkowski’s inequality shows that for 1 ⩽ p < ∞ (the case p = 1 is easy) we
can define a norm ∥·∥p on Kn by

∥u∥p =

 n∑
j=1

|uj|
p

1/p

(u = (u1, · · · ,un) ∈ Kn).

See, Figure 2 for illustration of various norms of this type defined in R2.
We can define an infinite analogue of this. Let 1 ⩽ p <∞, let ℓp be the space of all

scalar sequences (xn) with
∑

n |xn|
p <∞. A careful use of Minkowski’s inequality

shows that ℓp is a vector space. Then ℓp becomes a normed space for the ∥·∥p norm.
Note also, that ℓ2 is the Hilbert space introduced before in Example 2.12(ii).

Recall that a Cauchy sequence, see Defn. 2.5, in a normed space is bounded: if
(xn) is Cauchy then we can find N with ∥xn − xm∥ < 1 for all n,m ⩾ N. Then
∥xn∥ ⩽ ∥xn − xN∥ + ∥xN∥ < ∥xN∥ + 1 for n ⩾ N, so in particular, ∥xn∥ ⩽
max(∥x1∥ , ∥x2∥ , · · · , ∥xN−1∥ , ∥xN∥+ 1).

Theorem 11.6. For 1 ⩽ p <∞, the space ℓp is a Banach space.

Remark 11.7. Most completeness proofs (in particular, all completeness proof in
this course) are similar to the next one, see also Thm. 2.24. The general scheme
of those proofs has three steps:
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(i) For a general Cauchy sequence we build “limit” in some point-wise
sense.

(ii) At this stage it is not clear either the constructed “limit” is at our space
at all, that is shown on the second step.

(iii) From the construction it does not follows that the “limit” is really the
limit in the topology of our space, that is the third step of the proof.

Proof. We repeat the proof of Thm. 2.24 changing 2 to p. Let (x(n)) be a Cauchy-
sequence in ℓp; we wish to show this converges to some vector in ℓp.
For each n, x(n) ∈ ℓp so is a sequence of scalars, say (x

(n)
k )∞k=1. As (x(n)) is

Cauchy, for each ϵ > 0 there existsNϵ so that
∥∥x(n) − x(m)

∥∥
p
⩽ ϵ for n,m ⩾ Nϵ.

For k fixed,∣∣∣x(n)
k − x

(m)
k

∣∣∣ ⩽
∑

j

∣∣∣x(n)
j − x

(m)
j

∣∣∣p
1/p

=
∥∥∥x(n) − x(m)

∥∥∥
p
⩽ ϵ,

when n,m ⩾ Nϵ. Thus the scalar sequence (x
(n)
k )∞n=1 is Cauchy in K and hence

converges, to xk say. Let x = (xk), so that x is a candidate for the limit of (x(n)).
Firstly, we check that x− x(n) ∈ ℓp for some n. Indeed, for a given ϵ > 0 find n0

such that
∥∥x(n) − x(m)

∥∥ < ϵ for all n,m > n0. For any K andm:
K∑

k=1

∣∣∣x(n)
k − x

(m)
k

∣∣∣p ⩽
∥∥∥x(n) − x(m)

∥∥∥p < ϵp.
Letm→ ∞ then

∑K
k=1

∣∣∣x(n)
k − xk

∣∣∣p ⩽ ϵp.

Let K → ∞ then
∑∞

k=1

∣∣∣x(n)
k − xk

∣∣∣p ⩽ ϵp. Thus x(n) − x ∈ ℓp and because ℓp is

a linear space then x = x(n) − (x(n) − x) is also in ℓp.
Finally, we saw above that for any ϵ > 0 there is n0 such that

∥∥x(n) − x
∥∥ < ϵ for

all n > n0. Thus x(n) → x. □

For p = ∞, there are two analogies to the ℓp spaces. First, we define ℓ∞ to be the
vector space of all bounded scalar sequences, with the sup-norm (∥·∥∞-norm):

(11.3) ∥(xn)∥∞ = sup
n∈N

|xn| ((xn) ∈ ℓ∞).

Second, we define c0 to be the space of all scalar sequences (xn) which converge to
0. We equip c0 with the sup norm (11.3). This is defined, as if xn → 0, then (xn)
is bounded. Hence c0 is a subspace of ℓ∞, and we can check (exercise!) that c0 is
closed.

Theorem 11.8. The spaces c0 and ℓ∞ are Banach spaces.
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Proof. This is another variant of the previous proof of Thm. 11.6. We do the ℓ∞
case. Again, let (x(n)) be a Cauchy sequence in ℓ∞, and for each n, let x(n) =

(x
(n)
k )∞k=1. For ϵ > 0 we can find N such that

∥∥x(n) − x(m)
∥∥∞ < ϵ for n,m ⩾ N.

Thus, for any k, we see that
∣∣∣x(n)

k − x
(m)
k

∣∣∣ < ϵ when n,m ⩾ N. So (x
(n)
k )∞n=1 is

Cauchy, and hence converges, say to xk ∈ K. Let x = (xk).
Letm ⩾ N, so that for any k, we have that∣∣∣xk − x

(m)
k

∣∣∣ = lim
n→∞

∣∣∣x(n)
k − x

(m)
k

∣∣∣ ⩽ ϵ.
As k was arbitrary, we see that supk

∣∣∣xk − x
(m)
k

∣∣∣ ⩽ ϵ. So, firstly, this shows that

(x − x(m)) ∈ ℓ∞, and so also x = (x − x(m)) + x(m) ∈ ℓ∞. Secondly, we have
shown that

∥∥x− x(m)
∥∥∞ ⩽ ϵwhenm ⩾ N, so x(m) → x in norm. □

Example 11.9. We can also consider a Banach space of functions Lp[a,b] with
the norm

∥f∥p =

(∫b
a

|f(t)|p dt

)1/p

.

See the discussion after Defn. 2.22 for a realisation of such spaces.

11.2. Bounded linear operators. Recall what a linear map is, see Defn. 6.1. A linear
map is often called an operator. A linear map T : E → F between normed spaces is
bounded if there exists M > 0 such that ∥T(x)∥ ⩽M ∥x∥ for x ∈ E, see Defn. 6.3. We
write B(E, F) for the set of operators from E to F. For the natural operations, B(E, F)
is a vector space. We norm B(E, F) by setting

(11.4) ∥T∥ = sup

{∥T(x)∥
∥x∥ : x ∈ E, x ̸= 0

}
.

Exercise 11.10. Show that
(i) The expression (11.4) is a norm in the sense of Defn. 2.3.

(ii) We equivalently have

∥T∥ = sup {∥T(x)∥ : x ∈ E, ∥x∥ ⩽ 1} = sup {∥T(x)∥ : x ∈ E, ∥x∥ = 1} .

Proposition 11.11. For a linear map T : E → F between normed spaces, the
following are equivalent:

(i) T is continuous (for the metrics induced by the norms on E and F);
(ii) T is continuous at 0;

(iii) T is bounded.

Proof. Proof essentially follows the proof of similar Theorem 4.4. See also dis-
cussion about usefulness of this theorem there. □
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Theorem 11.12. Let E be a normed space, and let F be a Banach space. Then
B(E, F) is a Banach space.

Proof. In the essence, we follows the same three-step procedure as in Thms. 2.24,
11.6 and 11.8. Let (Tn) be a Cauchy sequence in B(E, F). For x ∈ E, check that
(Tn(x)) is Cauchy in F, and hence converges to, say, T(x), as F is complete. Then
check that T : E→ F is linear, bounded, and that ∥Tn − T∥ → 0. □

We write B(E) for B(E,E). For normed spaces E, F and G, and for T ∈ B(E, F)
and S ∈ B(F,G), we have that ST = S ◦ T ∈ B(E,G) with ∥ST∥ ⩽ ∥S∥ ∥T∥.

For T ∈ B(E, F), if there exists S ∈ B(F,E) with ST = IE, the identity of E, and
TS = IF, then T is said to be invertible, and write T = S−1. In this case, we say that
E and F are isomorphic spaces, and that T is an isomorphism.

If ∥T(x)∥ = ∥x∥ for each x ∈ E, we say that T is an isometry. If additionally T
is an isomorphism, then T is an isometric isomorphism, and we say that E and F are
isometrically isomorphic.

11.3. Dual Spaces. Let E be a normed vector space, and let E∗ (also written E ′) be
B(E,K), the space of bounded linear maps from E to K, which we call functionals, or
more correctly, bounded linear functionals, see Defn. 4.1. Notice that as K is complete,
the above theorem shows that E∗ is always a Banach space.

Theorem 11.13. Let 1 < p < ∞, and again let q be such that 1/p + 1/q = 1.
Then the map ℓq → (ℓp)

∗ : u 7→ ϕu, is an isometric isomorphism, where ϕu is
defined, for u = (uj) ∈ ℓq, by

ϕu(x) =

∞∑
j=1

ujxj
(
x = (xj) ∈ ℓp

)
.

Proof. By Hölder’s inequality, we see that

|ϕu(x)| ⩽
∞∑
j=1

|uj| |xj| ⩽

 ∞∑
j=1

|uj|
q

1/q ∞∑
j=1

|xj|
p

1/p

= ∥u∥q ∥x∥p .

So the sum converges, and hence ϕu is defined. Clearly ϕu is linear, and the
above estimate also shows that ∥ϕu∥ ⩽ ∥u∥q. The map u 7→ ϕu is also clearly
linear, and we’ve just shown that it is norm-decreasing.
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Now let ϕ ∈ (ℓp)
∗. For each n, let en = (0, · · · , 0, 1, 0, · · · ) with the 1 in the nth

position. Then, for x = (xn) ∈ ℓp,∥∥∥∥∥x−
n∑

k=1

xkek

∥∥∥∥∥
p

=

( ∞∑
k=n+1

|xk|
p

)1/p

→ 0,

as n→ ∞. As ϕ is continuous, we see that

ϕ(x) = lim
n→∞

n∑
k=1

ϕ(xkek) =

∞∑
k=1

xkϕ(ek).

Let uk = ϕ(ek) for each k. If u = (uk) ∈ ℓq then we would have that ϕ = ϕu.
Let us fix N ∈ N, and define

xk =

{
0, if uk = 0 or k > N;

uk |uk|
q−2 , if uk ̸= 0 and k ⩽ N.

Then we see that ∞∑
k=1

|xk|
p =

N∑
k=1

|uk|
p(q−1) =

N∑
k=1

|uk|
q ,

as p(q− 1) = q. Then, by the previous paragraph,

ϕ(x) =

∞∑
k=1

xkuk =

N∑
k=1

|uk|
q .

Hence

∥ϕ∥ ⩾
|ϕ(x)|

∥x∥p
=

(
N∑

k=1

|uk|
q

)1−1/p

=

(
N∑

k=1

|uk|
q

)1/q

.

By letting N → ∞, it follows that u ∈ ℓq with ∥u∥q ⩽ ∥ϕ∥. So ϕ = ϕu and
∥ϕ∥ = ∥ϕu∥ ⩽ ∥u∥q. Hence every element of (ℓp)∗ arises as ϕu for some u, and
also ∥ϕu∥ = ∥u∥q. □

Loosely speaking, we say that ℓq = (ℓp)
∗, although we should always be careful

to keep in mind the exact map which gives this.

Corollary 11.14 (Riesz–Frechet Self-duality Lemma 4.11). ℓ2 is self-dual: ℓ2 =
ℓ2

∗.

Similarly, we can show that c∗0 = ℓ1 and that (ℓ1)
∗ = ℓ∞ (the implementing

isometric isomorphism is giving by the same summation formula).

11.4. Hahn–Banach Theorem. Mathematical induction is a well known method to
prove statements depending from a natural number. The mathematical induction
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is based on the following property of natural numbers: any subset of N has the least
element. This observation can be generalised to the transfinite induction described
as follows.

A poset is a set X with a relation ⪯ such that a ⪯ a for all a ∈ X, if a ⪯ b and
b ⪯ a then a = b, and if a ⪯ b and b ⪯ c, then a ⪯ c. We say that (X,⪯) is total if
for every a,b ∈ X, either a ⪯ b or b ⪯ a. For a subset S ⊆ X, an element a ∈ X is an
upper bound for S if s ⪯ a for every s ∈ S. An element a ∈ X is maximal if whenever
b ∈ X is such that a ⪯ b, then also b ⪯ a.

Then Zorn’s Lemma tells us that if X is a non-empty poset such that every total
subset has an upper bound, then X has a maximal element. Really this is an axiom
which we have to assume, in addition to the usual axioms of set-theory. Zorn’s
Lemma is equivalent to the axiom of choice and Zermelo’s theorem.

Theorem 11.15 (Hahn–Banach Theorem). Let E be a normed vector space, and
let F ⊆ E be a subspace. Let ϕ ∈ F∗. Then there exists ψ ∈ E∗ with ∥ψ∥ ⩽ ∥ϕ∥
and ψ(x) = ϕ(x) for each x ∈ F.

Proof. We do the real case. An “extension” of ϕ is a bounded linear map ϕG :
G → R such that F ⊆ G ⊆ E, ϕG(x) = ϕ(x) for x ∈ F, and ∥ϕG∥ ⩽ ∥ϕ∥. We
introduce a partial order on the pairs (G,ϕG) of subspaces and functionals as
follows: (G1,ϕG1

) ⪯ (G2,ϕG2
) if and only if G1 ⊆ G2 and ϕG1

(x) = ϕG2
(x)

for all x ∈ G1. A Zorn’s Lemma argument shows that a maximal extension
ϕG : G → R exists. We shall show that if G ̸= E, then we can extend ϕG, a
contradiction.
Let x ̸∈ G, so an extension ϕ1 of ϕ to the linear span of G and x must have the
form

ϕ1(x̃+ ax) = ϕ(x) + aα (x̃ ∈ G,a ∈ R),

for some α ∈ R. Under this, ϕ1 is linear and extends ϕ, but we also need to
ensure that ∥ϕ1∥ ⩽ ∥ϕ∥. That is, we need

(11.5) |ϕ(x̃) + aα| ⩽ ∥ϕ∥ ∥x̃+ ax∥ (x̃ ∈ G,a ∈ R).

It is straightforward for a = 0, otherwise to simplify proof put −ay = x̃ in (11.5)
and divide both sides of the identity by a. Thus we need to show that there exist
such α that

|α− ϕ(y)| ⩽ ∥ϕ∥ ∥x− y∥ for all y ∈ G,a ∈ R,

or
ϕ(y) − ∥ϕ∥ ∥x− y∥ ⩽ α ⩽ ϕ(y) + ∥ϕ∥ ∥x− y∥ .

For any y1 and y2 in Gwe have:

ϕ(y1) − ϕ(y2) ⩽ ∥ϕ∥ ∥y1 − y2∥ ⩽ ∥ϕ∥ (∥x− y2∥+ ∥x− y1∥).

http://en.wikipedia.org/wiki/Zorn's_lemma
http://en.wikipedia.org/wiki/Axiom_of_Choice
http://en.wikipedia.org/wiki/Well-ordering_theorem
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Thus
ϕ(y1) − ∥ϕ∥ ∥x− y1∥ ⩽ ϕ(y2) + ∥ϕ∥ ∥x− y2∥ .

As y1 and y2 were arbitrary,

sup
y∈G

(ϕ(y) − ∥ϕ∥ ∥y+ x∥) ⩽ inf
y∈G

(ϕ(y) + ∥ϕ∥ ∥y+ x∥).

Hence we can choose α between the inf and the sup.
The complex case follows by “complexification”. □

The Hahn-Banach theorem tells us that a functional from a subspace can be ex-
tended to the whole space without increasing the norm. In particular, extending a
functional on a one-dimensional subspace yields the following.

Corollary 11.16. Let E be a normed vector space, and let x ∈ E. Then there exists
ϕ ∈ E∗ with ∥ϕ∥ = 1 and ϕ(x) = ∥x∥.

Another useful result which can be proved by Hahn-Banach is the following.

Corollary 11.17. Let E be a normed vector space, and let F be a subspace of E. For
x ∈ E, the following are equivalent:

(i) x ∈ F the closure of F;
(ii) for each ϕ ∈ E∗ with ϕ(y) = 0 for each y ∈ F, we have that ϕ(x) = 0.

Proof. 11.17(i)⇒11.17(ii) follows because we can find a sequence (yn) in F with
yn → x; then it’s immediate that ϕ(x) = 0, because ϕ is continuous. Conversely,
we show that if 11.17(i) doesn’t hold then 11.17(ii) doesn’t hold (that is, the con-
trapositive to 11.17(ii)⇒11.17(i)).
So, x ̸∈ F. Define ψ : lin{F, x} → K by

ψ(y+ tx) = t (y ∈ F, t ∈ K).

This is well-defined, for y, y ′ ∈ F if y+ tx = y ′ + t ′x then either t = t ′, or other-
wise x = (t− t ′)−1(y ′−y) ∈ Fwhich is a contradiction. The map ψ is obviously
linear, so we need to show that it is bounded. Towards a contradiction, suppose
thatψ is not bounded, so we can find a sequence (yn+tnx) with ∥yn + tnx∥ ⩽ 1
for each n, and yet |ψ(yn + tnx)| = |tn| → ∞. Then

∥∥t−1
n yn + x

∥∥ ⩽ 1/ |tn| → 0,
so that the sequence (−t−1

n yn), which is in F, converges to x. So x is in the clos-
ure of F, a contradiction. So ψ is bounded. By Hahn-Banach theorem, we can
find some ϕ ∈ E∗ extending ψ. For y ∈ F, we have ϕ(y) = ψ(y) = 0, while
ϕ(x) = ψ(x) = 1, so 11.17(ii) doesn’t hold, as required. □

We define E∗∗ = (E∗)∗ to be the bidual of E, and define J : E → E∗∗ as follows.
For x ∈ E, J(x) should be in E∗∗, that is, a map E∗ → K. We define this to be the



112 VLADIMIR V. KISIL

map ϕ 7→ ϕ(x) for ϕ ∈ E∗. We write this as

J(x)(ϕ) = ϕ(x) (x ∈ E,ϕ ∈ E∗).
The Corollary 11.16 shows that J is an isometry; when J is surjective (that is, when
J is an isomorphism), we say that E is reflexive. For example, ℓp is reflexive for
1 < p <∞. On the other hand c0 is not reflexive.

11.5. C(X) Spaces. This section is not examinable. Standard facts about topology
will be used in later sections of the course.

All our topological spaces are assumed Hausdorff. Let X be a compact space,
and let CK(X) be the space of continuous functions from X to K, with pointwise
operations, so that CK(X) is a vector space. We norm CK(X) by setting

∥f∥∞ = sup
x∈X

|f(x)| (f ∈ CK(X)).

Theorem 11.18. Let X be a compact space. Then CK(X) is a Banach space.

Let E be a vector space, and let ∥·∥(1) and ∥·∥(2) be norms on E. These norms are
equivalent if there existsm > 0 with

m−1 ∥x∥(2) ⩽ ∥x∥(1) ⩽ m ∥x∥(2) (x ∈ E).

Theorem 11.19. Let E be a finite-dimensional vector space with basis {e1, . . . , en},
so we can identify E with Kn as vector spaces, and hence talk about the norm ∥·∥2
on E. If ∥·∥ is any norm on E, then ∥·∥ and ∥·∥2 are equivalent.

Corollary 11.20. Let E be a finite-dimensional normed space. Then a subset X ⊆ E
is compact if and only if it is closed and bounded.

Lemma 11.21. Let E be a normed vector space, and let F be a closed subspace of E
with E ̸= F. For 0 < θ < 1, we can find x0 ∈ E with ∥x0∥ ⩽ 1 and ∥x0 − y∥ > θ
for y ∈ F.

Theorem 11.22. Let E be an infinite-dimensional normed vector space. Then the
closed unit ball of E, the set {x ∈ E : ∥x∥ ⩽ 1}, is not compact.
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Proof. Use the above lemma to construct a sequence (xn) in the closed unit ball
of E with, say, ∥xn − xm∥ ⩾ 1/2 for each n ̸= m. Then (xn) can have no conver-
gent subsequence, and so the closed unit ball cannot be compact. □

12. MEASURE THEORY

The presentation in this section is close to [3, 7, 8].

12.1. Basic Measure Theory. The following object will be the cornerstone of our
construction.

Definition 12.1. Let X be a set. A σ-algebra R on X is a collection of subsets
of X, written R ⊆ 2X, such that

(i) X ∈ R;
(ii) if A,B ∈ R, then A \ B ∈ R;

(iii) if (An) is any sequence in R, then ∪nAn ∈ R.

Note, that in the third condition we admit any countable unions. The usage of
“σ” in the names of σ-algebra and σ-ring is a reference to this. If we replace the
condition by

(iii’) if (An)
m
1 is any finite family in R, then ∪m

n=1An ∈ R;
then we obtain definitions of an algebra.

For a σ-algebra R and A,B ∈ R, we have

A ∩ B = X \ (X \ (A ∩ B)) = X \ ((X \A) ∪ (X \ B)) ∈ R.
Similarly, R is closed under taking (countably) infinite intersections.

If we drop the first condition from the definition of (σ-)algebra (but keep the
above conclusion from it!) we got a (σ-)ring, that is a (σ-)ring is closed under (count-
able) unions, (countable) intersections and subtractions of sets.

Exercise 12.2. (i) Use the above comments to write in full the three miss-
ing definitions: of set algebra, set ring and set σ-ring.

(ii) Show that the empty set belongs to any non-empty ring.

Sets Ak are pairwise disjoint if An ∩ Am = ∅ for n ̸= m. We denote the union of
pairwise disjoint sets by ⊔, e.g. A ⊔ B ⊔ C.

It is easy to work with a vector space through its basis. For a ring of sets the
following notion works as a helpful “basis”.

Definition 12.3. A semiring S of sets is a collection such that
(i) it is closed under intersection;

(ii) for A, B ∈ Swe have A \ B = C1 ⊔ . . . ⊔ CN with Ck ∈ S.
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Again, any non-empty semiring contain the empty set.

Example 12.4. The following are semirings but not rings:
(i) The collection of intervals [a,b) on the real line;

(ii) The collection of all rectangles {a ⩽ x < b, c ⩽ y < d} on the plane.

As the intersection of a family of σ-algebras is again a σ-algebra, and the power
set 2X is a σ-algebra, it follows that given any collectionD ⊆ 2X, there is a σ-algebra
R such that D ⊆ R, such that if S is any other σ-algebra, with D ⊆ S, then R ⊆ S.
We call R the σ-algebra generated by D.

Exercise 12.5. Let S be a semiring. Show that
(i) The collection of all finite disjoint unions ⊔n

k=1Ak, where Ak ∈ S, is a
ring. We call it the ring R(S) generated by the semiring S.

(ii) Any ring containing S contains R(S) as well.
(iii) The collection of all finite (not necessarily disjoint!) unions ⊔n

k=1Ak,
where Ak ∈ S, coincides with R(S).

We introduce the symbols +∞,−∞, and treat these as being “extended real num-
bers”, so −∞ < t < ∞ for t ∈ R. We define t + ∞ = ∞, t∞ = ∞ if t > 0 and so
forth. We do not (and cannot, in a consistent manner) define ∞−∞ or 0∞.

Definition 12.6. A measure is a map µ : R → [0,∞] defined on a (semi-)ring
(or σ-algebra) R, such that if A = ⊔nAn for A ∈ R and a finite subset (An)
of R, then µ(A) =

∑
n µ(An). This property is called additivity of a measure.

Exercise 12.7. Show that the following two conditions are equivalent:
(i) µ(∅) = 0.

(ii) There is a set A ∈ R such that µ(A) <∞.
The first condition often (but not always) is included in the definition of a meas-
ure.

In analysis we are interested in infinities and limits, thus the following extension
of additivity is very important.

Definition 12.8. In terms of the previous definition we say that µ is countably
additive (or σ-additive) if for any countable infinite family (An) of pairwise
disjoint sets from R such that A = ⊔nAn ∈ R we have µ (A) =

∑
n µ(An).

If the sum diverges, then as it will be the sum of positive numbers, we can,
without problem, define it to be +∞.
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Note, that this property may be stated as a sort of continuity of an additive meas-
ure, cf. (1.1):

µ

(
lim
n→∞

n⊔
k=1

Ak

)
= lim

n→∞µ
(

n⊔
k=1

Ak

)
.

Example 12.9. (i) Fix a point a ∈ R and define a measure µ by the condi-
tion µ(A) = 1 if a ∈ A and µ(A) = 0 otherwise.

(ii) For the ring obtained in Exercise 12.5 from semiring S in Example 12.4(i)
define µ([a,b)) = b − a on S. This is a measure, and we will show its
σ-additivity.

(iii) For ring obtained in Exercise 12.5 from the semiring in Example 12.4(ii),
define µ(V) = (b−a)(d−c) for the rectangle V = {a ⩽ x < b, c ⩽ y < d}
S. It will be again a σ-additive measure.

(iv) Let X = N and R = 2N , we define µ(A) = 0 if A is a finite subset of
X = N and µ(A) = +∞ otherwise. Let An = {n}, then µ(An) = 0 and
µ(⊔nAn) = µ(N) = +∞ ̸= ∑

n µ(An) = 0. Thus, this measure is not
σ-additive.

We will see further examples of measures which are not σ-additive in Section 12.4.

Definition 12.10. A measure µ is finite if µ(A) <∞ for all A ∈ R.
A measure µ is σ-finite if X is a union of countable number of sets Xk, such
that for any A ∈ R and any k ∈ N the intersection A ∩ Xk is in R and µ(A ∩
Xk) <∞.

Exercise 12.11. Modify the example 12.9(i) to obtain
(i) a measure which is not finite, but is σ-finite. (Hint: let the measure

count the number of integer points in a set).
(ii) a measure which is not σ-finite. (Hint: assign µ(A) = +∞ if a ∈ A.)

Proposition 12.12. Let µ be a σ-additive measure on a σ-algebra R. Then:
(i) If A,B ∈ R with A ⊆ B, then µ(A) ⩽ µ(B) [we call this property

“monotonicity of a measure”];
(ii) If A,B ∈ R with A ⊆ B and µ(B) <∞, then µ(B \A) = µ(B) − µ(A);

(iii) If (An) is a sequence in R, with A1 ⊆ A2 ⊆ A3 ⊆ · · ·. Then

lim
n→∞µ(An) = µ (∪nAn) .

(iv) If (An) is a sequence in R, with A1 ⊇ A2 ⊇ A3 ⊇ · · ·. If µ(Am) < ∞
for somem, then

(12.1) lim
n→∞µ(An) = µ (∩nAn) .
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Proof. The two first properties are easy to see. For the third statement, define
A = ∪nAn, B1 = A1 and Bn = An \ An−1, n > 1. Then An = ⊔n

k=1Bn and
A = ⊔∞

k=1Bn. Using the σ-additivity of measures µ(A) =
∑∞

k=1 µ(Bk) and
µ(An) =

∑n
k=1 µ(Bk). From the theorem in real analysis that any monotonic

sequence of real numbers converges (recall that we admit +∞ as limits’ value)
we have µ(A) =

∑∞
k=1 µ(Bk) = limn→∞ ∑n

k=1 µ(Bk) = limn→∞ µ(An). The last
statement can be shown similarly. □

Exercise 12.13. Let a measure µ on N be defined by µ(A) = 0 for finite A and
µ(A) = ∞ for infinite A. Check that µ is additive but not σ-additive. Therefore
give an example that µ does not satisfies 12.12(iii).

12.2. Extension of Measures. From now on we consider only finite measures, an
extension to σ-finite measures will be done later.

Proposition 12.14. Any measure µ ′ on a semiring S is uniquely extended to a
measure µ on the generated ring R(S), see Ex. 12.5. If the initial measure was
σ-additive, then the extension is σ-additive as well.

Proof. If an extension exists it shall satisfy µ(A) =
∑n

k=1 µ
′(Ak), where Ak ∈ S.

We need to show for this definition two elements:
(i) Consistency, i.e. independence of the value from a presentation of A ∈
R(S) as A = ⊔n

k=1Ak, where Ak ∈ S. For two different presentation
A = ⊔n

j=1Aj and A = ⊔m
k=1Bk define Cjk = Aj ∩ Bk, which will be pair-

wise disjoint. By the additivity of µ ′ we have µ ′(Aj) =
∑

k µ
′(Cjk) and

µ ′(Bk) =
∑

j µ
′(Cjk). Then∑

j

µ ′(Aj) =
∑
j

∑
k

µ ′(Cjk) =
∑
k

∑
j

µ ′(Cjk) =
∑
k

µ ′(Bk).

(ii) Additivity. For A = ⊔n
k=1Ak, where Ak ∈ R(S) we can present Ak =

⊔n(k)
j=1 Cjk, Cjk ∈ S. Thus A = ⊔n

k=1 ⊔
n(k)
j=1 Cjk and:

µ(A) =

n∑
k=1

n(k)∑
j=1

µ ′(Cjk) =

n∑
k=1

µ(Ak).

Finally, show the σ-additivity. For a set A = ⊔∞
k=1Ak, where A and Ak ∈ R(S),

find presentations A = ⊔n
j=1Bj, Bj ∈ S and Ak = ⊔m(k)

l=1 Blk, Blk ∈ S. Define

Cjlk = Bj∩Blk ∈ S, then Bj = ⊔∞
k=1⊔

m(k)
l=1 Cjlk andAk = ⊔n

j=1⊔
m(k)
l=1 Cjlk. Then,
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from σ-additivity of µ ′:

µ(A) =

n∑
j=1

µ ′(Bj) =

n∑
j=1

∞∑
k=1

m(k)∑
l=1

µ ′(Cjlk) =

∞∑
k=1

n∑
j=1

m(k)∑
l=1

µ ′(Cjlk) =

∞∑
k=1

µ(Ak),

where we changed the summation order in series with non-negative terms. □

In a similar way we can extend a measure from a semiring to corresponding
σ-ring, however it can be done even for a larger family. The procedure recall the
famous story on Baron Munchausen saves himself from being drowned in a swamp
by pulling on his own hair. Indeed, initially we knew measure for elements of
semiring S or their finite disjoint unions from R(S). For an arbitrary set A we may
assign a measure from an element of R(S) which “approximates” A. But how to
measure such approximation? Well, to this end we use the measure on R(S) again
(pulling on his own hair)!

Coming back to exact definitions, we introduce the following notion.

Definition 12.15. Let S be a semi-ring of subsets in X, and µ be a measure
defined on S. An outer measure µ∗ on X is a map µ∗ : 2X → [0,∞] defined by:

µ∗(A) = inf

{∑
k

µ(Ak), such that A ⊆ ∪kAk, Ak ∈ S
}
.

Proposition 12.16. An outer measure has the following properties:
(i) µ∗(∅) = 0;

(ii) if A ⊆ B then µ∗(A) ⩽ µ∗(B), this is called monotonicity of the outer
measure;

(iii) if (An) is any sequence in 2X, then µ∗ (∪nAn) ⩽
∑

n µ
∗(An).

The final condition says that an outer measure is countably sub-additive. Note,
that an outer measure may be not a measure in the sense of Defn. 12.6 due to a luck
of additivity.

Example 12.17. The Lebesgue outer measure on R is defined out of the measure
from Example 12.9(ii), that is, for A ⊆ R, as

µ∗(A) = inf


∞∑
j=1

(bj − aj) : A ⊆ ∪∞
j=1[aj,bj)

 .

We make this definition, as intuitively, the “length”, or measure, of the interval
[a,b) is (b− a).

https://en.wikipedia.org/wiki/Baron_Munchausen
https://en.wikipedia.org/wiki/Baron_Munchausen
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For example, for outer Lebesgue measure we have µ∗(A) = 0 for any countable
set, which follows, as clearly µ∗({x}) = 0 for any x ∈ R.

Lemma 12.18. Let a < b. Then µ∗([a,b]) = b− a.

Proof. For ϵ > 0, as [a,b] ⊆ [a,b + ϵ), we have that µ∗([a,b]) ⩽ (b − a) + ϵ. As
ϵ > 0, was arbitrary, µ∗([a,b]) ⩽ b− a.
To show the opposite inequality we observe that [a,b) ⊂ [a,b] and µ∗[a,b) =
b− a (because [a,b) is in the semi-ring) so µ∗[a,b] ⩾ b− a by 12.16(ii). □

Our next aim is to construct measures from outer measures. We use the notation
A △ B = (A ∪ B) \ (A ∩ B) for symmetric difference of sets.

Definition 12.19. Given an outer measure µ∗ defined by a measure µ on a
semiring S, we defineA ⊆ X to be Lebesgue measurable if for any ε > 0 there is
a finite union B of elements in S (in other words: B ∈ R(S) by Lem. 12.5(iii)),
such that µ∗(A △ B) < ε.

Obviously all elements of S and R(S) are measurable.

Exercise 12.20. (i) Define a function of pairs of elements A, B ∈ L as the
outer measure of the symmetric difference of A and B:

(12.2) d(A,B) = µ∗(A △ B).

Show that d is a metric on the collection of cosets with respect to the
equivalence relation: A ∼ B if d(A,B) = 0. Hint: to show the triangle
inequality use the inclusion:

A △ B ⊆ (A △ C) ∪ (C △ B)

(ii) Let a sequence (εn) → 0 be monotonically decreasing. For a Lebesgue
measurableA there exists a sequence (An) ⊂ R(S) such that d(A,An) <
εn for each n. Show that (An) is a Cauchy sequence for the distance
d (12.2).

An alternative definition of a measurable set is due to Carathéodory.

Definition 12.21. Given an outer measure µ∗, we define E ⊆ X to be
Carathéodory measurable if

µ∗(A) = µ∗(A ∩ E) + µ∗(A \ E),

for any A ⊆ X.
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As µ∗ is sub-additive, this is equivalent to

µ∗(A) ⩾ µ∗(A ∩ E) + µ∗(A \ E) (A ⊆ X),
as the other inequality is automatic.

Exercise∗ 12.22. Show that measurability by Lebesgue and Carathéodory are
equivalent.

Suppose now that the ring R(S) is an algebra (i.e., contains the maximal element
X). Then, the outer measure of any set is finite, and the following theorem holds:

Theorem 12.23 (Lebesgue). Let µ∗ be an outer measure on X defined by a semir-
ing S, and let L be the collection of all Lebesgue measurable sets for µ∗. Then L is a
σ-algebra, and if µ̃ is the restriction of µ∗ to L, then µ̃ is a measure. Furthermore,
µ̃ is σ-additive on L if µ is σ-additive on S.

Sketch of proof. Clearly, R(S) ⊂ L. Now we show that µ∗(A) = µ(A) for a set
A ∈ R(S). If A ⊂ ∪kAk for Ak ∈ S, then µ(A) ⩽

∑
k µ(Ak), taking the infimum

we get µ(A) ⩽ µ∗(A). For the opposite inequality, any A ∈ R(S) has a disjoint
representation A = ⊔kAk, Ak ∈ S, thus µ∗(A) ⩽

∑
k µ(Ak) = µ(A).

Now we will show that R(S) with the distance d (12.2) is an incomplete metric
space, with the measure µ being uniformly continuous functions. Measurable
sets make the completion of R(S) (cf. Ex. 12.20(ii)) with µ being continuation of
µ∗ to the completion by continuity, cf. Ex. 1.61.
Then, by the definition, Lebesgue measurable sets make the closure of R(S) with
respect to this distance.
We can check that measurable sets form an algebra. To this end we need to
make estimations, say, of µ∗((A1 ∩ A2) △ (B1 ∩ B2)) in terms of µ∗(Ai △ Bi). A
demonstration for any finite number of sets is performed through mathematical
inductions. The above two-sets case provide both: the base and the step of the
induction.
Now, we show that L is σ-algebra. Let Ak ∈ L and A = ∪kAk. Then for any
ε > 0 there exists Bk ∈ R(S), such that µ∗(Ak △ Bk) <

ε
2k

. Define B = ∪kBk.
Then

(∪kAk) △ (∪kBk) ⊂ ∪k (Ak △ Bk) implies µ∗(A △ B) < ε.

We cannot stop at this point since B = ∪kBk may be not in R(S). Thus,
define B ′

1 = B1 and B ′
k = Bk \ ∪k−1

i=1 Bi, so B ′
k are pair-wise disjoint. Then

B = ⊔kB
′
k and B ′

k ∈ R(S). From the convergence of the series there is N such
that

∑∞
k=N µ(B

′
k) < ε. Let B ′ = ∪N

k=1B
′
k, which is in R(S). Then µ∗(B △ B ′) ⩽ ε

and, thus, µ∗(A △ B ′) ⩽ 2ε.
To check that µ∗ is measure on L we use the following
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Lemma 12.24. |µ∗(A) − µ∗(B)| ⩽ µ∗(A △ B), that is µ∗ is uniformly con-
tinuous in the metric d(A,B) (12.2).

Proof of the Lemma. Use inclusionsA ⊂ B∪(A △ B) and B ⊂ A∪(A △ B). □

To show additivity take A1,2 ∈ L , A = A1 ⊔ A2, B1,2 ∈ R(S) and µ∗(Ai △
Bi) < ε. Then µ∗(A △ (B1 ∪ B2)) < 2ε and |µ∗(A) − µ∗(B1 ∪ B2)| < 2ε. Thus
µ∗(B1 ∪ B2) = µ(B1 ∪ B2) = µ(B1) + µ(B2) − µ(B1 ∩ B2), but µ(B1 ∩ B2) =
d(B1 ∩ B2,∅) = d(B1 ∩ B2,A1 ∩A2) < 2ε. Therefore

|µ∗(B1 ∪ B2) − µ(B1) − µ(B2)| < 2ε.

Combining everything together we get (this is a sort of ε/3-argument):

|µ∗(A) − µ∗(A1) − µ
∗(A2)|

= |µ∗(A) − µ∗(B1 ∪ B2) + µ
∗(B1 ∪ B2)

−(µ(B1) + µ(B2)) + µ(B1) + µ(B2) − µ
∗(A1) − µ

∗(A2)|

⩽ |µ∗(A) − µ∗(B1 ∪ B2)|+ |µ∗(B1 ∪ B2) − (µ(B1) + µ(B2))|

+ |µ(B1) + µ(B2) − µ
∗(A1) − µ

∗(A2)|

⩽6ε.

Thus µ∗ is additive on L.
Check the countable additivity for A = ⊔kAk. The inequality µ∗(A) ⩽∑

k µ
∗(Ak) follows from countable sub-additivity. The opposite inequality is

the limiting case of the finite inequality µ∗(A) ⩾ µ∗(⊔N
k=1Ak) =

∑N
k=1 µ

∗(Ak)
following from additivity and monotonicity of µ∗. □

Corollary 12.25. Let E ⊆ R be open or closed. Then E is Lebesgue measurable.

Proof. This is a common trick, using the density and the countability of the ra-
tionals. As σ-algebras are closed under taking complements, we need only show
that open sets are Lebesgue measurable.
Intervals (a,b) are Lebesgue measurable by the very definition. Now let U ⊆ R
be open. For each x ∈ U, there exists ax < bx with x ∈ (ax,bx) ⊆ U. By making
ax slightly larger, and bx slightly smaller, we can ensure that ax,bx ∈ Q. Thus
U = ∪x(ax,bx). Each interval is measurable, and there are at most a countable
number of them (endpoints make a countable set) thus U is the countable (or
finite) union of Lebesgue measurable sets, and hence U is Lebesgue measurable
itself. □
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We perform now an extension of finite measure to σ-finite one. Let µ be a σ-
additive and σ-finite measure defined on a semiring in X = ⊔kXk, such that the re-
striction of µ to every Xk is finite. Consider the Lebesgue extension µk of µ defined
within Xk. A setA ⊂ X is measurable if every intersectionA∩Xk is µk measurable.
For a such measurable set Awe define its measure by the identity:

µ(A) =
∑
k

µk(A ∩ Xk).

We call a measure µ defined on L complete if whenever E ⊆ X is such that there
exists F ∈ L with µ(F) = 0 and E ⊆ F, we have that E ∈ L. Measures constructed
from outer measures by the above theorem are always complete. On the example
sheet, we saw how to form a complete measure from a given measure. We call sets
like E null sets: complete measures are useful, because it is helpful to be able to
say that null sets are in our σ-algebra. Null sets can be quite complicated. For the
Lebesgue measure, all countable subsets of R are null, but then so is the Cantor set,
which is uncountable.

Definition 12.26. If we have a property P(x) which is true except possibly
x ∈ A and µ(A) = 0, we say P(x) is almost everywhere or a.e..

12.3. Complex-Valued Measures and Charges. We start from the following obser-
vation.

Exercise 12.27. Let µ1 and µ2 be measures on a same σ-algebra. Define µ1 + µ2
and λµ1, λ > 0 by (µ1+µ2)(A) = µ1(A)+µ2(A) and (λµ1)(A) = λ(µ1(A)). Then
µ1 + µ2 and λµ1 are measures on the same σ-algebra as well.

In view of this, it will be helpful to extend the notion of a measure to obtain a
linear space.

Definition 12.28. Let X be a set, and R be a σ-ring. A real- (complex-) val-
ued function ν on R is called a charge (or signed measure) if it is countably
additive as follows: for anyAk ∈ R the identityA = ⊔kAk implies the series∑

k ν(Ak) is absolute convergent and has the sum ν(A).

In the following “charge” means “real charge”.

Example 12.29. Any linear combination of σ-additive measures on R with real
(complex) coefficients is real (complex) charge.

The opposite statement is also true:



122 VLADIMIR V. KISIL

Theorem 12.30. Any real (complex) charge ν has a representation ν = µ1 − µ2
(ν = µ1 − µ2 + iµ3 − iµ4), where µk are σ-additive measures.

To prove the theorem we need the following definition.

Definition 12.31. The variation of a charge on a set A is |ν| (A) =
sup

∑
k |ν(Ak)| for all disjoint splitting A = ⊔kAk.

Example 12.32. If ν = µ1 − µ2, then |ν| (A) ⩽ µ1(A) + µ2(A). The inequality
becomes an identity for disjunctive measures on A (that is there is a partition
A = A1 ⊔A2 such that µ2(A1) = µ1(A2) = 0).

The relation of variation to charge is as follows:

Theorem 12.33. For any charge ν the function |ν| is a σ-additive measure.

Finally to prove the Thm. 12.30 we use the following

Proposition 12.34. For any charge ν the function |ν|− ν is a σ-additive measure
as well.

From the Thm. 12.30 we can deduce

Corollary 12.35. The collection of all charges on a σ-algebra R is a linear space
which is complete with respect to the distance:

d(ν1,ν2) = sup
A∈R

|ν1(A) − ν2(A)| .

The following result is also important:

Theorem 12.36 (Hahn Decomposition). Let ν be a charge. There existA,B ∈ L,
called a Hahn decomposition of (X,ν), with A ∩ B = ∅, A ∪ B = X and such
that for any E ∈ L,

ν(A ∩ E) ⩾ 0, ν(B ∩ E) ⩽ 0.

This need not be unique.
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Sketch of proof. We only sketch this. We say that A ∈ L is positive if

ν(E ∩A) ⩾ 0 (E ∈ L),
and similiarly define what it means for a measurable set to be negative. Sup-
pose that ν never takes the value −∞ (the other case follows by considering the
charge −ν).
Let β = inf ν(B0) where we take the infimum over all negative sets B0. If β =
−∞ then for each n, we can find a negative Bn with ν(Bn) ⩽ −n. But then
B = ∪nBn would be negative with ν(B) ⩽ −n for any n, so that ν(B) = −∞ a
contradiction.
So β > −∞ and so for each n we can find a negative Bn ν(Bn) < β + 1/n.
Then we can show that B = ∪nBn is negative, and argue that ν(B) ⩽ β. As B is
negative, actually ν(B) = β.
There then follows a very tedious argument, by contradiction, to show that A =
X \ B is a positive set. Then (A,B) is the required decomposition. □

12.4. Constructing Measures, Products. Consider the semiring S of intervals [a,b).
There is a simple description of all measures on it. For a measure µ define

(12.3) Fµ(t) =

 µ([0, t)) if t > 0,
0 if t = 0,
−µ([t, 0)) if t < 0,

Fµ is monotonic and any monotonic function F defines a measure µ on S by the
by µ([a,b)) = F(b) − F(a). The correspondence is one-to-one with the additional
assumption F(0) = 0.

Theorem 12.37. The above measure µ is σ-additive on S if and only if F is con-
tinuous from the left: F(t− 0) = F(t) for all t ∈ R.

Proof. Necessity: F(t) − F(t − 0) = limε→0 µ([t − ε, t)) = µ(limε→0[t − ε, t)) =
µ(∅) = 0, by the continuity of a σ-additive measure, see 12.12(iv).
For sufficiency assume [a,b) = ⊔k[ak,bk). The inequality µ([a,b)) ⩾∑

k µ([ak,bk)) follows from additivity and monotonicity. For the opposite in-
equality take δk s.t. F(b) − F(b − δ) < ε and F(ak) − F(ak − δk) < ε/2k (use
left continuity of F). Then the interval [a,b− δ] is covered by (ak − δk,bk), due
to compactness of [a,b − δ] there is a finite subcovering. Thus µ([a,b − δ)) ⩽∑N

j=1 µ([akj
− δkj

,bkj
)) and µ([a,b)) ⩽

∑N
j=1 µ([akj

,bkj
)) + 2ε. □

Exercise 12.38. (i) Give an example of function discontinued from the left
at 1 and show that the resulting measure is additive but not σ-additive.

(ii) Check that, if a function F is continuous at point a then µ({a}) = 0.
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Example 12.39. (i) Take F(t) = t, then the corresponding measure is the
Lebesgue measure on R.

(ii) Take F(t) be the integer part of t, then µ counts the number of integer
within the set.

(iii) Define the Cantor function as follows α(x) = 1/2 on (1/3, 2/3); α(x) =
1/4 on (1/9, 2/9); α(x) = 3/4 on (7/9, 8/9), and so for. This function
is monotonic and can be continued to [0, 1] by continuity, it is know as
Cantor ladder. The resulting measure has the following properties:

• The measure of the entire interval is 1.
• Measure of every point is zero.
• The measure of the Cantor set is 1, while its Lebesgue measure is
0.

Another possibility to build measures is their product. In particular, it allows to
expand various measures defined through (12.3) on the real line to Rn.

Definition 12.40. Let X and Y be spaces, and let S and T be semirings on
X and Y respectively. Then S × T is the semiring consisting of {A × B :
A ∈ S,B ∈ T } (“generalised rectangles”). Let µ and ν be measures on S
and T respectively. Define the product measure µ × ν on S × T by the rule
(µ× ν)(A× B) = µ(A)ν(B).

Example 12.41. The measure from Example 12.9(iii) is the product of two copies
of pre-Lebesgue measures from Example 12.9(ii).

13. INTEGRATION

We now come to the main use of measure theory: to define a general theory of
integration.

13.1. Measurable functions. From now on, by a measure space we shall mean a
triple (X,L,µ), where X is a set, L is a σ-algebra on X, and µ is a σ-additive measure
defined on L. We say that the members of L are measurable, or L-measurable, if
necessary to avoid confusion.

Definition 13.1. A function f : X→ R is measurable if

Ec(f) = {x ∈ X : f(x) < c} that is Ec(f) = f
−1((−∞, c))

is in L (that is Ec(f) is a measurable set) for any c ∈ R.
A complex-valued function is measurable if its real and imaginary parts are
measurable.
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Lemma 13.2. The following are equivalent:
(i) A function f is measurable;

(ii) For any a < b the set f−1((a,b)) is measurable;
(iii) For any open set U ⊂ R the set f−1(U) is measurable.

Proof. To show 13.2(i)⇒ 13.2(ii) we note that

f−1((a,b)) = Eb(f) \

(⋂
n

Ea+1/n(f)

)
.

For 13.2(ii)⇒ 13.2(iii) use that any open set U ⊂ R is a union of countable set of
intervals (a,b), cf. proof of Cor. 12.25.
The final implication 13.2(iii)⇒ 13.2(i) directly follows from openness of
(−∞,a). □

Corollary 13.3. Let f : X→ R be measurable and g : R → R be continuous, then
the composition g(f(x)) is measurable.

Proof. The preimage of the open set (−∞, c) under a continuous g is an open
set, say U. The preimage of U under f is measurable by Lem. 13.2(iii). Thus, the
preimage of (−∞, c) under the composition g ◦ f is measurable, thereafter g ◦ f
is a measurable function. □

Theorem 13.4. Let f,g : X → R be measurable. Then af (a ∈ R), f + g, fg,
max(f,g) and min(f,g) are all measurable. That is measurable functions form an
algebra and this algebra is closed under convergence a.e.

Proof. Use Cor. 13.3 to show measurability of λf, |f| and f2. The measurability of
a sum f1 + f2 follows from the relation

Ec(f1 + f2) = ∪r∈Q(Er(f1) ∩ Ec−r(f2)).

Next use the following identities:

f1f2 =
(f1 + f2)

2 − (f1 − f2)
2

4
,

max(f1, f2) =
(f1 + f2) + |f1 − f2|

2
.

If (fn) is a non-increasing sequence of measurable functions converging to f.
Than Ec(f) = ∪nEc(fn).
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Moreover any limit can be replaced by two monotonic limits:

(13.1) lim
n→∞ fn(x) = lim

n→∞ lim
k→∞max(fn(x), fn+1(x), . . . , fn+k(x)).

Finally if f1 is measurable and f2 = f1 almost everywhere, then f2 is measurable
as well. □

We can define several types of convergence for measurable functions.

Definition 13.5. We say that sequence (fn) of functions converges
(i) uniformly to f (notated fn ⇒ f) if

sup
x∈X

|fn(x) − f(x)| → 0;

(ii) almost everywhere to f (notated fn
a.e.→ f) if

fn(x) → f(x) for all x ∈ X \A, µ(A) = 0;

(iii) in measure µ to f (notated fn
µ→ f) if for all ε > 0

(13.2) µ({x ∈ X : |fn(x) − f(x)| > ε}) → 0.

Clearly uniform convergence implies both convergences a.e and in measure.

Theorem 13.6. On finite measures convergence a.e. implies convergence in meas-
ure.

Proof. Define An(ε) = {x ∈ X : |fn(x) − f(x)| ⩾ ε}. Let Bn(ε) = ∪k⩾nAk(ε).
Clearly Bn(ε) ⊃ Bn+1(ε), let B(ε) = ∩∞

1 Bn(ε). If x ∈ B(ε) then fn(x) ̸→ f(x).
Thus µ(B(ε)) = 0, but µ(B(ε)) = limn→∞ µ(Bn(ε)), cf. (12.1). Since An(ε) ⊂
Bn(ε) we see that µ(An(ε)) → 0 as required for (13.2) □

Note, that the construction of sets Bn(ε) is just another implementation of the
“two monotonic limits” trick (13.1) for sets.

Exercise 13.7. Present examples of sequences (fn) and functions f such that:

(i) fn
µ→ f but not fn

a.e.→ f.
(ii) fn

a.e.→ f but not fn⇒f.

However we can slightly “fix” either the set or the sequence to “upgrade” the
convergence as shown in the following two theorems.
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Theorem 13.8 (Egorov). If fn
a.e.→ f on a finite measure set X then for any σ > 0

there is Eσ ⊂ X with µ(Eσ) < σ and fn ⇒ f on X \ Eσ.

Proof. We use An(ε) and Bn(ε) from the proof of Thm. 13.6. Observe that
|f(x) − fk(x)| < ε uniformly for all x ∈ X \ Bn(ε) and k > n. For every
ε > 0 we seen that µ(Bn(ε)) → 0, thus for each k there is N(k) such that
µ(BN(k)(1/k)) < σ/2

k. Put Eσ = ∪kBN(k)(1/k). □

Theorem 13.9. If fn
µ→ f then there is a subsequence (nk) such that fnk

a.e.→ f for
k→ ∞.

Proof. In the notations of two previous proofs: for every natural k take nk such
that µ(Ank

(1/k)) < 1/2k, which is possible since µ(An(ε)) → 0. Define Cm =
∪∞
k=mAnk

(1/k) and C = ∩Cm. Then, µ(Cm) = 1/2m−1 and, thus, µ(C) = 0
by (12.1). If x ̸∈ C then there is such N that x ̸∈ Ank

(1/k) for all k > N. That
means that |fnk

(x) − f(x)| < 1/k for all such k, i.e fnk
(x) → f(x). Thus, we have

the point-wise convergence everywhere except the zero-measure set C. □

It is worth to note, that we can use the last two theorem subsequently and up-
grade the convergence in measure to the uniform convergence of a subsequence on
a subset.

Exercise 13.10. For your counter examples from Exercise 13.7, find
(i) a subsequence fnk

of the sequence from 13.7(i) which converges to f
a.e.;

(ii) a subset such that sequence from 13.7(ii) converges uniformly.

Exercise 13.11. Read about Luzin’s C-property.

13.2. Lebesgue Integral. First we define a sort of “basis” for the space of integral
functions.

Definition 13.12. For A ⊆ X, we define χA to be the indicator function of A,
by

χA(x) =

{
1 : x ∈ A,
0 : x ̸∈ A.

Then, if χA is measurable, then χ−1
A (( 12 ,

3
2 )) = A ∈ L; conversely, if A ∈ L, then

X \ A ∈ L, and we see that for any U ⊆ R open, χ−1
A (U) is either ∅, A, X \ A, or X,

all of which are in L. So χA is measurable if and only if A ∈ L.
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Definition 13.13. A measurable function f : X→ R is simple if it attains only
a countable number of values.

Lemma 13.14. A function f : X→ R is simple if and only if

(13.3) f =

∞∑
k=1

tkχAk

for some (tk)∞k=1 ⊆ R and Ak ∈ L. That is, simple functions are linear combina-
tions of indicator functions of measurable sets.
Moreover in the above representation the sets Ak can be pair-wise disjoint and all
tk ̸= 0 pair-wise different. In this case the representation is unique.

Notice that it is now obvious that

Corollary 13.15. The collection of simple functions forms a vector space: this
wasn’t clear from the original definition.

Definition 13.16. A simple function in the form (13.3) with disjoint Ak is
called summable if the following series converges:
(13.4)∞∑

k=1

|tk|µ(Ak) if f has the above unique representation f =

∞∑
k=1

tkχAk

It is another combinatorial exercise to show that this definition is independent
of the way we write f.

Definition 13.17. We define the integral of a simple function f =∑
k tkχAk

(13.3) over a measurable set A by setting∫
A

fdµ =

∞∑
k=1

tkµ(Ak ∩A).

Clearly the series converges for any simple summable function f. Moreover
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Lemma 13.18. The value of integral of a simple summable function is independ-
ent from its representation by the sum of indicators (13.3). In particular, we can
evaluate the integral taking the canonical representation over pair-wise disjoint sets
having pair-wise different values.

Proof. This is another slightly tedious combinatorial exercise. You need to prove
that the integral of a simple function is well-defined, in the sense that it is inde-
pendent of the way we choose to write the simple function. □

Exercise 13.19. Let f be the function on [0, 1] which take the value 1 in all ra-
tional points and 0—everywhere else. Find the value of the Lebesgue integ-
ral

∫
[0,1] f,dµ with respect to the Lebesgue measure on [0, 1]. Show that the

Riemann upper- and lower sums for f converges to different values, so f is not
Riemann-integrable.

Remark 13.20. The previous exercise shows that the Lebesgue integral does not
have those problems of the Riemann integral related to discontinuities. Indeed,
most of function which are not Riemann-integrable are integrable in the sense
of Lebesgue. The only reason, why a measurable function is not integrable by
Lebesgue is divergence of the series (13.4). Therefore, we prefer to speak that
the function is summable rather than integrable. However, those terms are used
interchangeably in the mathematical literature.

We will denote by S(X) the collection of all simple summable functions on X.

Proposition 13.21. Let f, g : X→ R be in S(X) (that is simple summable), let a,
b ∈ R and A is a measurable set. Then:

(i)
∫
A
af+ bgdµ = a

∫
A
fdµ+ b

∫
A
gdµ, that is S(X) is a linear space;

(ii) The correspondence f→
∫
A
fdµ is a linear functional on S(X);

(iii) The correspondence A→
∫
A
fdµ is a charge;

(iv) If f ⩽ g then
∫
X
fdµ ⩽

∫
X
gdµ, that is integral is monotonic;

(v) The function

(13.5) d1(f,g) =

∫
X

|f(x) − g(x)| dµ(x)

has all properties of a metric (distance) on S(X) probably except separa-
tion, but see the next item.

(vi) For f ⩾ 0 we have
∫
X
fdµ = 0 if and only if µ({x ∈ X : f(x) ̸= 0}) = 0.

Therefore for the function d1 (13.5):

d1(f,g) = 0 if and only if f
a.e.
= g.
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(vii) The integral is uniformly continuous with respect the above metric
d1 (13.5):∣∣∣∣∫

A

f(x)dµ(x) −

∫
A

g(x)dµ(x)

∣∣∣∣ ⩽ d1(f,g).
Proof. The proof is almost obvious, for example the Property 13.21(i) easily fol-
lows from Lem. 13.18.
We will outline 13.21(iii) only. Let f is an indicator function of a set B, then
A →

∫
A
fdµ = µ(A ∩ B) is a σ-additive measure (and thus—a charge). By the

Cor. 12.35 the same is true for finite linear combinations of indicator functions
and their limits in the sense of distance d1. □

We can identify functions which has the same values a.e. Then S(X) becomes a
metric space with the distance d1 (13.5). The space may be incomplete and we may
wish to look for its completion. However, if we will simply try to assign a limiting
point to every Cauchy sequence in S(X), then the resulting space becomes so huge
that it will be impossible to realise it as a space of functions on X.

Exercise 13.22. Use ideas of Ex. 13.7(i) to present a sequence of simple functions
which has the Cauchy property in metric d1 (13.5) but does not have point-wise
limits anywhere.

To reduce the number of Cauchy sequences in S(X) eligible to have a limit, we
shall ask an additional condition. A convenient reduction to functions on X appears
if we ask both the convergence in d1 metric and the point-wise convergence on X
a.e.

Definition 13.23. A function f is summable by a measure µ if there is a se-
quence (fn) ⊂ S(X) such that

(i) the sequence (fn) is a Cauchy sequence in S(X);
(ii) fn

a.e.→ f.

Clearly, if a function is summable, then any equivalent function is summable as
well. Set of equivalent classes of summable functions will be denoted by L1(X).

Lemma 13.24. If the measure µ is finite then any bounded measurable function is
summable.

Proof. Define Ekn(f) = {x ∈ X : k/n ⩽ f(x) < (k + 1)/n} and fn =
∑

k
k
n
χEkn

(note that the sum is finite due to boundedness of f).
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Since |fn(x) − f(x)| < 1/nwe have uniform convergence (thus convergence a.e.)
and (fn) is the Cauchy sequence: d1(fn, fm) =

∫
X
|fn − fm| dµ ⩽ ( 1

n
+ 1

m
)µ(X).

□

Remark 13.25. This Lemma can be extended to the space of essentially bounded
functions L∞(X), that is functions which are bounded a.e. In other words,
L∞(X) ⊂ L1(X) for finite measures.

Another simple result, which is useful on many occasions is as follows.

Lemma 13.26. If the measure µ is finite and fn ⇒ f then d1(fn, f) → 0.

Corollary 13.27. For a convergent sequence fn
a.e.→ f, which admits the uniform

bound |fn(x)| < M for all n and x, we have d1(fn, f) → 0.

Proof. For any ε > 0, by the Egorov’s theorem 13.8 we can find E, such that
(i) µ(E) < ε

2M ; and
(ii) from the uniform convergence on X \ E there existsN such that for any

n > Nwe have |f(x) − fn(x)| <
ε

2µ(X) .

Combining this we found that for n > N, d1(fn, f) < M ε
2M+µ(X) ε

2µ(X) < ε. □

Exercise 13.28. Convergence in the metric d1 and a.e. do not imply each other:

(i) Give an example of fn
a.e.→ f such that d1(fn, f) ̸→ 0.

(ii) Give an example of the sequence (fn) and function f in L1(X) such that
d1(fn, f) → 0 but fn does not converge to f a.e.

To build integral we need the following

Lemma 13.29. Let (fn) and (gn) be two Cauchy sequences in S(X) with the same
limit a.e., then d1(fn,gn) → 0.

Proof. Let ϕn = fn − gn, then this is a Cauchy sequence with zero limit a.e.
Assume the opposite to the statement: there exist δ > 0 and sequence (nk) such
that

∫
x
|ϕnk

| dµ > δ. Rescaling-renumbering we can obtain
∫
x
|ϕn| dµ > 1.

Take quickly convergent subsequence using the Cauchy property:

d1(ϕnk
,ϕnk+1

) ⩽ 1/2k+2.

Renumbering agian assume d1(ϕk,ϕk+1) ⩽ 1/2k+2.
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Since ϕ1 is a simple, take the canonical presentation ϕ1 =
∑

k tkχAk
,

then
∑

k |tk|µ(Ak) =
∫
X
|ϕ1| dµ ⩾ 1. Thus, there exists N, such that∑N

k=1 |tk|µ(Ak) ⩾ 3/4. Put A = ⊔N
k=1Ak and C = max1⩽k⩽N |tk| =

maxx∈A |ϕ1(x)|.
By the Egorov’s Theorem 13.8 there is E ⊂ A such that µ(E) < 1/(4C) and
ϕn ⇒ 0 on B = A \ E. Then∫

B

|ϕ1| dµ =

∫
A

|ϕ1| dµ−

∫
E

|ϕ1| dµ ⩾
3

4
−

1

4C
· C =

1

2
.

By the triangle inequality for d1:∣∣∣∣∫
B

|ϕn| dµ−

∫
B

|ϕn+1| dµ

∣∣∣∣ ⩽ d1(ϕn,ϕn+1) ⩽
1

2n+2

we get∫
B

|ϕn| dµ ⩾
∫
B

|ϕ1| dµ−

n−1∑
k=1

∣∣∣∣∫
B

|ϕn| dµ−

∫
B

|ϕn+1| dµ

∣∣∣∣ ⩾ 1

2
−

n−1∑
1

1

2k+2
>

1

4
.

But this contradicts to the fact
∫
B
|ϕn| dµ → 0, which follows from the uniform

convergence ϕn ⇒ 0 on B. □

It follows from the Lemma that we can use any Cauchy sequence of simple func-
tions for the extension of integral.

Corollary 13.30. The functional IA(f) =
∫
A
f(x)dµ(x), defined on anyA ∈ L on

the space of simple functions S(X) can be extended by continuity to the functional
on L1(X,µ).

Definition 13.31. For an arbitrary summable f ∈ L1(X), we define the Le-
besgue integral ∫

A

fdµ = lim
n→∞

∫
A

fn dµ,

where the Cauchy sequence fn of summable simple functions converges to
f a.e.

Theorem 13.32. (i) L1(X) is a linear space.
(ii) For any measurable set A ⊂ X the correspondence f 7→

∫
A
fdµ is a linear

functional on L1(X).
(iii) For any f ∈ L1(X) the value ν(A) =

∫
A
fdµ is a charge.

(iv) d1(f,g) =
∫
A
|f− g| dµ is a distance on L1(X).
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Proof. The proof is follows from Prop. 13.21 and continuity of extension. □

Summing up: we build L1(X) as a completion of S(X) with respect to the distance
d1 such that elements of L1(X) are associated with (equivalence classes of) measur-
able functions on X.

13.3. Properties of the Lebesgue Integral. The space L1 was defined from dual
convergence—in d1 metric and point-wise a.e. Can we get the continuity of the
integral from the convergence almost everywhere alone? No, in general. However,
we will state now some results on continuity of the integral under convergence
a.e. with some additional assumptions. Finally, we show that L1(X) is closed in d1
metric.

Theorem 13.33 (Lebesgue on dominated convergence). Let (fn) be a sequence
of µ-summable functions on X, and there is ϕ ∈ L1(X) such that |fn(x)| ⩽ ϕ(x)
for all x ∈ X, n ∈ N.
If fn

a.e.→ f, then f ∈ L1(X) and for any measurable A:

lim
n→∞

∫
A

fn dµ =

∫
A

fdµ.

Proof. For any measurable A the expression ν(A) =
∫
A
ϕdµ defines a finite

measure on X due to non-negativeness of ϕ and Thm. 13.32.

Lemma 13.34 (Change of variable). If g is measurable and bounded then
f = ϕg is µ-summable and for any µ-measurable set A we have

(13.6)
∫
A

fdµ =

∫
A

gdν.
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Proof of the Lemma. Let M be the set of all g such that the Lemma is true. M
includes any indicator functions g = χB of a measurable B:∫

A

fdµ =

∫
A

ϕχB dµ =

∫
A∩B

ϕdµ = ν(A ∩ B) =
∫
A

χB dν =

∫
A

gdν.

ThusM contains also finite linear combinations of indicators. For any n ∈ N
and a bounded g two functions g−(x) = 1

n
[ng(x)] and g+(x) = g− + 1

n
are

finite linear combinations of indicators and are in M. Since g−(x) ⩽ g(x) ⩽
g+(x) we have∫

A

g− dν =

∫
A

ϕg− dµ ⩽
∫
A

ϕgdµ ⩽
∫
A

ϕg+ dµ =

∫
A

g+ dν.

By squeeze rule for n → ∞ we have the middle term tenses to
∫
A
gdν, that

is g ∈M.
Note, that formula (13.6) is a change of variable in the Lebesgue integral of
the type:

∫
f(sin x) cos xdx =

∫
f(sin x)d(sin x). □

For the proof of the theorem define:

gn(x) =

{
fn(x)/ϕ(x), if ϕ(x) ̸= 0,
0, if ϕ(x) = 0,

g(x) =

{
f(x)/ϕ(x), if ϕ(x) ̸= 0,
0, if ϕ(x) = 0.

Then gn is bounded by 1 and gn
a.e.→ g. To show the theorem it will be enough

to show limn→∞ ∫
A
gn dν =

∫
A
gdν. For the uniformly bounded functions on

the finite measure set this can be derived from the Egorov’s Thm. 13.8, see an
example of this in the proof of Lemma 13.29. □

Note, that in the above proof summability of ϕwas used to obtain the finiteness
of the measure ν, which is required for Egorov’s Thm. 13.8.

Exercise 13.35. Give an example of fn
a.e.→ f such that

∫
X
fn dµ ̸=

∫
X
fdµ. For

such an example, try to find a function ϕ such that |fn| ⩽ ϕ for all n and check
either ϕ is summable.

Exercise 13.36 (Chebyshev’s inequality). Show that: if f is non-negative and
summable, then

(13.7) µ{x ∈ X : f(x) > c} <
1

c

∫
X

fdµ.
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Theorem 13.37 (B. Levi’s, on monotone convergence). Let (fn) be mono-
tonically increasing sequence of µ-summable functions on X. Define f(x) =
limn→∞ fn(x) (allowing the value +∞).

(i) If all integrals
∫
X
fn dµ are bounded by the same value C < ∞ then f is

summable and
∫
X
fdµ = limn→∞ ∫

X
fn dµ.

(ii) If limn→∞ ∫
X
fn dµ = +∞ then function f is not summable.

Proof. Replacing fn by fn − f1 and f by f − f1 we can assume fn ⩾ 0 and f ⩾ 0.
Let E be the set where f is infinite, then

E = ∩N ∪n ENn, where ENn = {x ∈ X : fn(x) ⩾ N}.

By Chebyshev’s inequality (13.7) we have

Nµ(ENn) <

∫
ENn

fn dµ ⩽
∫
X

fn dµ ⩽ C,

then µ(ENn) ⩽ C/N . Thus µ(E) = limN→∞ limn→∞ µ(ENn) = 0.
Thus f is finite a.e.

Lemma 13.38. Let f be a measurable non-negative function attaining only fi-
nite values. f is summable if and only if sup

∫
A
fdµ <∞, where the supremum

is taken over all finite-measure set A such that f is bounded on A.

Proof of the Lemma. Necessity: if f is summable then for any set A ⊂ X we
have

∫
A
fdµ ⩽

∫
X
fdµ <∞, thus the supremum is finite.

Sufficiency: let sup
∫
A
fdµ = M < ∞, define B = {x ∈ X : f(x) = 0} and

Ak = {x ∈ X : 2k ⩽ f(x) < 2k+1, k ∈ Z}, by (13.7) we have µ(Ak) < M/2
k

and X = B ⊔ (⊔∞
k=0Ak). Define

g(x) =

{
2k, if x ∈ Ak,
0, if x ∈ B,

fn(x) =

{
f(x), if x ∈ ⊔n

−nAn,
0, otherwise.

Then g(x) ⩽ f(x) < 2g(x). Function g is a simple function, its summability
follows from the estimate

∫
⊔n

−nAk
gdµ ⩽

∫
⊔n

−nAk
fdµ ⩽ M which is valid

for any n, taking n → ∞ we get summability of g. Furthermore, fn
a.e.→ f

and fn(x) ⩽ f(x) < 2g(x), so we use the Lebesgue Thm. 13.33 on dominated
convergence to obtain the conclusion. □
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Let A be a finite measure set such that f is bounded on A, then∫
A

fdµ
Cor. 13.27

= lim
n→∞

∫
A

fn dµ ⩽ lim
n→∞

∫
X

fn dµ ⩽ C.

This show summability of f by the previous Lemma. The rest of statement and
(contrapositive to) the second part follows from the Lebesgue Thm. 13.33 on
dominated convergence. □

Now we can extend this result dropping the monotonicity assumption.

Lemma 13.39 (Fatou). If a sequence (fn) of µ-summable non-negative functions
is such that:

•
∫
X
fn dµ ⩽ C for all n;

• fn a.e.→ f,
then f is µ-summable and

∫
X
fdµ ⩽ C.

Proof. Let us replace the limit fn → f by two monotonic limits. Define:

gkn(x) = min(fn(x), . . . , fn+k(x)),

gn(x) = lim
k→∞gkn(x).

Then gn is a non-decreasing sequence of functions and limn→∞ gn(x) = f(x)
a.e. Since gn ⩽ fn, from monotonicity of integral we get

∫
X
gn dµ ⩽ C for all n.

Then Levi’s Thm. 13.37 implies that f is summable and
∫
X
fdµ ⩽ C. □

Remark 13.40. Note that the price for dropping monotonicity from Thm. 13.37 to
Lem. 13.39 is that the limit

∫
X
fn dµ→

∫
X
fdµmay not hold any more.

Exercise 13.41. Give an example such that under the Fatou’s lemma condition
we get limn→∞ ∫

X
fn dµ ̸=

∫
X
fdµ.

Now we can show that L1(X) is complete:

Theorem 13.42. L1(X) is a Banach space.

Proof. It is clear that the distance function d1 indeed define a norm ∥f∥1 =
d1(f, 0). We only need to demonstrate the completeness. We again utilise the
three-step procedure from Rem. 11.7.
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Take a Cauchy sequence (fn) and building a subsequence if necessary, assume
that its quickly convergent that is d1(fn, fn+1) ⩽ 1/2k. Put

ϕ1 = f1 and ϕn = fn − fn−1 for n > 1. Then fn =

n∑
k=1

ϕk .

The sequenceψn(x) =
∑n

1 |ϕk(x)| is monotonic, integrals
∫
X
ψn dµ are bounded

by the same constant ∥f1∥1 + 1. Thus, by the B. Levi’s Thm. 13.37 and its proof,
ψn → ψ for a summable essentially bounded function ψ. Therefore, the series∑
ϕk(x) converges as well to a value f(x) of a function f. But, this means that

fn
a.e.→ f (the first step is completed).

We also notice |fn(x)| ⩽ |ψ(x)|. Thus by the Lebesgue Thm. 13.33 on dominated
convergence f ∈ L1(X) (the second step is completed).
Furthermore,

0 ⩽ lim
n→∞

∫
X

|fn − f| dµ ⩽ lim
n→∞

∞∑
k=n

∥ϕk∥ = 0.

That is, fn → f in the norm of L1(X). (That completes the third step and the
whole proof). □

The next important property of the Lebesgue integral is its absolute continuity.

Theorem 13.43 (Absolute continuity of Lebesgue integral). Let f ∈ L1(X).
Then for any ε > 0 there is a δ > 0 such that

∣∣∫
A
fdµ

∣∣ < ε if µ(A) < δ.

Proof. If f is essentially bounded by M, then it is enough to set δ = ε/M. In
general let:

An = {x ∈ X : n ⩽ |f(x)| < n+ 1},

Bn = ⊔n
0Ak,

Cn = X \ Bn.

Then
∫
X
|f| dµ =

∑∞
0

∫
Ak

|f| dµ, thus there is an N such that
∑∞

N

∫
Ak

|f| dµ =∫
CN

|f| dµ < ε/2. Now put δ = ε
2N+2 , then for any A ⊂ Xwith µ(A) < δ:∣∣∣∣∫

A

fdµ

∣∣∣∣ ⩽ ∫
A

|f| dµ =

∫
A∩BN

|f| dµ+

∫
A∩CN

|f| dµ <
ε

2
+
ε

2
= ε.

□

13.4. Integration on Product Measures. It is well-known geometrical interpreta-
tion of an integral in calculus as the “area under the graph”. If we advance from
“area” to a “measure” then the Lebesgue integral can be treated as theory of meas-
ures of very special shapes created by graphs of functions. This shapes belong to
the product spaces of the function domain and its range. We introduced product
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measures in Defn. 12.40, now we will study them in same details using the Le-
besgue integral. We start from the following

Theorem 13.44. Let X and Y be spaces, and let S and T be semirings on X and
Y respectively and µ and ν be measures on S and T respectively. If µ and ν are
σ-additive, then the product measure ν× µ from Defn. 12.40 is σ-additive as well.

Proof. For any C = A× B ∈ S× T let us define fC(x) = χA(x)ν(B). Then

(µ× ν)(C) = µ(A)ν(B) =
∫
X

fC dµ.

If the same setC has a representationC = ⊔kCk forCk ∈ S×T , then σ-additivity
of ν implies fC =

∑
k fCk

. By the Lebesgue theorem 13.33 on dominated con-
vergence: ∫

X

fC dµ =
∑
k

∫
X

fCk
dµ.

Thus
(µ× ν)(C) =

∑
k

(µ× ν)(Ck).

□

The above correspondenceC 7→ fC can be extended to the ring R(S×T) generated
by S× T by the formula:

fC =
∑
k

fCk
, for C = ⊔kCk ∈ R(S× T).

We have the uniform continuity of this correspondence:

∥fC1
− fC2

∥1 ⩽ (µ× ν)(C1 △ C2) = d1(C1,C2)

because from the representation C1 = A1 ⊔ B and C2 = A2 ⊔ B, where B = C1 ∩ C2

one can see that fC1
−fC2

= fA1
−fA2

, fC1△C2
= fA1

+fA2
together with |fA1

− fA2
| ⩽

fA1
+ fA2

for non-negative functions.
Thus the map C 7→ fC can be extended to the map of σ-algebra L(X × Y) of

µ× ν-measurable set to L1(X) by the formula flimn Cn
= limn fCn

.

Exercise 13.45. Describe topologies where two limits from the last formula are
taken.

The following lemma provides the geometric interpretation of the function fC as
the size of the slice of the set C along x = const.
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Lemma 13.46. Let C ∈ L(X × Y). For almost every x ∈ X the set Cx = {y ∈ Y :
(x,y) ∈ C} is ν-measurable and ν(Cx) = fC(x).

Proof. For sets from the ring R(S × T) it is true by the definition. If C(n) is a
monotonic sequence of sets, then ν(limn C

(n)
x ) = limn ν(C

(n)
x ) by σ-additivity of

measures. Thus the property ν(Cx) = fx(C) is preserved by monotonic limits.
The following result of the separate interest:

Lemma 13.47. Any measurable set can be received (up to a set of zero measure)
from elementary sets by two monotonic limits.

Proof of Lem. 13.47. Let C be a measurable set, put Cn ∈ R(S × T) to approx-
imate C up to 2−n in µ× ν. Let C̃ = ∩∞

n=1 ∪∞
k=1 Cn+k, then

(µ× ν) (C \ ∪∞
k=1Cn+k) = 0 and (µ× ν) (∪∞

k=1Cn+k \ C) = 21−n.

Then (µ× ν)(C̃ △ C) ⩽ 21−n for any n ∈ N. □

Coming back to Lem. 13.46 we notice that (in the above notations) fC = fC̃
almost everywhere. Then:

fC(x)
a.e
= fC̃(x) = ν(C̃x) = ν(Cx).

□

The following theorem generalizes the meaning of the integral as “area under
the graph”.

Theorem 13.48. Let µ and ν are σ-finite measures and C be a µ × ν measurable
set X × Y. We define Cx = {y ∈ Y : (x,y) ∈ C}. Then for µ-almost every x ∈ X
the set Cx is ν-measurable, function fC(x) = ν(Cx) is µ-measurable and

(13.8) (µ× ν)(C) =
∫
X

fC dµ,

where both parts may have the value +∞.

Proof. If C has a finite measure, then the statement is reduced to Lem. 13.46 and
a passage to limit in (13.8).
If C has an infinite measure, then there exists a sequence of Cn ⊂ C, such that
∪nCn = C and (µ× ν)(Cn) → ∞. Then fC(x) = limn fCn

(x) and∫
X

fCn
dµ = (µ× ν)(Cn) → +∞.
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Thus fC is measurable and non-summable. □

This theorem justify the well-known technique to calculation of areas (volumes)
as integrals of length (areas) of the sections.

Remark 13.49. (i) The role of spaces X and Y in Theorem 13.48 is symmet-
ric, thus we can swap them in the conclusion.

(ii) The Theorem 13.48 can be extended to any finite number of measure
spaces. For the case of three spaces (X,µ), (Y,ν), (Z, λ) we have:

(13.9) (µ× ν× λ)(C) =
∫
X×Y

λ(Cxy)d(µ× ν)(x,y) =
∫
Z

(µ× ν)(Cz)dλ(z),

where

Cxy = {z ∈ Z : (x,y, z) ∈ C},
Cz = {(x,y) ∈ X× Y : (x,y, z) ∈ C}.

Theorem 13.50 (Fubini). Let f(x,y) be a summable function on the product of
spaces (X,µ) and (Y,ν). Then:

(i) For µ-almost every x ∈ X the function f(x,y) is summable on Y and
fY(x) =

∫
Y
f(x,y)dν(y) is a µ-summable on X.

(ii) For ν-almost every y ∈ Y the function f(x,y) is summable on X and
fX(y) =

∫
X
f(x,y)dµ(x) is a ν-summable on Y.

(iii) There are the identities:∫
X×Y

f(x,y)d(µ× ν)(x,y) =

∫
X

(∫
Y

f(x,y)dν(y)

)
dµ(x)(13.10)

=

∫
Y

(∫
X

f(x,y)dµ(x)

)
dν(y).

(iv) For a non-negative functions the existence of any repeated integral
in (13.10) implies summability of f on X× Y.

Proof. From the decomposition f = f+ − f− we can reduce our consideration
to non-negative functions. Let us consider the product of three spaces (X,µ),
(Y,ν), (R, λ), with λ = dz being the Lebesgue measure on R. Define

C = {(x,y, z) ∈ X× Y × R : 0 ⩽ z ⩽ f(x,y)}.

Using the relation (13.9) we get:

Cxy = {z ∈ R : 0 ⩽ z ⩽ f(x,y)}, λ(Cxy) = f(x,y)

Cx = {(y, z) ∈ Y × R : 0 ⩽ z ⩽ f(x,y)}, (ν× λ)(Cx) =

∫
Y

f(x,y)dν(y).

the theorem follows from those relations. □
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Exercise 13.51. • Show that the first three conclusions of the Fubini The-
orem may fail if f is not summable.

• Show that the fourth conclusion of the Fubini Theorem may fail if f has
values of different signs.

13.5. Absolute Continuity of Measures. Here, we consider another topic in the
measure theory which benefits from the integration theory.

Definition 13.52. Let X be a set with σ-algebra R and σ-finite measure µ and
finite charge ν on R. The charge ν is absolutely continuous with respect to µ if
µ(A) = 0 for A ∈ R implies ν(A) = 0. Two charges ν1 and ν2 are equivalent
if two conditions |ν1| (A) = 0 and |ν2| (A) = 0 are equivalent.

The above definition seems to be not justifying “absolute continuity” name, but
this will become clear from the following important theorem.

Theorem 13.53 (Radon–Nikodym). Any charge ν which absolutely continuous
with respect to a measure µ has the form

ν(A) =

∫
A

fdµ,

where f is a function from L1. The function f ∈ L1 is uniquely defined by the charge
ν.

Sketch of the proof. First we will assume that ν is a measure. Let D be the collec-
tion of measurable functions g : X→ [0,∞) such that∫

E

gdµ ⩽ ν(E) (E ∈ L).

Let α = supg∈D

∫
X
gdµ ⩽ ν(X) <∞. So we can find a sequence (gn) in D with∫

X
gn dµ→ α.

We define f0(x) = supn gn(x). We can show that f0 = ∞ only on a set of µ-
measure zero, so if we adjust f0 on this set, we get a measurable function f :
X→ [0,∞). There is now a long argument to show that f is as required.
If ν is a charge, we can find f by applying the previous operation to the measures
ν+ and ν− (as it is easy to verify that ν+,ν− ≪ µ).
We show that f is essentially unique. If g is another function inducing ν, then∫

E

f− gdµ = ν(E) − ν(E) = 0 (E ∈ L).

Let E = {x ∈ X : f(x) − g(x) ⩾ 0}, so as f − g is measurable, E ∈ L. Then∫
E
f − gdµ = 0 and f − g ⩾ 0 on E, so by our result from integration theory,
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we have that f − g = 0 almost everywhere on E. Similarly, if F = {x ∈ X :
f(x)−g(x) ⩽ 0}, then F ∈ L and f−g = 0 almost everywhere on F. As E∪ F = X,
we conclude that f = g almost everywhere. □

Corollary 13.54. Let µ be a measure on X, ν be a finite charge, which is absolutely
continuous with respect to µ. For any ε > 0 there exists δ > 0 such that µ(A) < δ
implies |ν| (A) < ε.

Proof. By the Radon–Nikodym theorem there is a function f ∈ L1(X,µ) such
that ν(A) =

∫
A
fdµ. Then |ν| (A) =

∫
A
|f| dµ ad we get the statement from

Theorem 13.43 on absolute continuity of the Lebesgue integral. □

14. FUNCTIONAL SPACES

In this section we describe various Banach spaces of functions on sets with meas-
ure.

14.1. Integrable Functions. Let (X,L,µ) be a measure space. For 1 ⩽ p < ∞, we
define Lp(µ) to be the space of measurable functions f : X→ K such that∫

X

|f|p dµ <∞.

We define ∥·∥p : Lp(µ) → [0,∞) by

∥f∥p =

(∫
X

|f|p dµ

)1/p

(f ∈ Lp(µ)).

Notice that if f = 0 almost everywhere, then |f|p = 0 almost everywhere, and
so ∥f∥p = 0. However, there can be non-zero functions such that f = 0 almost
everywhere. So ∥·∥p is not a norm on Lp(µ).

Exercise 14.1. Find a measure space (X,µ) such that ℓp = Lp(µ), that is the
space of sequences ℓp is a particular case of function spaces considered in this
section. It also explains why the following proofs are referencing to Section 11
so often.

Lemma 14.2 (Integral Hölder inequality). Let 1 < p < ∞, let q ∈ (1,∞) be
such that 1/p + 1/q = 1. For f ∈ Lp(µ) and g ∈ Lq(µ), we have that fg is
summable, and

(14.1)
∫
X

|fg| dµ ⩽ ∥f∥p ∥g∥q .
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Proof. Recall that we know from Lem. 11.2 that

|ab| ⩽
|a|p

p
+

|b|q

q
(a,b ∈ K).

Now we follow the steps in proof of Prop. 11.4. Define measurable functions
a,b : X→ K by setting

a(x) =
f(x)

∥f∥p
, b(x) =

g(x)

∥g∥q
(x ∈ X).

So we have that

|a(x)b(x)| ⩽
|f(x)|p

p ∥f∥pp
+

|g(x)|q

q ∥g∥qq
(x ∈ X).

By integrating, we see that∫
X

|ab| dµ ⩽
1

p ∥f∥pp

∫
X

|f|p dµ+
1

q ∥g∥qq

∫
X

|g|q dµ =
1

p
+

1

q
= 1.

Hence, by the definition of a and b,∫
X

|fg| ⩽ ∥f∥p ∥g∥q ,

as required. □

Lemma 14.3. Let f,g ∈ Lp(µ) and let a ∈ K. Then:
(i) ∥af∥p = |a| ∥f∥p;

(ii) ∥f+ g∥p ⩽ ∥f∥p + ∥g∥p.
In particular, Lp is a vector space.

Proof. Part 14.3(i) is easy. For 14.3(ii), we need a version of Minkowski’s In-
equality, which will follow from the previous lemma. We essentially repeat the
proof of Prop. 11.5.
Notice that the p = 1 case is easy, so suppose that 1 < p <∞. We have that∫

X

|f+ g|p dµ =

∫
X

|f+ g|p−1
|f+ g| dµ

⩽
∫
X

|f+ g|p−1 (|f|+ |g|) dµ

=

∫
X

|f+ g|p−1
|f| dµ+

∫
X

|f+ g|p−1
|g| dµ.

Applying the lemma, this is

⩽ ∥f∥p
(∫

X

|f+ g|q(p−1) dµ

)1/q

+ ∥g∥p
(∫

X

|f+ g|q(p−1) dµ

)1/q

.
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As q(p− 1) = p, we see that

∥f+ g∥pp ⩽
(
∥f∥p + ∥g∥p

)
∥f+ g∥p/qp .

As p− p/q = 1, we conclude that

∥f+ g∥p ⩽ ∥f∥p + ∥g∥p ,

as required.
In particular, if f,g ∈ Lp(µ) then af+ g ∈ Lp(µ), showing that Lp(µ) is a vector
space. □

We define an equivalence relation ∼ on the space of measurable functions by
setting f ∼ g if and only if f = g almost everywhere. We can check that ∼ is an
equivalence relation (the slightly non-trivial part is that ∼ is transitive).

Proposition 14.4. For 1 ⩽ p <∞, the collection of equivalence classes Lp(µ)/ ∼
is a vector space, and ∥·∥p is a well-defined norm on Lp(µ)/ ∼.

Proof. We need to show that addition, and scalar multiplication, are well-
defined on Lp(µ)/ ∼. Let a ∈ K and f1, f2,g1,g2 ∈ Lp(µ) with f1 ∼ f2 and
g1 ∼ g2. Then it’s easy to see that af1 + g1 ∼ af2 + g2; but this is all that’s
required!
If f ∼ g then |f|p = |g|p almost everywhere, and so ∥f∥p = ∥g∥p. So ∥·∥p is well-
defined on equivalence classes. In particular, if f ∼ 0 then ∥f∥p = 0. Conversely,
if ∥f∥p = 0 then

∫
X
|f|p dµ = 0, so as |f|p is a positive function, we must have

that |f|p = 0 almost everywhere. Hence f = 0 almost everywhere, so f ∼ 0. That
is,

{f ∈ Lp(µ) : f ∼ 0} =
{
f ∈ Lp(µ) : ∥f∥p = 0

}
.

It follows from the above lemma that this is a subspace of Lp(µ).
The above lemma now immediately shows that ∥·∥p is a norm on Lp(µ)/ ∼. □

Definition 14.5. We write Lp(µ) for the normed space (Lp(µ)/ ∼, ∥·∥p).

We will abuse notation and continue to write members of Lp(µ) as functions.
Really they are equivalence classes, and so care must be taken when dealing with
Lp(µ). For example, if f ∈ Lp(µ), it does not make sense to talk about the value of f
at a point.
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Theorem 14.6. Let (fn) be a Cauchy sequence in Lp(µ). There exists f ∈ Lp(µ)
with ∥fn − f∥p → 0. In fact, we can find a subsequence (nk) such that fnk

→ f

pointwise, almost everywhere.

Proof. Consider first the case of a finite measure space X. We again follow the
three steps scheme from Rem. 11.7. Let fn be a Cauchy sequence in Lp(µ). From
the Hölder inequality (14.1) we see that ∥fn − fm∥1 ⩽ ∥fn − fm∥p (µ(X))1/q.
Thus, fn is also a Cauchy sequence in L1(µ). Thus by the Theorem 13.42 there is
the limit function f ∈ L1(µ). Moreover, from the proof of that theorem we know
that there is a subsequence fnk

of fn convergent to f almost everywhere. Thus
in the Cauchy sequence inequality∫

X

|fnk
− fnm

|
p dµ < ε

we can pass to the limitm→ ∞ by the Fatou Lemma 13.39 and conclude:∫
X

|fnk
− f|p dµ < ε.

So, fnk
converges to f in Lp(µ), then fn converges to f in Lp(µ) as well.

For a σ-finite measure µ we represent X = ⊔kXk with µ(Xk) < +∞ for all k.
The restriction (f

(k)
n ) of a Cauchy sequence (fn) ⊂ Lp(X,µ) to every Xk is a

Cauchy sequence in Lp(Xk,µ). By the previous paragraph there is the limit
f(k) ∈ Lp(Xk,µ). Define a function f ∈ Lp(X,µ) by the identities f(x) = f(k)

if x ∈ Xk. By the additivity of integral, the Cauchy condition on (fn) can be
written as: ∫

X

|fn − fm|
p dµ =

∞∑
k=1

∫
Xk

∣∣∣f(k)n − f(k)m

∣∣∣p dµ < ε.

It implies for anyM:
M∑
k=1

∫
Xk

∣∣∣f(k)n − f(k)m

∣∣∣p dµ < ε.

In the last inequality we can pass to the limitm→ ∞:
M∑
k=1

∫
Xk

∣∣∣f(k)n − f(k)
∣∣∣p dµ < ε.

Since the last inequality is independent ofMwe conclude:∫
X

|fn − f|p dµ =

∞∑
k=1

∫
Xk

∣∣∣f(k)n − f(k)
∣∣∣p dµ < ε.

Thus we conclude that fn → f in Lp(X,µ). □



146 VLADIMIR V. KISIL

Corollary 14.7. Lp(µ) is a Banach space.

Example 14.8. If p = 2 then Lp(µ) = L2(µ) can be equipped with the inner
product:

(14.2) ⟨f,g⟩ =
∫
X

fḡdµ.

The previous Corollary implies that L2(µ) is a Hilbert space, see a preliminary
discussion in Defn. 2.22.

Proposition 14.9. Let (X,L,µ) be a measure space, and let 1 ⩽ p < ∞. We can
define a mapΦ : Lq(µ) → Lp(µ)

∗ by settingΦ(f) = F, for f ∈ Lq(µ), 1
p
+ 1

q
= 1,

where
F : Lp(µ) → K, g 7→

∫
X

fgdµ (g ∈ Lp(µ)).

Proof. This proof very similar to proof of Thm. 11.13. For f ∈ Lq(µ) and g ∈
Lp(µ), it follows by the Hölder’s Inequality (14.1), that fg is summable, and∣∣∣∣∫

X

fgdµ

∣∣∣∣ ⩽ ∫
X

|fg| dµ ⩽ ∥f∥q ∥g∥p .

Let f1, f2 ∈ Lq(µ) and g1,g2 ∈ Lp(µ) with f1 ∼ f2 and g1 ∼ g2. Then f1g1 = f2g1
almost everywhere and f2g1 = f2g2 almost everywhere, so f1g1 = f2g2 almost
everywhere, and hence ∫

X

f1g1 dµ =

∫
X

f2g2 dµ.

SoΦ is well-defined.
Clearly Φ is linear, and we have shown that ∥Φ(f)∥ ⩽ ∥f∥q.
Let f ∈ Lq(µ) and define g : X→ K by

g(x) =

{
f(x) |f(x)|q−2 : f(x) ̸= 0,

0 : f(x) = 0.

Then |g(x)| = |f(x)|q−1 for all x ∈ X, and so∫
X

|g|p dµ =

∫
X

|f|p(q−1) dµ =

∫
X

|f|q dµ,

so ∥g∥p = ∥f∥q/pq , and so, in particular, g ∈ Lp(µ). Let F = Φ(f), so that

F(g) =

∫
X

fgdµ =

∫
X

|f|q dµ = ∥f∥qq .
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Thus ∥F∥ ⩾ ∥f∥qq / ∥g∥p = ∥f∥q. So we conclude that ∥F∥ = ∥f∥q, showing that
Φ is an isometry. □

Proposition 14.10. Let (X,L,µ) be a finite measure space, let 1 ⩽ p <∞, and let
F ∈ Lp(µ)∗. Then there exists f ∈ Lq(µ), 1

p
+ 1

q
= 1 such that

F(g) =

∫
X

fgdµ (g ∈ Lp(µ)).

Sketch of the proof. As µ(X) <∞, for E ∈ L, we have that ∥χE∥p = µ(E)1/p <∞.
So χE ∈ Lp(µ), and hence we can define

ν(E) = F(χE) (E ∈ L).
We proceed to show that ν is a signed (or complex) measure. Then we can apply
the Radon-Nikodym Theorem 13.53 to find a function f : X→ K such that

F(χE) = ν(E) =

∫
E

fdµ (E ∈ L).

There is then a long argument to show that f ∈ Lq(µ), which we skip here.
Finally, we need to show that ∫

X

fgdµ = F(g)

for all g ∈ Lp(µ), and not just for g = χE. That follows for simple functions
with a finite set of values by linearity of the Lebesgue integral and F. Then, it
can be extended by continuity to the entire space Lp(µ) in view in the following
Prop. 14.14. □

Proposition 14.11. For 1 < p <∞, we have that Lp(µ)∗ = Lq(µ) isometrically,
under the identification of the above results.

Remark 14.12. (i) For p = q = 2 we obtain a special case of the Riesz–
Frechét theorem 4.11 about self-duality of the Hilbert space L2(µ).

(ii) Note that L∗∞ is not isomorphic to L1, except finite-dimensional situ-
ation. Moreover if µ is not a point measure L1 is not a dual to any
Banach space.

Exercise 14.13. Let µ be a measure on the real line.
(i) Show that the space L∞(R,µ) is either finite-dimensional or non-

separable.
(ii) Show that for p ̸= q neither Lp(R,µ) nor Lq(R,µ) contains the other

space.
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14.2. Dense Subspaces in Lp. We note that f ∈ Lp(X) if and only if |f|p is sum-
mable, thus we can use all results from Section 13 to investigate Lp(X).

Proposition 14.14. Let (X,L,µ) be a finite measure space, and let 1 ⩽ p < ∞.
Then the collection of simple bounded functions attained only a finite number of
values is dense in Lp(µ).

Proof. Let f ∈ Lp(µ), and suppose for now that f ⩾ 0. For each n ∈ N, let

fn = min(n, 1
n
⌊nf⌋).

Then each fn is simple, fn ↑ f, and |fn − f|p → 0 pointwise. For each n, we have
that

0 ⩽ fn ⩽ f =⇒ 0 ⩽ f− fn ⩽ f,

so that |f− fn|
p ⩽ |f|p for all n. As

∫
|f|p dµ < ∞, we can apply the Dominated

Convergence Theorem to see that

lim
n

∫
X

|fn − f|p dµ = 0,

that is, ∥fn − f∥p → 0.
The general case follows by taking positive and negative parts, and if K = C, by
taking real and imaginary parts first. □

Corollary 14.15. Let µ be the Lebesgue measure on the real line. The collection of
simple bounded functions with compact supports attained only a finite number of
values is dense in Lp(R,µ).

Proof. Let f ∈ Lp(R,µ), since
∫
R |f|p dµ =

∑∞
k=−∞ ∫

[k,k+1) |f|
p dµ there exists N

such that
∑−N

k=−∞ +
∑k=∞

N

∫
[k,k+1) |f|

p dµ < ε. By the previous Proposition, the
restriction of f to [−N,N] can be ε-approximated by a simple bounded function
f1 with support in [−N,N] attained only a finite number of values. Therefore f1
will be also (2ε)-approximation to f as well. □

Definition 14.16. A function f : R → C is called step function if it a linear
combination of a finite number of indicator functions of half-open disjoint
intervals: f =

∑
k ckχ[ak,bk).

The regularity of the Lebesgue measure allows to make a stronger version of
Prop. 14.14.
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Lemma 14.17. The space of step functions is dense in Lp(R).

Proof. By Prop. 14.14, for a given f ∈ Lp(R) and ε > 0 there exists a simple
function f0 =

∑n
k=1 ckχAk

such that ∥f− f0∥p < ε
2 . Let M = ∥f0∥∞ < ∞. By

measurability of the set Ak there is Ck = ⊔mk

j [ajk ,bjk) a disjoint finite union of
half-open intervals such that µ(Ck △ Ak) <

ε
2n3M

. Since Ak and Aj are disjoint
for k ̸= j we also obtain by the triangle inequality: µ(Cj ∩ Ak) <

ε
2n3M

and
µ(Cj ∩ Ck) <

2ε
2n3M

. We define a step function

f1 =

n∑
k=1

ckχCk
=

n∑
k=1

mk∑
j

ckχ[ajk
,bjk).

Clearly
f1(x) = ck for all x ∈ Ak \ ((Ck △ Ak) ∪ (∪j̸=kCj)).

Thus:
µ({x ∈ R | f0(x) ̸= f1(x)}) ⩽ n · n · ε

2n3M
=

ε

2nM
.

Then ∥f0 − f1∥p ⩽ nM · ε
2nM

= ε
2 because ∥f1∥∞ < nM. Thus ∥f− f1∥p < ε. □

Corollary 14.18. The collection of continuous function belonging to Lp(R) is
dense in Lp(R).

Proof. In view of Rem. 2.29 and the previous Lemma it is enough to show that
the characteristic function of an interval [a,b] can be approximated by a continu-
ous function in Lp(R). The idea of such approximation is illustrated by Fig. 4
and we skip the technical details. □

We will establish denseness of the subspace of smooth function in § 15.4.

Exercise 14.19. Show that every f ∈ L1(R) is continuous on average, that is for
any ε > 0 there is δ > 0 such that for all t such that |t| < δwe have:

(14.3)
∫
R
|f(x) − f(x+ t)| dx < ε .

Here is an alternative demonstration of a similar result, it essentially encapsulate
all the above separate statements. Let ([0, 1],L,µ) be the restriction of Lebesgue
measure to [0, 1]. We often write Lp([0, 1]) instead of Lp(µ).

Proposition 14.20. For 1 ⩽ p <∞, we have thatCK([0, 1]) is dense in Lp([0, 1]).
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Proof. As [0, 1] is a finite measure space, and each member of CK([0, 1]) is
bounded, it is easy to see that each f ∈ CK([0, 1]) is such that ∥f∥p < ∞. So
it makes sense to regard CK([0, 1]) as a subspace of Lp(µ). If CK([0, 1]) is not
dense in Lp(µ), then we can find a non-zero F ∈ Lp([0, 1])

∗ with F(f) = 0 for
each f ∈ CK([0, 1]). This was a corollary of the Hahn-Banach theorem 11.15.
So there exists a non-zero g ∈ Lq([0, 1]) with∫

[0,1]

fgdµ = 0 (f ∈ CK([0, 1])).

Let a < b in [0, 1]. By approximating χ(a,b) by a continuous function, we can
show that

∫
(a,b) gdµ =

∫
gχ(a,b) dµ = 0.

Suppose for now that K = R. Let A = {x ∈ [0, 1] : g(x) ⩾ 0} ∈ L. By the
definition of the Lebesgue (outer) measure, for ϵ > 0, there exist sequences (an)
and (bn) with A ⊆ ∪n(an,bn), and

∑
n(bn − an) ⩽ µ(A) + ϵ.

For each N, consider ∪N
n=1(an,bn). If some (ai,bi) overlaps (aj,bj), then

we could just consider the larger interval (min(ai,aj), max(bi,bj)). Formally
by an induction argument, we see that we can write ∪N

n=1(an,bn) as a fi-
nite union of some disjoint open intervals, which we abusing notations still
denote by (an,bn). By linearity, it hence follows that for N ∈ N, if we set
BN = ⊔N

n=1(an,bn), then∫
gχBN

dµ =

∫
gχ(a1,b1)⊔···⊔(aN,bN) dµ = 0.

Let B = ∪n(an,bn), so A ⊆ B and µ(B) ⩽
∑

n(bn − an) ⩽ µ(A) + ϵ. We then
have that ∣∣∣∣∫ gχBN

dµ−

∫
gχB dµ

∣∣∣∣ = ∣∣∣∣∫ gχB\(a1,b1)⊔···⊔(aN,bN) dµ

∣∣∣∣ .
We now apply Hölder’s inequality to get(∫
χB\(a1,b1)∪···∪(aN,bN) dµ

)1/p

∥g∥q = µ(B \ (a1,b1) ⊔ · · · ⊔ (aN,bN))1/p ∥g∥q

⩽

( ∞∑
n=N+1

(bn − an)

)1/p

∥g∥q .

We can make this arbitrarily small by making N large. Hence we conclude that∫
gχB dµ = 0.

Then we apply Hölder’s inequality again to see that∣∣∣∣∫ gχA dµ

∣∣∣∣ = ∣∣∣∣∫ gχA dµ−

∫
gχB dµ

∣∣∣∣ = ∣∣∣∣∫ gχB\A dµ

∣∣∣∣ ⩽ ∥g∥q µ(B\A)1/p ⩽ ∥g∥q ϵ1/p.
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As ϵ > 0 was arbitrary, we see that
∫
A
gdµ = 0. As g is positive on A, we

conclude that g = 0 almost everywhere on A.
A similar argument applied to the set {x ∈ [0, 1] : g(x) ⩽ 0} allows us to conclude
that g = 0 almost everywhere. If K = C, then take real and imaginary parts. □

14.3. Continuous functions. Let K be a compact (always assumed Hausdorff) to-
pological space.

Definition 14.21. The Borel σ-algebra, B(K), on K, is the σ-algebra generated
by the open sets in K (recall what this means from Section 11.5). A member
of B(K) is a Borel set.

Notice that if f : K→ K is a continuous function, then clearly f is B(K)-measurable
(the inverse image of an open set will be open, and hence certainly Borel). So if
µ : B(K) → K is a finite real or complex charge (for K = R or K = C respectively),
then fwill be µ-summable (as f is bounded) and so we can define

ϕµ : CK(K) → K, ϕµ(f) =

∫
K

fdµ (f ∈ CK(K)).

Clearly ϕµ is linear. Suppose for now that µ is positive, so that

|ϕµ(f)| ⩽
∫
K

|f| dµ ⩽ ∥f∥∞ µ(K) (f ∈ CK(K)).

So ϕµ ∈ CK(K)
∗ with ∥ϕµ∥ ⩽ µ(K).

The aim of this section is to show that all of CK(K)
∗ arises in this way. First

we need to define a class of measures which are in a good agreement with the
topological structure.

Definition 14.22. A measure µ : B(K) → [0,∞) is regular if for each A ∈
B(K), we have

µ(A) = sup {µ(E) : E ⊆ A and E is compact}

= inf {µ(U) : A ⊆ U and U is open} .

A charge ν = ν+ − ν− is regular if ν+ and ν− are regular measures. A
complex measure is regular if its real and imaginary parts are regular.

Note the similarity between this notion and definition of outer measure.

Example 14.23. (i) Many common measures on the real line, e.g. the Le-
besgue measure, point measures, etc., are regular.
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(ii) An example of the measure µ on [0, 1] which is not regular:

µ(∅) = 0, µ({ 12 }) = 1, µ(A) = +∞,

for any other subset A ⊂ [0, 1].
(iii) Another example of a σ-additive measure µ on [0, 1] which is not regu-

lar:

µ(A) =

{
0, if A is at most countable;
+∞ otherwise.

The following subspace of the space of all simple functions is helpful.
As we are working only with compact spaces, for us, “compact” is the same as

“closed”. Regular measures somehow interact “well” with the underlying topology
on K.

We let MR(K) and MC(K) be the collection of all finite, regular real or complex
charges (that is, signed or complex measures) on B(K).

Exercise 14.24. Check that,MR(K) andMC(K) are real or complex, respectively,
vector spaces for the obvious definition of addition and scalar multiplication.

Recall, Defn. 12.31, that for µ ∈MK(K) we define the variation of µ

∥µ∥ = sup

{ ∞∑
n=1

|µ(An)|

}
,

where the supremum is taken over all sequences (An) of pairwise disjoint members
of B(K), with ⊔nAn = K. Such (An) are called partitions.

Proposition 14.25. The variation ∥·∥ is a norm onMK(K).

Proof. If µ = 0 then clearly ∥µ∥ = 0. If ∥µ∥ = 0, then for A ∈ B(K), let A1 =
A,A2 = K \A and A3 = A4 = · · · = ∅. Then (An) is a partition, and so

0 =

∞∑
n=1

|µ(An)| = |µ(A)|+ |µ(K \A)| .

Hence µ(A) = 0, and so as Awas arbitrary, we have that µ = 0.
Clearly ∥aµ∥ = |a| ∥µ∥ for a ∈ K and µ ∈MK(K).
For µ, λ ∈MK(K) and a partition (An), we have that∑
n

|(µ+ λ)(An)| =
∑
n

|µ(An) + λ(An)| ⩽
∑
n

|µ(An)|+
∑
n

|λ(An)| ⩽ ∥µ∥+∥λ∥ .

As (An) was arbitrary, we see that ∥µ+ λ∥ ⩽ ∥µ∥+ ∥λ∥. □

To get a handle on the “regular” condition, we need to know a little more about
CK(K).
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Theorem 14.26 (Urysohn’s Lemma). Let K be a compact space, and let E, F be
closed subsets of K with E ∩ F = ∅. There exists f : K → [0, 1] continuous with
f(x) = 1 for x ∈ E and f(x) = 0 for x ∈ F (written f(E) = {1} and f(F) = {0}).

Proof. See a book on (point set) topology. □

Lemma 14.27. Let µ : B(K) → [0,∞) be a regular measure. Then for U ⊆ K
open, we have

µ(U) = sup

{∫
K

fdµ : f ∈ CR(K), 0 ⩽ f ⩽ χU

}
.

Proof. If 0 ⩽ f ⩽ χU, then

0 =

∫
K

0 dµ ⩽
∫
K

fdµ ⩽
∫
K

χU dµ = µ(U).

Conversely, let F = K \ U, a closed set. Let E ⊆ U be closed. By Urysohn
Lemma 14.26, there exists f : K → [0, 1] continuous with f(E) = {1} and f(F) =
{0}. So χE ⩽ f ⩽ χU, and hence

µ(E) ⩽
∫
K

fdµ ⩽ µ(U).

As µ is regular,

µ(U) = sup {µ(E) : E ⊆ U closed} ⩽ sup

{∫
K

fdµ : 0 ⩽ f ⩽ χU

}
⩽ µ(U).

Hence we have equality throughout. □

The next result tells that the variation coincides with the norm on real charges
viewed as linear functionals on CR(K).

Lemma 14.28. Let µ ∈MR(K). Then

∥µ∥ = ∥ϕµ∥ := sup

{∣∣∣∣∫
K

fdµ

∣∣∣∣ : f ∈ CR(K), ∥f∥∞ ⩽ 1

}
.
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Proof. Let (A,B) be a Hahn decomposition (Thm. 12.36) for µ. For f ∈ CR(K)

with ∥f∥∞ ⩽ 1, we have that∣∣∣∣∫
K

fdµ

∣∣∣∣ ⩽ ∣∣∣∣∫
A

fdµ

∣∣∣∣+ ∣∣∣∣∫
B

fdµ

∣∣∣∣ = ∣∣∣∣∫
A

fdµ+

∣∣∣∣+ ∣∣∣∣∫
B

fdµ−

∣∣∣∣
⩽

∫
A

|f| dµ+ +

∫
B

|f| dµ− ⩽ ∥f∥∞ (µ(A) − µ(B)) ⩽ ∥f∥∞ ∥µ∥ ,

using the fact that µ(B) ⩽ 0 and that (A,B) is a partition of K.
Conversely, as µ is regular, for ϵ > 0, there exist closed sets E and F with E ⊆ A,
F ⊆ B, and with µ+(E) > µ+(A) − ϵ and µ−(F) > µ−(B) − ϵ. By Urysohn
Lemma 14.26, there exists f : K → [0, 1] continuous with f(E) = {1} and f(F) =
{0}. Let g = 2f − 1, so g is continuous, g takes values in [−1, 1], and g(E) = {1},
g(F) = {−1}. Then∫

K

gdµ =

∫
E

1 dµ+

∫
F

−1 dµ+

∫
K\(E∪F)

gdµ

= µ(E) − µ(F) +

∫
A\E

gdµ+

∫
B\F

gdµ

As E ⊆ A, we have µ(E) = µ+(E), and as F ⊆ B, we have −µ(F) = µ−(F). So∫
K

gdµ > µ+(A) − ϵ+ µ−(B) − ϵ+

∫
A\E

gdµ+

∫
B\F

gdµ

⩾ |µ(A)|+ |µ(B)|− 2ϵ− |µ(A \ E)|− |µ(B \ F)|

⩾ |µ(A)|+ |µ(B)|− 4ϵ.

As ϵ > 0 was arbitrary, we see that ∥ϕµ∥ ⩾ |µ(A)|+ |µ(B)| = ∥µ∥. □

Thus, we know thatMR(K) is isometrically embedded in CR(K)
∗.

14.4. Riesz Representation Theorem. To facilitate an approach to the key point of
this Subsection we will require some more definitions.

Definition 14.29. A functional F on C(K) is positive if for any non-negative
function f ⩾ 0 we have F(f) ⩾ 0.

Lemma 14.30. Any positive linear functional F on C(X) is continuous and ∥F∥ =
F(1), where 1 is the function identically equal to 1 on X.
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Proof. For any function f such that ∥f∥∞ ⩽ 1 the function 1 − f is non negative
thus: F(1) − F(f) = F(1 − f) > 0, Thus F(1) > F(f), that is F is bounded and its
norm is F(1). □

So for a positive functional you know the exact place where to spot its norm,
while a linear functional can attain its norm in an generic point (if any) of the unit
ball in C(X). It is also remarkable that any bounded linear functional can be repres-
ented by a pair of positive ones.

Lemma 14.31. Let λ be a continuous linear functional on C(X). Then there are
positive functionals λ+ and λ− on C(X), such that λ = λ+ − λ−.

Proof. First, for f ∈ CR(K) with f ⩾ 0, we define

λ+(f) = sup
{
λ(g) : g ∈ CR(K), 0 ⩽ g ⩽ f

}
⩾ 0,

λ−(f) = λ+(f) − λ(f) = sup
{
λ(g) − λ(f) : g ∈ CR(K), 0 ⩽ g ⩽ f

}
= sup

{
λ(h) : h ∈ CR(K), 0 ⩽ h+ f ⩽ f

}
= sup

{
λ(h) : h ∈ CR(K), −f ⩽ h ⩽ 0

}
⩾ 0.

In a sense, this is similar to the Hahn decomposition (Thm. 12.36).
We can check that

λ+(tf) = tλ+(f), λ−(tf) = tλ−(f) (t ⩾ 0, f ⩾ 0).

For f1, f2 ⩾ 0, we have that

λ+(f1 + f2) = sup {λ(g) : 0 ⩽ g ⩽ f1 + f2}

= sup {λ(g1 + g2) : 0 ⩽ g1 + g2 ⩽ f1 + f2}

⩾ sup {λ(g1) + λ(g2) : 0 ⩽ g1 ⩽ f1, 0 ⩽ g2 ⩽ f2}

= λ+(f1) + λ+(f2).

Conversely, if 0 ⩽ g ⩽ f1 + f2, then set g1 = min(g, f1), so 0 ⩽ g1 ⩽ f1. Let
g2 = g−g1 so g1 ⩽ g implies that 0 ⩽ g2. For x ∈ K, if g1(x) = g(x) then g2(x) =
0 ⩽ f2(x); if g1(x) = f1(x) then f1(x) ⩽ g(x) and so g2(x) = g(x) − f1(x) ⩽ f2(x).
So 0 ⩽ g2 ⩽ f2, and g = g1 + g2. So in the above displayed equation, we really
have equality throughout, and so λ+(f1+f2) = λ+(f1)+λ+(f2). As λ is additive,
it is now immediate that λ−(f1 + f2) = λ−(f1) + λ−(f2)
For f ∈ CR(K) we put f+(x) = max(f(x), 0) and f−(x) = −min(f(x), 0). Then
f± ⩾ 0 and f = f+ − f−. We define:

λ+(f) = λ+(f+) − λ+(f−), λ−(f) = λ−(f+) − λ−(f−).
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As when we were dealing with integration, we can check that λ+ and λ− become
linear functionals; by the previous Lemma they are bounded. □

Finally, we need a technical definition.

Definition 14.32. For f ∈ CR(K), we define the support of f, written supp(f),
to be the closure of the set {x ∈ K : f(x) ̸= 0}.

Theorem 14.33 (Riesz Representation). Let K be a compact (Hausdorff) space,
and let λ ∈ CK(K)

∗. There exists a unique µ ∈MK(K) such that

λ(f) =

∫
K

fdµ (f ∈ CK(K)).

Furthermore, ∥λ∥ = ∥µ∥.

Proof. Let us show uniqueness. If µ1,µ2 ∈MK(K) both induce λ then µ = µ1−µ2
induces the zero functional on CK(K). So for f ∈ CR(K),

0 = ℜ

∫
K

fdµ =

∫
K

fdµr

= ℑ

∫
K

fdµ =

∫
K

fdµi.

So µr and µi both induce the zero functional on CR(K). By Lemma 14.28, this
means that ∥µr∥ = ∥µi∥ = 0, showing that µ = µr + iµi = 0, as required.
Existence is harder, and we shall only sketch it here. Firstly, we shall suppose
that K = R and that λ is positive.
Motivated by the above Lemmas 14.27 and 14.28, for U ⊆ K open, we define

µ∗(U) = sup
{
λ(f) : f ∈ CR(K), 0 ⩽ f ⩽ χU, supp(f) ⊆ U

}
.

For A ⊆ K general, we define

µ∗(A) = inf {µ∗(U) : U ⊆ K is open, A ⊆ U} .
We then proceed to show that

• µ∗ is an outer measure: this requires a technical topological lemma,
where we make use of the support condition in the definition.

• We then check that every open set in µ∗-measurable.
• As B(K) is generated by open sets, and the collection of µ∗-measurable

sets is a σ-algebra, it follows that every member of B(K) is µ∗-
measurable.
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• By using results from Section 12, it follows that if we let µ be the restric-
tion of µ∗ to B(K), then µ is a measure on B(K).

• We then check that this measure is regular.
• Finally, we show that µ does induce the functional λ. Arguably, it is this

last step which is the hardest (or least natural to prove).
If λ is not positive, then by Lemma 14.31 represent it as λ = λ+ − λ− for positive
λ±. As λ+ and λ− are positive functionals, we can find µ+ and µ− positive
measures inMR(K) such that

λ+(f) =

∫
K

fdµ+, λ−(f) =

∫
K

fdµ− (f ∈ CR(K)).

Then if µ = µ+ − µ−, we see that

λ(f) = λ+(f) − λ−(f) =

∫
K

fdµ (f ∈ CR(K)).

Finally, if K = C, then we use the same “complexification” trick from the proof
of the Hahn-Banach Theorem 11.15. Namely, let λ ∈ CC(K)

∗, and define λr, λi ∈
CR(K)

∗ by
λr(f) = ℜλ(f), λi(f) = ℑλ(f) (f ∈ CR(K)).

These are both clearly R-linear. Notice also that |λr(f)| = |ℜλ(f)| ⩽ |λ(f)| ⩽
∥λ∥ ∥f∥∞, so λr is bounded; similarly λi.
By the real version of the Riesz Representation Theorem, there exist charges µr
and µi such that

ℜλ(f) = λr(f) =

∫
K

fdµr, ℑλ(f) = λi(f) =

∫
K

fdµi (f ∈ CR(K)).

Then let µ = µr + iµi, so for f ∈ CC(K),∫
K

fdµ =

∫
K

fdµr + i

∫
K

fdµi

=

∫
K

ℜ(f)dµr + i

∫
K

ℑ(f)dµr + i

∫
K

ℜ(f)dµi −

∫
K

ℑ(f)dµi

= λr(ℜ(f)) + iλr(ℑ(f)) + iλi(ℜ(f)) − λi(ℑ(f))

= ℜλ(ℜ(f)) + iℜλ(ℑ(f)) + iℑλ(ℜ(f)) − ℑλ(ℑ(f))

= λ(ℜ(f) + iℑ(f)) = λ(f),

as required. □

Notice that we have not currently proved that ∥µ∥ = ∥λ∥ in the case K = C. See
a textbook for this.
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15. FOURIER TRANSFORM

In this section we will briefly present a theory of Fourier transform focusing on
commutative group approach. We mainly follow footsteps of [3, Ch. IV].

15.1. Convolutions on Commutative Groups. Let G be a commutative group, we
will use + sign to denote group operation, respectively the inverse elements of
g ∈ G will be denoted −g. We assume that G has a Hausdorff topology such that
operations (g1,g2) 7→ g1 + g2 and g 7→ −g are continuous maps. We also assume
that the topology is locally compact, that is the group neutral element has a neigh-
bourhood with a compact closure.

Example 15.1. Our main examples will be as follows:
(i) G = Z the group of integers with operation of addition and the discrete

topology (each point is an open set).
(ii) G = R the group of real numbers with addition and the topology

defined by open intervals.
(iii) G = T the group of Euclidean rotations the unit circle in R2 with the

natural topology. Another realisations of the same group:
• Unimodular complex numbers under multiplication.
• Factor group R/Z, that is addition of real numbers modulo 1.

There is a homomorphism between two realisations given by z = e2πit,
t ∈ [0, 1), |z| = 1.

We assume thatG has a regular Borel measure which is invariant in the following
sense.

Definition 15.2. Let µ be a measure on a commutative group G, µ is called
invariant (or Haar measure) if for any measurable X and any g ∈ G the sets
g+ X and −X are also measurable and µ(X) = µ(g+ X) = µ(−X).

Such an invariant measure exists if and only if the group is locally compact, in
this case the measure is uniquely defined up to the constant factor.

Exercise 15.3. Check that in the above three cases invariant measures are:
• G = Z, the invariant measure of X is equal to number of elements in X.
• G = R the invariant measure is the Lebesgue measure.
• G = T the invariant measure coincides with the Lebesgue measure.
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Definition 15.4. A convolution of two functions on a commutative group G
with an invariant measure µ is defined by:

(15.1) (f1 ∗ f2)(x) =
∫
G

f1(x− y) f2(y)dµ(y) =

∫
G

f1(y) f2(x− y)dµ(y).

Theorem 15.5. If f1, f2 ∈ L1(G,µ), then the integrals in (15.1) exist for almost
every x ∈ G, the function f1 ∗ f2 is in L1(G,µ) and ∥f1 ∗ f2∥ ⩽ ∥f1∥ · ∥f2∥.

Proof. If f1, f2 ∈ L1(G,µ) then by Fubini’s Thm. 13.50 the function ϕ(x,y) =
f1(x) ∗ f2(y) is in L1(G×G,µ× µ) and ∥ϕ∥ = ∥f1∥ · ∥f2∥.
Let us define a map τ : G × G → G × G such that τ(x,y) = (x + y,y). It
is measurable (send Borel sets to Borel sets) and preserves the measure µ × µ.
Indeed, for an elementary set C = A× B ⊂ G×Gwe have:

(µ× µ)(τ(C)) =

∫
G×G

χτ(C)(x,y)dµ(x)dµ(y)

=

∫
G×G

χC(x− y,y)dµ(x)dµ(y)

=

∫
G

(∫
G

χC(x− y,y)dµ(x)

)
dµ(y)

=

∫
B

µ(A+ y)dµ(y) = µ(A)× µ(B) = (µ× µ)(C).

We used invariance of µ and Fubini’s Thm. 13.50. Therefore we have an isomet-
ric isomorphism of L1(G×G,µ× µ) into itself by the formula:

Tϕ(x,y) = ϕ(τ(x,y)) = ϕ(x− y,y).

If we apply this isomorphism to the above function ϕ(x,y) = f1(x) ∗ f2(y) we
shall obtain the statement. □

Definition 15.6. Denote by S(k) the map S(k) : f 7→ k ∗ f which we will call
convolution operator with the kernel k.

Corollary 15.7. If k ∈ L1(G) then the convolution S(k) is a bounded linear oper-
ator on L1(G).
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Theorem 15.8. Convolution is a commutative, associative and distributive opera-
tion. In particular S(f1)S(f2) = S(f2)S(f1) = S(f1 ∗ f2).

Proof. Direct calculation using change of variables. □

It follows from Thm. 15.5 that convolution is a closed operation on L1(G) and
has nice properties due to Thm. 15.8. We fix this in the following definition.

Definition 15.9. L1(G) equipped with the operation of convolution is called
convolution algebra L1(G).

The following operators of special interest.

Definition 15.10. An operator of shift T(a) acts on functions by T(a) : f(x) 7→
f(x+ a).

Lemma 15.11. An operator of shift is an isometry of Lp(G), 1 ⩽ p ⩽ ∞.

Theorem 15.12. Operators of shifts and convolutions commute:

T(a)(f1 ∗ f2) = T(a)f1 ∗ f2 = f1 ∗ T(a)f2,
or

T(a)S(f) = S(f)T(a) = S(T(a)f).

Proof. Just another calculation with a change of variables. □

Remark 15.13. Note that operator of shifts T(a) provide a representation of the
group G by linear isometric operators in Lp(G), 1 ⩽ p ⩽ ∞. A map f 7→ S(f) is
a representation of the convolution algebra

There is a useful relation between support of functions and their convolutions.

Lemma 15.14. For any f1, f2 ∈ L1(G) we have:

supp(f1 ∗ f2) ⊂ supp(f1) + supp(f2).
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Proof. If x ̸∈ supp(f1) + supp(f2) then for any y ∈ supp(f2) we have x − y ̸∈
supp(f1). Thus for such x convolution is the integral of the identical zero. □

Exercise 15.15. Suppose that the function f1 is compactly supported and k times
continuously differentiate in R, and that the function f2 belongs to L1(R). Prove
that the convolution f1 ∗ f2 has continuous derivatives up to order k.
[Hint: Express the derivative d

dx as the limit of operators (T(h) − I)/h when
h→ 0 and use Thm. 15.12.]

15.2. Characters of Commutative Groups. Our purpose is to map the commutat-
ive algebra of convolutions to a commutative algebra of functions with point-wise
multiplication. To this end we first represent elements of the group as operators of
multiplication.

Definition 15.16. A character χ : G → T is a continuous homomorphism
of an abelian topological group G to the group T of unimodular complex
numbers under multiplications:

χ(x+ y) = χ(x)χ(y).

Note, that a character is an eigenfunction for a shift operator T(a) with the ei-
genvalue χ(a). Furthermore, if a function f on G is an eigenfunction for all shift
operators T(a), a ∈ G then the collection of respective eigenvalues λ(a) is a homo-
morphism of G to C and f(a) = αλ(a) for some α ∈ C. Moreover, if T(a) act by
isometries on the space containing f(a) then λ(a) is a homomorphism to T.

Lemma 15.17. The product of two characters of a group is again a character of the
group. If χ is a character of G then χ−1 = χ̄ is a character as well.

Proof. Let χ1 and χ2 be characters of G. Then:

χ1(gh)χ2(gh) = χ1(g)χ1(h)χ2(g)χ2(h)

= (χ1(g)χ2(g))(χ1(h)χ2(h)) ∈ T.
□

Definition 15.18. The dual group Ĝ is collection of all characters of G with
operation of multiplication.

The dual group becomes a topological group with the uniform convergence on
compacts: for any compact subset K ⊂ G and any ε > 0 there is N ∈ N such that
|χn(x) − χ(x)| < ε for all x ∈ K and n > N.
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Exercise 15.19. Check that
(i) The sequence fn(x) = xn does not converge uniformly on compacts if

considered on [0, 1]. However it does converges uniformly on compacts
if considered on (0, 1).

(ii) If X is a compact set then the topology of uniform convergence on com-
pacts and the topology uniform convergence on X coincide.

Example 15.20. If G = Z then any character χ is defined by its values χ(1) since

(15.2) χ(n) = [χ(1)]n.

Since χ(1) can be any number on T we see that Ẑ is parametrised by T.

Theorem 15.21. The group Ẑ is isomorphic to T.

Proof. The correspondence from the above example is a group homomorphism.
Indeed if χz is the character with χz(1) = z, then χz1

χz2
= χz1z2

. Since Z is dis-
crete, every compact consists of a finite number of points, thus uniform conver-
gence on compacts means point-wise convergence. The equation (15.2) shows
that χzn

→ χz if and only if χzn
(1) → χz(1), that is zn → z. □

Theorem 15.22. The group T̂ is isomorphic to Z.

Proof. For every n ∈ Z define a character of T by the identity

(15.3) χn(z) = z
n, z ∈ T.

We will show that these are the only characters in Cor. 15.26. The isomorph-
ism property is easy to establish. The topological isomorphism follows from
discreteness of T̂. Indeed due to compactness of T for n ̸= m:

max
z∈T

|χn(z) − χm(z)|2 = max
z∈T

∣∣1−ℜzm−n
∣∣2 = 22 = 4.

Thus, any convergent sequence (nk) have to be constant for sufficiently large k,
that corresponds to a discrete topology on Z. □

The two last Theorem are an illustration to the following general statement.

Principle 15.23 (Pontryagin’s duality). For any locally compact commutative topo-

logical group G the natural map G → ˆ̂
G, such that it maps g ∈ G to a character fg

on Ĝ by the formula:

(15.4) fg(χ) = χ(g), χ ∈ Ĝ,
is an isomorphism of topological groups.
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Remark 15.24. (i) The principle is not true for commutative group which
are not locally compact.

(ii) Note the similarity with an embedding of a vector space into the second
dual.

In particular, the Pontryagin’s duality tells that the collection of all characters
contains enough information to rebuild the initial group.

Theorem 15.25. The group R̂ is isomorphic to R.

Proof. For λ ∈ R define a character χλ ∈ R̂ by the identity

(15.5) χλ(x) = e
2πiλx, x ∈ R.

Moreover any smooth character of the group G = (R,+) has the form (15.5).
Indeed, let χ be a smooth character of R. Put c = χ ′(t)|t=0 ∈ C. Then χ ′(t) =
cχ(t) and χ(t) = ect. We also get c ∈ iR and any such c defines a character.
Then the multiplication of characters is: χ1(t)χ2(t) = ec1tec2t = e(c2+c1)t. So
we have a group isomorphism.
For a generic character we can apply first the smoothing technique and reduce to
the above case.
Let us show topological homeomorphism. If λn → λ then χλn

→ χλ uniformly
on any compact in R from the explicit formula of the character. Reverse, let
χλn

→ χλ uniformly on any interval. Then χλn−λ(x) → 1 uniformly on any
compact, in particular, on [0, 1]. But

sup
[0,1]

|χλn−λ(x) − 1| = sup
[0,1]

|sinπ(λn − λ)x|

=

{
1, if |λn − λ| ⩾ 1/2,
sinπ |λn − λ| , if |λn − λ| ⩽ 1/2.

Thus λn → λ. □

Corollary 15.26. Any character of the group T has the form (15.3).

Proof. Let χ ∈ T̂, consider χ1(t) = χ(e2πit) which is a character of R. Thus
χ1(t) = e2πiλt for some λ ∈ R. Since χ1(1) = 1 then λ = n ∈ Z. Thus χ1(t) =
e2πint, that is χ(z) = zn for z = e2πit. □

Remark 15.27. Although R̂ is isomorphic to R there is no a canonical form for

this isomorphism (unlike for R → ˆ̂R). Our choice is convenient for the Poisson
formula below, however some other popular definitions are λ → eiλx or λ →
e−iλx.



164 VLADIMIR V. KISIL

We can unify the previous three Theorem into the following statement.

Theorem 15.28. Let G = Rn ×Zk ×Tl be the direct product of groups. Then the
dual group is Ĝ = Rn × Tk × Zl.

15.3. Fourier Transform on Commutative Groups.

Definition 15.29. Let G be a locally compact commutative group with an
invariant measure µ. For any f ∈ L1(G) define the Fourier transform f̂ by

(15.6) f̂(χ) =

∫
G

f(x) χ̄(x)dµ(x), χ ∈ Ĝ.

That is the Fourier transform f̂ is a function on the dual group Ĝ.

Example 15.30. (i) If G = Z, then f ∈ L1(Z) is a two-sided sum-
mable sequence (cn)n∈Z . Its Fourier transform is the function f(z) =∑∞

n=−∞ cnzn on T. Sometimes f(z) is called generating function of the
sequence (cn).

(ii) If G = T, then the Fourier transform of f ∈ L1(T) is its Fourier coeffi-
cients, see Section 5.1.

(iii) If G = R, the Fourier transform is also the function on R given by the
Fourier integral:

(15.7) f̂(λ) =

∫
R
f(x) e−2πiλx dx.

The important properties of the Fourier transform are captured in the following
statement.

Theorem 15.31. Let G be a locally compact commutative group with an invari-
ant measure µ. The Fourier transform maps functions from L1(G) to continuous
bounded functions on Ĝ. Moreover, a convolution is transformed to point-wise
multiplication:

(15.8) (f1 ∗ f2)̂ (χ) = f̂1(χ) · f̂2(χ),
a shift operator T(a), a ∈ G is transformed in multiplication by the character

fa ∈ ˆ̂
G:

(15.9) (T(a)f)̂ (χ) = fa(χ) · f̂(χ), fa(χ) = χ(a)
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and multiplication by a character χ ∈ Ĝ is transformed to the shift T(χ−1):

(15.10) (χ · f)̂ (χ1) = T(χ−1)f̂(χ1) = f̂(χ
−1χ1).

Proof. Let f ∈ L1(G). For any ε > 0 there is a compact K ⊂ G such that∫
G\K

|f| dµ < ε. If χn → χ in Ĝ, then we have the uniform convergence of
χn → χ on K, so there is n(ε) such that for k > n(ε) we have |χk(x) − χ(x)| < ε
for all x ∈ K. Then∣∣∣f̂(χn) − f̂(χ)∣∣∣ ⩽

∫
K

|f(x)| |χn(x) − χ(x)| dµ(x) +

∫
G\K

|f(x)| |χn(x) − χ(x)| dµ(x)

⩽ ε ∥f∥+ 2ε.

Thus f̂ is continuous. Its boundedness follows from the integral estimations.
Algebraic maps (15.8)–(15.10) can be obtained by changes of variables under
integration. For example, using Fubini’s Thm. 13.50 and invariance of the meas-
ure:

(f1 ∗ f2)̂ (χ) =

∫
G

∫
G

f1(s) f2(t− s)ds χ̄(t)dt

=

∫
G

∫
G

f1(s) ¯χ(s) f2(t− s) χ̄(t− s)dsdt

= f̂1(χ)f̂2(χ).

□

15.4. The Schwartz space of smooth rapidly decreasing functions. We say that a
function f is rapidly decreasing if limx→±∞ ∣∣xkf(x)∣∣ = 0 for any k ∈ N.

Definition 15.32. The Schwartz space denoted by S or space of rapidly de-
creasing functions on Rn is the space of infinitely differentiable functions
such that:

(15.11) S =

{
f ∈ C∞(R) : sup

x∈R

∣∣∣xαf(β)(x)
∣∣∣ <∞ ∀α,β ∈ N

}
.

Example 15.33. An example of a rapidly decreasing function is the Gaussian
e−πx2

.

It is worth to notice that S ⊂ Lp(R) for any 1 < p < ∞. Moreover, S is dense in
Lp(R), for p = 1 this can be shown in the following steps (other values of p can be
done similarly but require some more care). First we will show that S is an ideal of
the convolution algebra L1(R).
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Exercise 15.34. For any g ∈ S and f ∈ L1(R) with compact support their convo-
lution f ∗ g belongs to S. [Hint: smoothness follows from Ex. 15.15.]

Define the family of functions gt(x) for t > 0 in S by scaling the Gaussian:

gt(x) =
1

t
e−π(x/t)2 .

Exercise 15.35. Show that gt(x) satisfies the following properties, cf. Lem 5.7:
(i) gt(x) > 0 for all x ∈ R and t > 0.

(ii)
∫
R gt(x)dx = 1 for all t > 0. [Hint: use the table integral

∫
R e

−πx2
dx =

1.]
(iii) For any ε > 0 and any δ > 0 there exists T > 0 such that for all positive

t < T we have:

0 <

−δ∫
−∞

+

∞∫
δ

gt(x)dx < ε.

It is easy to see, that the above properties 15.35(i)–15.35(iii) are not unique to the
Gaussian and a wide class have them. Such a family a family of functions is known
as approximation of the identity [6] due to the next property (15.12).

Exercise 15.36. (i) Let f be a continuous function with compact support,
then

(15.12) lim
t→0

∥f− gt ∗ f∥1 = 0 .

[Hint: use the proof of Thm. 5.8.]
(ii) The Schwartz space S is dense in L1(R). [Hint: use Prop. 14.20, Ex. 15.34

and (15.12).]

15.5. Fourier Integral. We recall the formula (15.7):

Definition 15.37. We define the Fourier integral of a function f ∈ L1(R) by

(15.13) f̂(λ) =

∫
R
f(x) e−2πiλx dx.

We already know that f̂ is a bounded continuous function on R, a further prop-
erty is:

Lemma 15.38. If a sequence of functions (fn) ⊂ L1(R) converges in the metric
L1(R), then the sequence (f̂n) converges uniformly on the real line.



INTRODUCTION TO FUNCTIONAL ANALYSIS 167

Proof. This follows from the estimation:∣∣∣f̂n(λ) − f̂m(λ)
∣∣∣ ⩽ ∫

R
|fn(x) − fm(x)| dx.

□

Lemma 15.39. The Fourier integral f̂ of f ∈ L1(R) has zero limits at −∞ and
+∞.

Proof. Take f the indicator function of [a,b]. Then f̂(λ) = 1
−2πiλ (e

−2πia−e−2πib),
λ ̸= 0. Thus limλ→±∞ f̂(λ) = 0. By continuity from the previous Lemma this
can be extended to the closure of step functions, which is the space L1(R) by
Lem. 14.17. □

Lemma 15.40. If f is absolutely continuous on every interval and f ′ ∈ L1(R),
then

(f ′)̂ = 2πiλf̂.

More generally:

(15.14) (f(k))̂ = (2πiλ)kf̂.

Proof. A direct demonstration is based on integration by parts, which is possible
because assumption in the Lemma.
It may be also interesting to mention that the operation of differentiation D can
be expressed through the shift operatot Ta:

(15.15) D = lim
∆t→0

T∆t − I

∆t
.

By the formula (15.9), the Fourier integral transforms 1
∆t

(T∆t − I) into
1
∆t

(χλ(∆t) − 1). Providing we can justify that the Fourier integral commutes
with the limit, the last operation is multiplication by χ ′

λ(0) = 2πiλ. □

Corollary 15.41. If f(k) ∈ L1(R) then∣∣∣f̂∣∣∣ = ∣∣(f(k))̂∣∣
|2πλ|k

→ 0 as λ→ ∞,

that is f̂ decrease at infinity faster than |λ|−k.
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Lemma 15.42. Let f(x) and xf(x) are both in L1(R), then f̂ is differentiable and

f̂ ′ = (−2πixf)̂.

More generally

(15.16) f̂(k) = ((−2πix)kf)̂.

Proof. There are several strategies to prove this results, all having their own mer-
its:

(i) The most straightforward uses the differentiation under the integration
sign.

(ii) We can use the intertwining property (15.10) of the Fourier integral and
the connection of derivative with shifts (15.15).

(iii) Using the inverse Fourier integral (see below), we regard this Lemma
as the dual to the Lemma 15.40.

□

Corollary 15.43. The Fourier transform of a smooth rapidly decreasing function is
a smooth rapidly decreasing function.

Corollary 15.44. The Fourier integral of the Gaussian e−πx2 is e−πλ2 .

Proof. [2] Note that the Gaussian g(x) = e−πx2
is a unique (up to a factor) solu-

tion of the equation g ′+2πxg = 0. Then, by Lemmas 15.40 and 15.42, its Fourier
transform shall satisfy to the equation 2πiλĝ + iĝ ′ = 0. Thus, ĝ = c · e−πλ2

with a constant factor c, its value 1 can be found from the classical integral∫
R e

−πx2
dx = 1 which represents ĝ(0). □

The relation (15.14) and (15.16) allows to reduce many partial differential equa-
tions to algebraic one, see § 0.2 and 5.4. To convert solutions of algebraic equations
into required differential equations we need the inverse of the Fourier transform.

Definition 15.45. We define the inverse Fourier transform on L1(R):

(15.17) f̌(λ) =

∫
R
f(x) e2πiλx dx.
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We can notice the formal correspondence f̌(λ) = f̂(−λ) = f̂(λ), which is a mani-
festation of the group duality R̂ = R for the real line. This immediately generates
analogous results from Lem. 15.38 to Cor. 15.44 for the inverse Fourier transform.

Theorem 15.46. The Fourier integral and the inverse Fourier transform are inverse
maps. That is, if g = f̂ then f = ǧ.

Sketch of a proof. The exact meaning of the statement depends from the spaces
which we consider as the domain and the range. Various variants and their
proofs can be found in the literature. For example, in [3, § IV.2.3], it is proven
for the Schwartz space S of smooth rapidly decreasing functions.
The outline of the proof is as follows. Using the intertwining relations (15.14)
and (15.16), we conclude the composition of Fourier integral and the inverse
Fourier transform commutes both with operator of multiplication by x and dif-
ferentiation. Then we need a result, that any operator commuting with multi-
plication by x is an operator of multiplication by a function f. For this function,
the commutation with differentiation implies f ′ = 0, that is f = const. The value
of this constant can be evaluated by a Fourier transform on a single function,
say the Gaussian e−πx2

from Cor. 15.44. □

The above Theorem states that the Fourier integral is an invertible map. For the
Hilbert space L2(R) we can show a stronger property—its unitarity.

Theorem 15.47 (Plancherel identity). The Fourier transform extends uniquely
to a unitary map L2(R) → L2(R):

(15.18)
∫
R
|f|2 dx =

∫
R

∣∣∣f̂∣∣∣2 dλ.

Proof. The proof will be done in three steps: first we establish the identity for
smooth rapidly decreasing functions, then for L2 functions with compact sup-
port and finally for any L2 function.
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(i) Take f1 and f2 ∈ S be smooth rapidly decreasing functions and g1 and
g2 be their Fourier transform. Then (using Fubini’s Thm. 13.50):∫

R
f1(t)f̄2(t)dt =

∫
R

∫
R
g1(λ) e

2πiλt dλ f̄2(t)dt

=

∫
R
g1(λ)

∫
R
e2πiλt f̄2(t)dtdλ

=

∫
R
g1(λ) ḡ2(λ)dλ

Put f1 = f2 = f (and therefore g1 = g2 = f̂) we get the identity∫
|f|2 dx =

∫ ∣∣∣f̂∣∣∣2 dλ.
The same identity (15.18) can be obtained from the property (f1f2)̂ =

f̂1 ∗ f̂2, cf. (15.8), or explicitly:∫
R
f1(x) f2(x) e

−2πiλx dx =

∫
R
f̂1(t) f̂2(λ− t)dt.

Now, substitute λ = 0 and f2 = f̄1 (with its corollary f̂2(t) =
¯̂
f1(−t))

and obtain (15.18).
(ii) Next let f ∈ L2(R) with a support in (−a,a) then f ∈ L1(R) as well, thus

the Fourier transform is well-defined. Let fn ∈ S be a sequence with
support on (−a,a) which converges to f in L2 and thus in L1. The Four-
ier transform gn converges to g uniformly and is a Cauchy sequence in
L2 due to the above identity. Thus gn → g in L2 and we can extend the
Plancherel identity by continuity to L2 functions with compact support.

(iii) The final bit is done for a general f ∈ L2 the sequence

fn(x) =

{
f(x), if |x| < n,
0, otherwise;

of truncations to the interval (−n,n). For fn the Plancherel identity is
established above, and fn → f in L2(R). We also build their Fourier
images gn and see that this is a Cauchy sequence in L2(R), so gn → g.

If f ∈ L1 ∩ L2 then the above g coincides with the ordinary Fourier transform on
L1. □

We note that Plancherel identity and the Parseval’s identity (5.7) are cousins—
they both states that the Fourier transform L2(G) → L2(Ĝ) is an isometry forG = R
and G = T respectively. They may be combined to state the unitarity of the Fourier
transform on L2(G) for the group G = Rn × Zk × Tl cf. Thm. 15.28.

Proofs of the following statements are not examinable Thms. 12.23, 12.36, 13.53,
14.33, 15.46, Props. 14.14, 14.20.
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16. ADVANCES OF METRIC SPACES

16.1. Contraction mappings and fixed point theorems.

16.1.1. The Banach fixed point theorem. An important tool in numerical Analysis, but
also in constructions of solutions of differential equations are fixed point approx-
imations. In order to understand this, suppose that (X,d) is a metric space and
f : X → X a self-map. Then a point x ∈ X is called fixed point of f if f(x) = x. For
example the function cos defines a self-map on the interval [0, 1], and by starting
with x1 = 0 and inductively computing xn+1 = cos xn one converges to the value
roughly 0.739085 which is a fixed point of cos, i.e. solves the equation cos(x) = x.
Under certain conditions one can show that such sequences always converge to a
fixed point. This is the statement of the Banach fixed point theorem (contraction
mapping principle).

Definition 16.1 (Contraction Mapping). Let (X,d) be a metric space. Then a
map f : X→ X is called contraction if there exists a constant C < 1 such that

d(f(x), f(y)) ⩽ Cd(x,y).

Note that any contraction is (uniformly) continuous.

Theorem 16.2 (Banach Fixed Point Theorem). Suppose that f : X → X is a
contraction on a complete metric space (X,d). Then f has a unique fixed point y.
Moreover, for any x ∈ X the sequence (xn) defined recursively by

xn+1 = f(xn), x1 = x,

converges to y.

Proof. Let us start with uniqueness. If x,y are both fixed points in X, then since
f is a contraction:

d(x,y) ⩽ Cd(x,y)

for some constant C < 1. Hence, d(x,y) = 0 and therefore x = y.
To prove the remaining claims we start with any x in X and we will show that
the sequence xn defined by x1 = x and xn+1 = f(xn) converges. Since f is
continuous the limit of (xn) must be a fixed point. Since (X,d) is complete we
only need to show that (xn) is Cauchy. To see this note that

d(xn+1, xn) ⩽ Cd(xn, xn−1)

and therefore inductively,

d(xn+1, xn) ⩽ C
n−1d(x2, x1).
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By the triangle inequality we have for any n,m > 0

d(xN+m, xN) ⩽ (CN−1 + CN + . . .CN+m−2)d(x2, x1) ⩽ C
N−1 1

1− C
d(x2, x1).

Since C < 1 this can be made arbitrarily small by choosing N large enough. □

Corollary 16.3. Suppose that (X,d) is a complete metric space and f : X → X a
map such that fn is a contraction for some n ∈ N. Then f has a unique fixed point.

Proof. Since fn is a contraction it has a unique fixed point x ∈ X, i.e.

f ◦ f . . . ◦ f︸ ︷︷ ︸
n−times

(x) = x.

Now note that

fn(f(x)) = fn ◦ f(x) = fn+1(x) = f ◦ fn(x) = f(fn(x)) = f(x)
and therefore f(x) is also a fixed point of fn. By uniqueness we must have f(x) =
x. □

The question arises how to show that a given map f is a contraction. In subsets
of Rm there is a simple criterion. Recall that an open set U ⊂ R is called convex if
for any two points x,y ∈ U the line {tx+ (1− t)y | t ∈ [0, 1]} is contained in U.

Theorem 16.4 (Mean Value Inequality). Suppose that U ⊂ Rm is an open set
with convex closure U and let f : U → Rm be a C1-function. Let df be the total
derivative (or Jacobian) understood as a function on U with values in m × m-
matrices. Suppose that ∥df(x)∥ ⩽M for all x ∈ U. Then f : U → Rm satisfies

∥f(x) − f(y)∥ ⩽M∥x− y∥
for all x,y ∈ U.

Proof. Given x,y ∈ U let γ(t) = tx+ (1− t)y. Then d
dt
γ(t) = x− y.

f(x) − f(y) =

1∫
0

d

dt
f(γ(t))dt =

1∫
0

(df) · dγ
dt

(t)dt.

Using the triangle inequality (this can be used for Riemann integrals too because
these are limits of finite sums), one gets

∥f(x) − f(y)∥ ⩽

1∫
0

∥(df) · dγ
dt

(t)∥dt ⩽M
1∫
0

∥x− y∥dt =M∥x− y∥.

https://en.wikipedia.org/wiki/Jacobian_matrix_and_determinant
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By continuity this inequality extends to U. □

Example 16.5. Consider the map f : R2 ⊃ B1(0) → B1(0), (x,y) 7→ (x
2

4 + y
3 +

1
3 ,

y2

4 − x
2 ). Then

df =

(
x
2

1
3

− 1
2

y
2

)
.

The operator norm ∥df∥ can be estimated by the Hilbert–Schmidt norm. Recall
∥A∥HS = (tr(A∗A))

1
2 , so we get

∥df∥ ⩽ ∥df∥HS = (
1

4
(x2 + y2) +

1

4
+

1

9
)1/2 < 1.

Therefore f is a contraction. We can find the fixed point by starting, for example,
with the point (0, 0) and iterating. We get iterations:

(0, 0), (0.333333, 0.), (0.361111,−0.166667),

(0.310378,−0.173611), (0.299547,−0.147654),

(0.306547,−0.144323), (0.308719,−0.148066),

(0.307805,−0.148878), (0.307393,−0.148361),

(0.307502,−0.148194), (0.307575,−0.148261),

(0.307564,−0.148292), (0.307551,−0.148284),

(0.307552,−0.148279), (0.307554,−0.148279).

Example 16.6. Put a map of the country of your current presence on the floor,
there’s a point on the map that is touching the actual point it refers to!

16.1.2. Applications of fixed point theory: The Picard-Lindelöf Theorem. Let f : K→ R be
a function on a compact rectangle of the form K = [T1, T2]× [L1,L2] in R2. Consider
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the initial value problem (IVP)

(16.1)
dy

dt
= f(t,y), y(t0) = y0,

where y : [T1, T2] → R, t 7→ y(t) is a function. The function f and the initial value
y0 ∈ [L1,L2], and t0 ∈ [T1, T2] are given and we are looking for a function y satisfy-
ing the above equations.

Example 16.7. Let f(t, x) = x and y0 = 1, t0 = 0. Then the initial value problem
is

dy

dt
= y, y(0) = 1.

We know from other courses that there is a unique solution y(t) = et, see Fig. 18
top-left.

Example 16.8. Let f(t, x) = x2 and y0 = 1, t0 = 0. Then the initial value problem
is

dy

dt
= y2, y(0) = 1.

We know from other courses that there is a unique solution y(t) = 1
1−t

which
exists only on the interval (−∞, 1), see Fig. 18 top-right.

Example 16.9. Let f(t, x) = x2 − t and y0 = 1, t0 = 0. Then the initial value
problem is

dy

dt
= y2 − t, y(0) = 1.

One can show that there exists a solution for small |t|, however this solution
cannot be expressed in terms of elementary functions, see Fig. 18 bottom-left.

Example 16.10. Let f(t, x) = x2/3 and y0 = 0, t0 = 0. Then the initial value
problem is

dy

dt
= y

2
3 , y(0) = 0.

It has at least two solutions, namely y = 0 and y = t3

27 , see Fig. 18 bottom-right.

Hence, there are two fundamental questions here: existence and uniqueness of
solutions. The following theorem is one of the basic results in the theorem of or-
dinary differential equation and establishes existence and uniqueness under rather
general assumptions.

Theorem 16.11 (Picard–Lindelöf theorem). Suppose that f : [T1, T2] × [y0 −
C,y0 + C] → R is a continuous function such that for someM > 0 we have

|f(t,y1) − f(t,y2)| ⩽M|y1 − y2| (Lipschitz condition)
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f(t, x) = x f(t, x) = x2

f(t, x) = x2 − t f(t, x) = x2/3

FIGURE 18. Vector fields and their integral curves from Ex. 16.7–16.10.

for all t ∈ [T1, T2],y1,y2 ∈ [y0 −C,y0 +C]. Then, for any t0 ∈ [T1, T2] the initial
value problem

dy

dt
(t) = f(t,y(t)), y(t0) = y0,
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has a unique solution y in C1[a,b], where [a,b] is the interval [t0 − R, t0 + R] ∩
[T1, T2], where

R = ∥f∥−1∞ C.

(The solution exists for all times t such that |t− t0| ⩽ R).

Remark 16.12. Note, that the Lipschitz condition implies uniform continuity and
is significantly stronger requirement.

Proof. Using the fundamental theorem of calculus we can write the IVP as a
fixed point equation F(y) = y for a map defined by

F(y)(t) = y0 +

t∫
t0

f(s,y(s))ds.

This is a map that will send a continuous function y ∈ C[T1, T2] to a continuous
function F(y) ∈ C[T1, T2]. As a metric space we take

X = C([a,b], [y0 − C,y0 + C])

that is, the set of continuous functions on [a,b] taking values in the interval
[y0 − C,y0 + C]. This is a closed (why?) subset of the Banach space C[a,b] and
is therefore a complete metric space.
First we show that F : X→ X, i.e. Fmaps X to itself. Indeed,

|F(y)(t) − y0| =

∣∣∣∣∣∣
t∫
t0

f(s,y(s))ds

∣∣∣∣∣∣ ⩽ R∥f∥∞ ⩽ C.

Next we show that FN is a contraction forN large enough and thus establish the
existence of a unique fixed point. It is the place to use the Lipschitz condition.
Observe that for two functions y, ỹ ∈ Xwe have

|F(y)(t) − F(ỹ)(t)| =

∣∣∣∣∣∣
t∫
t0

f(s,y(s)) − f(s, ỹ(s))ds

∣∣∣∣∣∣
⩽

t∫
t0

|f(s,y(s)) − f(s, ỹ(s))|ds ⩽ |t− t0|M∥y− ỹ∥∞.

(16.2)

We did not assume that (t − t0)M ⩽ RM < 1, so F will in general not be a
contraction. There are several ways to resolve this situations. For example, we
can argue in either of the following two manners:
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(i) We use both the result and the method from (16.2) to compute distances
for higher powers of F, starting from the squares:

|F2(y)(t) − F2(ỹ)(t)| ⩽

t∫
t0

|f(s, F(y)(s)) − f(s, F(ỹ)(s))|ds

⩽

t∫
t0

|s− t0| ·M · ∥F(y) − F(ỹ)∥∞ ds

⩽

t∫
t0

|s− t0| ·M2 · ∥y− ỹ∥∞ ds

=
|t− t0|

2

2
M2∥y− ỹ∥∞,

and iterating this gives for any natural N:

∥FN(y) − FN(ỹ)∥∞ ⩽
|t− t0|

N

N!
MN∥y− ỹ∥∞.

Since the factorial will overgrow the respective power, for N large
enough, FN is a contraction and we deduce the existence of a unique
solution from Cor. 16.3. This solution is in C1 since it can be written as
the integral of a continuous function.

(ii) The inequality (16.2) shows existence and uniqueness of solution only
in the space of functions C([t0 − r, t0 + r], [y0 − C,y0 + C]) where r <
M−1 and therefore |t − t0|M < 1 in (16.2). Now suppose we have two
solutions y and ỹ. They coincide at t0. Application of (16.2) to other
initial points where the solutions coincide shows that the set E = {x ∈
[a,b] | y(x) = ỹ(x)} is open. It is also the pre-image of the closed set {0}
under the continuous map y− ỹ. So we have that E is a closed and open
subset of [a,b] that is non-empty. It must therefore be [a,b]. Hence, we
get y = ỹ, establishing uniqueness in the whole C[a,b].

□

Note that this not only gives uniqueness and existence, but also gives a con-
structive method to compute the solution by iterating the map F starting for ex-
ample with the constant function y(t) = y0. The iteration

yn+1(t) = y0 +

t∫
t0

f(s,yn(s))ds

is called Picard iteration. It will converge to the solution uniformly. See Fig. 19 for
an illustration of few first iterations for the exponent functions.
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et

f0

f1

f2

f3
f4

f(t, x) = x

FIGURE 19. Few initial Picard iterations for the differential equa-
tion y ′ = y: constant f0, linear f1, quadratic f2, etc.

Remark 16.13. The proof also gives a bound on the solution, namely if the as-
sumptions are satisfied one gets |y(t) − y0| ⩽ C for t ∈ [a,b].

Remark 16.14. The proof works in the same way if y takes values in Rm and
therefore f : R×Rm ⊃ [T1, T2]×BC(0) → Rm. In fact, the target space may even
be a Banach space (the derivative for Banach space-valued functions appropri-
ately defined). Higher order differential equations may be written as systems
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of first order equations and hence the theorem applies to these as well. For ex-
ample y ′′(t) + y(t) = 0,y(0) = 1,y ′(0) = 0 can be written as

d

dt

(
y
w

)
=

(
w
−y

)
,

(
y
w

)
(0) =

(
1
0

)
.

So here the function f is f(t, (x1, x2)) = (x2,−x1).

Example 16.15. Consider the IVP
dy

dt
= y2t+ 1, y(0) = 1.

Hence, f(t, x) = x2t + 1. If we take f to be defined on the square [−T , T ] × [1 −
C, 1+C] then we obtain ∥f∥∞ = (1+C)2T + 1 (the value at the top-right corner).
In this case the solution will exist up to time

min

{
T ,

C

(1+ C)2T + 1

}
.

If we choose, for example C = 2 and T = 1
2 we get that a unique solution exists

up to time |t| ⩽ 4
11 . This solution will then satisfy |y(t) − 1| ⩽ 2 for |t| ⩽ 4

11 .
In fact one can show that the solution can be expressed in a complicated way in
terms of the Airy-Bi-function and it blows up at t = 1.

16.1.3. Applications of fixed point theory: Inverse and Implicit Function Theorems. It is
an easy exercise in Analysis to show that if a function f ∈ C1[a,b] has nowhere
vanishing derivative, then f is invertible on its image. To be more precise, f−1 :
Im(f) → [a,b] exists and has derivative (f ′(x))−1 at the point y = f(x). In higher
dimensions a statement like this can not be correct as the following counterexample
shows. Let 0 < a < b and define

f : [a,b]× R → R2,

(r, θ) 7→ (r cos θ, r sin θ).

This maps has invertible derivative

f ′(r, θ) =

(
cos θ −r sin θ
sin θ r cos θ.

)
, det f ′(r, θ) = r2 > 0.

at any point, the map is however not injective, see Fig. 20 for a cartoon illustration
of the difference between one- and two-dimensional cases. However, for any point
we can restrict domain and co-domain, so that the restriction of the function is
invertible. In such a case we say that f is locally invertible. This concept will be
explained in more detail below.

Definition 16.16 (Local Invertibility). Suppose U1,U2 ⊂ Rm are open sub-
sets of Rm. Then a map f : U1 → U2 is called locally invertible at x ∈ U1 if
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FIGURE 20. Flat and spiral staircases: can we return to the same
value going just in one way?

there exists an open neighbourhood U of x such that f|U : U → f(U) is in-
vertible. The function f is said to be locally invertible it it is locally invertible
at x for any x ∈ U1.

Often, say for differential equations, we need a map which preserves differenti-
ability of functions in both directions.

Definition 16.17 (Diffeomorphism). Suppose U1,U2 ⊂ Rm are open subsets
of Rm. Then a map f : U1 → U2 is called Ck-diffeomorphism if f ∈ Ck(U1,U2)
and if there exists a g ∈ Ck(U2,U1) such that

f ◦ g = 1U2
, g ◦ f = 1U1

,

where 1U1
and 1U2

are the identity maps on U1 and U2 respectively.

There is also a local version of the above definition.

Definition 16.18 (Local Diffeomorphism). Suppose U1,U2 ⊂ Rm are open
subsets of Rm. Then a map f : U1 → U2 is called a local-Ck- diffeomorphism at
x ∈ U1 if there exists an open neighbourhood U of x such that f|U : U → f(U)
is a Ck-diffeomorphism. It is called a local-Ck- diffeomorphism if it is a local
diffeomorphism at any point x ∈ U1.
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Not every invertible Ck-map is a diffeomorphism. An example is the function
f(x) = x3 whose inverse g(x) = x

1
3 fails to be differentiable.

Theorem 16.19 (Inverse Function Theorem). Let U ⊂ Rm be an open subset
and suppose that f ∈ Ck(U,Rm) such that f ′(x) is invertible at every point x ∈ U.
Then f is a local Ck-diffeomorphism.

Before we can prove this theorem we need a Lemma, which basically says that
under the assumptions of the inverse function theorem an inverse function must be
in C1. That is, differentiability is the leading particular case [10, § 4.4] for the general
case of k-differentiable functions.

Lemma 16.20. Suppose that f ∈ C1(U1,U2) is bijective with continuous in-
verse. Assume that the derivative of f is invertible at any point, then f is a C1-
diffeomorphism, and g ′(f(x)) = (f ′(x))−1.

Proof. Denote the inverse of f by g : U2 → U1. The continuity of f and g imply
that xn → x0 if and only if f(xn) → f(x0). We will show that g is differentiable
at the point y0 = f(x0). If y = f(x) is very close to y0 (so that the line interval
between x and x0 is contained in U1) then, by the MVT there exists a ξ on this
line such that y− y0 = f(x) − f(x0) = f

′(ξ) · (x− x0). Therefore, g(y) − g(y0) =
(f ′(ξ))−1 · (y − y0). If y tends to y0, then ξ will tend to x0, and therefore, by
continuity of f ′ the value of (f ′(ξ))−1 will tend to (f ′(x0))

−1. Thus, the partial
derivatives of g exist and are continuous, so g ∈ C1. Note that we have used
here that matrix inversion is continuous. □

Now we can proceed with the general situation.

Proof of the Inverse Function Theorem 16.19. Let x0 ∈ U and let y0 = f(x0). We
need to show that there exists an open neighborhood U1 of f(x0) such that
f : f−1(U1) → U1 is a Ck-diffeomorphism. As a first step we construct a con-
tinuous inverse. Since f ′(x0) = A is an invertible m ×m-matrix we can change
coordinates x = A−1y + x0, so that we can assume without loss of generality
that f ′(x0) = 1 and x0 = 0. Replacing f by f − y0 we also assume w.l.o.g. that
y0 = 0. Since f ′(x) is continuous there exists an ε > 0 such that ∥f ′(x) − 1∥ ⩽ 1

2

for all x ∈ Bε(0). This ε > 0 can also be chosen such that Bε(0) ⊂ U. Thus,
∥x− f(x)∥ ⩽ 1

2∥x∥ for all x ∈ Bε(0) by MVT, and for each y ∈ Bε/2(0) the map

x 7→ x+ y− f(x)
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is a contraction on Bε(0). Indeed, by MVT again:

∥x+ y− f(x) − (x ′ + y− f(x ′))∥ = ∥x− f(x) − (x ′ − f(x ′))∥
= ∥(f ′(ξ) − 1)(x− x ′)∥

⩽
1

2
∥x− x ′∥,

(16.3)

where ∥ · ∥ is the norm of vectors in Rm. Consider the complete metric space
X = C(Bε/2(0),Bε(0)) and define the map

F : X→ X, u 7→ F(u), F(u)(y) = u(y) + y− f(u(y)).

By the above this map is well defined and it also is a contraction

∥F(u)(y) − F(v)(y)∥ = ∥u(y) − f(u(y)) − (v(y) − f(v(y))) ∥

⩽
1

2
∥u(y) − v(y)∥ [by (16.3)]

⩽
1

2
∥u− v∥∞.

Hence, there exists a unique fixed point g. This fixed point yields a continuous
inverse g of f|U defined on U = Bε/2(0) ∩ f−1(Bε/2(0)). By the previous Lemma
this implies that g is differentiable. Now simply note that g ′ = (f ′)−1 ◦ g. Since
matrix inversion is smooth and f ′ is in Ck−1 this implies that for m ⩽ k − 1 we
get the conclusion (g ∈ Cm) =⇒ (g ∈ Cm+1). Hence, g is in Ck. □

The implicit function theorem is actually a rather simple consequence of the in-
verse function theorem. It gives a nice criterion for local solvability of equations in
many variables.

Theorem 16.21 (Implicit Function Theorem). Let U1 ⊂ Rn × Rm and U2 ⊂
Rm be open subsets and let

F : U1 → U2, (x1, . . . , xn,y1, . . . ,ym) 7→ F(x1, . . . , xn,y1, . . . ,ym)

be a Ck-map. Suppose that F(x0, y0) = 0 for some point (x0, y0) ∈ U1 and that
the m ×m-matrix ∂yF(x0, y0) is invertible. Then there exists an neighborhood U

of (x0, y0) ∈ Rn × Rm, an open neighborhood V of x0 in Rn, and a Ck-function
f : V → Rm such that

{(x, y) ∈ U | F(x, y) = 0} = {(x, f(x)) ∈ U | x ∈ V}.

The function f has derivative

f ′(x0) = −(∂yF(x0, y0))
−1∂xF(x0, y0)

at x0.
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Proof. This is proved by reducing it to the inverse function theorem. Just design
the map

G : U1 → Rn × Rm, (x, y) 7→ (x, F(x, y))

and then note that

G ′(x0, y0) =

(
1 0

∂xF(x0, y0) ∂yF(x0, y0)

)
is invertible with inverse

(G ′(x0, y0))
−1 =

(
1 0

−(∂yF(x0, y0))
−1∂xF(x0, y0) (∂yF(x0, y0))

−1

)
.

By the inverse function theorem there exists a local inverse G−1 : U3 → U4,
where U3 is an open neighborhood of 0 and U4 an open neighborhood of (x0, y0).
Now define f by (x, f(x)) = G−1(x, 0). □

Example 16.22. Consider the system of equations

x21 + x
2
2 + y

2
1 + y

2
2 = 2,

x1 + x
3
2 + y1 + y

3
2 = 2.

We would like to know if this system implicitly determines functions y1(x1, x2)
and y2(x1, x2) near the point (0, 0, 1, 1), which solves the equation. For this one
simply applies the implicit function theorem to

F(x1, x2,y1,y2) = (x21 + x
2
2 + y

2
1 + y

2
2 − 2, x1 + x

3
2 + y1 + y

3
2 − 2).

The derivatives are

∂xF =

(
2x1 2x2
1 3x22

)
, ∂yF =

(
2y1 2y2
1 3y22

)
The values of these derivatives at the point (0, 0, 1, 1) are

∂xF(0, 0, 1, 1) =

(
0 0
1 0

)
, ∂yF(0, 0, 1, 1) =

(
2 2
1 3

)
The latter matrix is invertible and one computes

−(∂yF(x0, y0))
−1∂xF(x0, y0)(0, 0, 1, 1) =

(
1/2 0
−1/2 0

)
.

We conclude that there is an implicitly defined function (y1,y2) = f(x1, x2)
whose derivative at (0, 0) is given by(

1/2 0
−1/2 0

)
.

The geometric meaning is that near the point (0, 0, 1, 1) the system defines a
two-dimensional manifold that is locally given by the graph of a function. Its
tangent plane is spanned by the vectors (1/2, 0, 1, 0) and (−1/2, 0, 0, 1).
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Example 16.23. Consider the system of equations

x2 + y2 + z2 = 1,

x+ yz+ z3 = 1.

This is the intersection of a sphere (drawn in light green on Figure 21) with some
cubic surface defined by the second equation (drawn in light blue). The point
(0, 0, 1) solves the equation and is pictured as a little orange dot. By the implicit
function theorem the intersection is a smooth curve (drawn in red) near this
point which can be parametrised by x coordinate. Indeed, we can express y and
z along the curve as functions of x because the resulting matrix

∂(y,z)F(0, 1) =

(
2y 2z
z y+ 3z2

)∣∣∣∣
y=0,z=1

=

(
0 2
1 3

)
is invertible.

FIGURE 21. Example of the implicit theorem: the intersection (red)
of the unit sphere (green) and a cubic surface (blue).
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Exercise 16.24. Fig. 21 suggests that the intersection curve can be alternatively
parametrised by the coordinates y and cannot by z (why?). Check these claims
by verifying conditions of Thm. 16.21.

16.2. The Baire Category Theorem and Applications. We are going to see another
example of an abstract result which has several non-trivial consequences for real
analysis.

16.2.1. The Baire’s Categories. Let us first prove the following result and then discuss
its meaning and name.

Theorem 16.25 (Baire’s category theorem). Let (X,d) be a complete metric
space and Un a sequence of open dense sets. Then the intersection S =

⋂
nUn

is dense.

Proof. The proof is rather straightforward. We need to show that any ball Bε(x0)
contains an element of S. Let us therefore fix x0 and ε > 0. Since U1 is dense
the intersection of Bε(x0) with U1 is non-trivial. Thus there exists a point x1 ∈
Bε(x0)∩U1. Now choose ε1 < ε/2 so that Bε1

(x1) ⊂ Bε(x)∩U1 (note the closure
of the ball). SinceU2 is dense, the intersection Bε1

(x1)∩U2 ⊂ Bε(x0)∩U1∩U2 is
non-empty. Choose a point x2 and ε2 < ε1/2 such that Bε2

(x2) ⊂ Bε1
(x1)∩U2 ⊂

Bε(x0) ∩U1 ∩U2. Continue inductively, to obtain a sequence xn such that

Bεn
(xn) ⊂ Bεn−1

(xn−1) ∩Un ⊂ Bε(x0) ∩U1 ∩U2 ∩ . . . ∩Un,

and εn < 2−nε. In particular, for any n > Nwe have

xn ∈ B2−Nε(xN),

which implies that xn is a Cauchy sequence. Hence xn has a limit x, by com-
pleteness of (X,d). Consequently, x is contained in the closed ball BεN

(xN) for
any N, and therefore it is contained in Bε(x0) ∩ (

⋂
nUn), as claimed. □

Completeness is essential here. For example, the conclusion does not hold for
the metric space Q: take bijection ψ : N → Q, and consider the open dense sets

Un = {ψ(1),ψ(1), . . . ,ψ(n)}c = {ψ(n+ 1),ψ(n+ 2), . . .}.

The intersection ∩nUn is empty.
The following historic terminology, due to Baire, is in use.

Definition 16.26 (Baire’s categories). A subset Y of a metric space X is called
(i) nowhere dense if the interior of Y is empty;

(ii) of first category if there is a sequence (Yk) of nowhere dense sets with
Y = ∪kYk;
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(iii) of second category if it is not of first category.

Example of nowhere dense sets are Z ⊂ R, the circle in R2, or the set { 1
n

| n ∈
N} ⊂ R. Note that the complement of a nowhere dense set is a dense open set.

Corollary 16.27. In a complete metric space the complement of a set of the first
category is dense.

Proof. Follows from relations for complements

Yc = (∪kYk)
c = ∩kY

c
k ⊃ ∩kYk

c

and the fact that Yk
c

is dense. □

The following corollary is also called Baire’s category theorem in some sources:

Corollary 16.28. A complete metric space is of second category in itself, or plainly
speaking it is never the union of a countable number of nowhere dense sets.

The theorem is often used to show abstract existence results. Here is an example.

Theorem 16.29. There exists a function f ∈ C[0, 1] that is nowhere differentiable.

Proof. For each n ∈ N define

Un =

{
f ∈ C[0, 1] s.t. sup

{∣∣∣∣f(x+ h) − f(x)h

∣∣∣∣ over 0 < |h| ⩽
1

n

}
> n,∀x ∈ [0, 1]

}
.

We will show that the Un are open and dense. By the Category theorem their
intersection is also dense.
Un is open: Let f ∈ Un. For each x ∈ [0, 1] choose δx > 0 such that

sup

{∣∣∣∣f(x+ h) − f(x)h

∣∣∣∣ over 0 < |h| ⩽
1

n

}
> n+ δx,

hence there is a hx < 1
n

with∣∣∣∣f(x+ hx) − f(x)hx

∣∣∣∣ > n+ δx.

By continuity of f there is an open neighborhood Ix of x such that∣∣∣∣f(y+ hx) − f(y)

hx

∣∣∣∣ > n+ δx.
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for all y ∈ Ix. These Ix form an open cover. We choose a finite subcover
(Ixk

)k=1,...,N. Let δ = min{δx1
, . . . , δxN

} > 0 . Then, for y ∈ Ixk
:∣∣∣∣f(y+ hxk

) − f(y)

hxk

∣∣∣∣ > n+ δ.

Now let g ∈ Bε(f), where ε > 0 is chosen so that ε < 1
2δhxk

for all k. Then by an
ε/3-style argument:∣∣∣∣g(y+ hxk

) − g(y)

hxk

∣∣∣∣ ⩾ ∣∣∣∣f(y+ hxk
) − f(y)

hxk

∣∣∣∣− 2
∥f− g∥∞
hxk

> n+ δ− 2εh−1
xk
> n,

and therefore g ∈ Un. We conclude that Un is open.
Un is dense: For each ε > 0 and f ∈ C[0, 1] choose a polynomial p such that
∥f − p∥ < ε

2 and a sequence of continuous function gm ∈ C[0, 1] such that
∥g∥∞ < ε

2 and such that for all x ∈ [0, 1]:

sup

{
gm(x+ h) − gm(x)

h
over 0 < |h| ⩽

1

n

}
> m

by using a “zigzag” function. Then, for large enough m we have p + gm ∈
Un. □

The above proof actually shows much more, namely that the set of nowhere
differentiable functions is dense in C[0, 1]. It is also useful to compare it with
the construction of the continuous nowhere differentiable Weierstrass function and
identify some common elements.

16.2.2. Banach–Steinhaus Uniform Boundedness Principle. Another consequence of the
Baire Category theorem is the Banach–Steinhaus uniform boundedness principle.
Recall that, if X and Y are normed spaces, T : X→ Y is called a bounded operator if
it is a bounded linear map.

Theorem 16.30 (Banach–Steinhaus Uniform Boundedness Principle). Let X
be a Banach space and Y a normed space, and let (Tα)α∈I be a family of bounded
operators Tα : X→ Y. Suppose that

∀x ∈ X : sup
α

∥Tαx∥ <∞.

Then we have supα ∥Tα∥ < ∞, i.e. the family Tα is bounded in the set B(X, Y) of
bounded operators from X to Y.

Proof. Define Xn = {x ∈ X | supα ∥Tαx∥ ⩽ n}. By assumption X = ∪nXn. Note
that all the Xn are closed. By the Baire category theorem at least one of these sets
must have non-empty interior, since otherwise the Banach space X would be a
countable union of nowhere dense sets. Hence, there exists N ∈ N, y ∈ XN, and
ε > 0 such that Bε(y) ∈ XN. Now XN is symmetric under reflections x 7→ −x

https://en.wikipedia.org/wiki/Weierstrass_function
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and convex. So we get the same statement for −y. Hence, x ∈ Bε(0) implies

(16.4) x =
1

2
((x+ y) + (x− y)) ∈ 1

2
(XN + XN) ⊂ XN.

This means that ∥x∥ ⩽ ε implies ∥Tαx∥ ⩽ N, and therefore ∥Tα∥ ⩽ ε−1N for all
α ∈ I. □

Recall that the Fourier series of a C1-function on a circle (identified with 2π-
periodic functions) converges uniformly to the function. We will now show that a
statement like that can not hold for continuous functions.

Corollary 16.31. There exist continuous periodic functions whose Fourier series
do not converge point-wise.

Proof. We will show that there exists a continuous function whose Fourier series
does not converge at x = 0. Suppose by contradiction such functions would not
exist, so we would have point-wise convergence of the Fourier series

1

2
a0 +

∞∑
m=1

am cos(mx) + bm sin(mx)

for every f ∈ C(S1) = Cper(R). Here we identify continuous functions on the
unit circle with continuous 2π-periodic functions Cper(R). Hence we have a
map

Tn : C(S1) → R, f 7→ 1

2
a0 +

n∑
m=1

am

by mapping the function f to the n-th partial sum of its Fourier series at x = 0.
This is a family of bounded operators Tn : C(S1) → R and by assumption we
have for every f that

sup
n

|Tn(f)| <∞.

By Banach–Steinhaus theorem we have supn ∥Tn∥ = supn,∥f∥∞=1 |Tn(f)| < ∞.
Now one computes the norm of the map

Tn : C(S1) → R, f 7→ 1

π

π∫
−π

f(x)

(
1

2
+

n∑
k=1

cos(kx)

)
dx =

1

2π

π∫
−π

f(x)Dn(x)dx

where

Dn(x) =
sin
(
(n+ 1

2 )x
)

sin
(
x
2

)
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is the Dirichlet kernel , cf. Lem. 5.6. This norm equals 1
2π

π∫
−π

|Dn(x)|dx =

1
2π

2π∫
0

|Dn(x)|dx (Exercise) which goes to ∞ as n→ ∞. Indeed, using sin(x/2) ⩽

x/2 and substituting we get
2π∫
0

|Dn(x)|dx ⩾

2π∫
0

| sin((n+ 1
2 )x)|

x/2
dx [since sin s ⩽ s]

=

(2n+1)π∫
0

| sin(t)|

t
dt [change of variables t = (n+ 1

2 )x]

⩾
2n∑
k=0

(k+1)π∫
kπ

| sin t|

t
dt [split integral into intervals]

⩾

∣∣∣∣∣∣
2n∑
k=0

π∫
0

sin t

(k+ 1)
dt

∣∣∣∣∣∣ [since t ⩽ k+ 1 for t ∈ (k,k+ 1)]

= 2

2n∑
k=0

1

k+ 1
[evaluating the integral],

which is the harmonic series divergent as n → ∞. This gives a contradiction.
□

Another corollary of the Banach–Steinhaus principle is an important continu-
ity statement. Recall that of X and Y are normed spaces them so is the Cartesian

product X× Y equipped with the norm ∥(x,y)∥ =
(
∥x∥2X + ∥y∥2Y

) 1
2 . It is easy to see

that a sequence (xn,yn) converges to (x,y) in this norm if and only if xn → x and
yn → y.

Theorem 16.32. Suppose that X, Y are Banach spaces and suppose that B : X ×
Y → R is a bilinear form on X × Y that is separately continuous, i.e. B(·,y) is
continuous on X for every y ∈ Y and B(x, ·) is continuous on Y for every x ∈ X.
Then B is continuous.

Proof. Suppose that (xn,yn) is a sequence that converges to (x,y). First note
that

B(xn − x,yn − y) = B(xn,yn) − B(xn,y) − B(x,yn) + B(x,y),

where B(xn,y) → B(x,y) as well as B(x,yn) → B(x,y). So it is sufficient to
show that B(xn − x,yn − y) → 0 or, equivalently, B(x̃n, ỹn) → 0 for any x̃n → 0
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and ỹn → 0. Now. the linear mappings Tn(x) = B(x, ỹn) : X→ R are bounded,
by assumption. Since ∥ỹn∥ → 0 the sequence Tn(x) → 0 and is bounded for
every x ∈ X. Then, by the Banach–Steinhaus theorem there exists a constant C
such that ∥Tn∥ ⩽ C for all n. That is |Tn(x)| = B(x, ỹn) ⩽ C∥x∥ for all n and
x ∈ X. Therefore, |B(x̃n, ỹn)| ⩽ C∥x̃n∥ → 0. □

Remark 16.33. Recall that already on R2 separate continuity does not imply joint
continuity for any function. The standard example from Analysis is the function

f(x,y) =

{ xy
x2+y2 (x,y) ̸= (0, 0)

0 (x,y) = 0,

which is continuous in x or y separately but is not jointly continuous.

16.2.3. The open mapping theorem. Recall that for a continuous map the pre-image
of any open set is open. This does of course not mean that the image of any open
set is open (for example, sin : R → R has image [−1, 1], which is not open). A map
f : X→ Y between metric space is called open if the image of every open set is open.
If a map is invertible then it is open if and only if its inverse is continuous. We start
with a simple observation for linear maps. We will denote open balls in normed
spaces X and Y by BX

r (x) and BY
s (y) respectively, or simply BX

r and BY
s if they are

centred at the origin.

Lemma 16.34. Let X and Y be normed spaces. Then a linear map T : X → Y is
open if and only if there exists ε > 0 such that BY

ε (0) ⊂ T(BX
1 (0)), i.e. the image of

the unit ball contains a zero’s neighbourhood.

Proof. If the map T is open it clearly has this property. Suppose conversely, that
BY
ε (0) ⊂ T(BX

1 (0)) for some ε > 0. Then, by scaling, BY
εδ(0) ⊂ T(BX

δ (0)) for any
δ > 0. Suppose that U is open. Suppose that y ∈ f(U), that is there exists x ∈ U
such that y = f(x). Then there exists δ > 0 with x+ BX

δ (0) ⊂ U and therefore

TU ⊃ TBX
δ (x) = {Tx}+ TBX

δ (0) ⊃ {y}+ BY
δε(0) = B

Y
δε(y).

□

Theorem 16.35 (Open Mapping Theorem). Let T : X → Y be a continuous
surjective linear operator between Banach spaces. Then T is open.

Proof. Since T is surjective we have Y = ∪nTB
X
n. Therefore trivially, Y = ∪nTBX

n.
By the Baire category theorem one of the TBX

n must have an interior point. Res-
caling implies that TBX

1 has an interior point y0. Since TBX
1 is symmetric under

reflection y → −y, the point −y0 must also be an interior point. Therefore, by
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convexity of TBX
1 there exists a δ > 0 with BY

δ ⊂ TBX
1 , cf. (16.4). By linearity this

means BY
δ2−n ⊂ TBX

2−n for any natural n.
We will show that TBX

1 ⊂ TBX
2 , with the implication from above that BY

δ ⊂ TBX
2 ,

which will complete the proof by the previous Lemma. So, let y ∈ TBX
1 be

arbitrary. Then, there exists x1 ∈ BX
1 such that y−Tx1 ∈ BY

δ/2 ⊂ TBX
1/2. Repeating

this, there exists x2 ∈ BX
1/2 such that y− Tx1 − Tx2 ∈ BY

δ/4.
Continuing inductively, we obtain a sequence (xn) with the property that
∥xn∥ < 2−n+1 and

(16.5) y−

n∑
k=1

Txn ∈ BY
δ21−n .

By completeness of X, the absolute convergent series
∑n

1 xn converges to an
element x ∈ X of norm ∥x∥ < 2. By linearity an continuity of T we get from (16.5)
that y = Tx. Thus y ∈ TB2. □

If the map T is also injective (and, therefore, bijective with the inverse T−1) we
can quickly conclude continuity of T−1.

Corollary 16.36. Suppose that T : X → Y is a bijective bounded linear map
between Banach spaces. Then T has a bounded inverse T−1.

It is not rare that we may have two different norms ∥ · ∥ and ∥ · ∥∗ on the same
Banach space X. We say that ∥ · ∥ and ∥ · ∥∗ are equivalent if there are constants c > 0
and C > 0 such that:

(16.6) c∥x∥ ⩽ ∥x∥∗ ⩽ C∥x∥ for all x ∈ X.
Exercise 16.37. (i) Check that (16.6) defines an equivalence relations on

the set of all norms on X.
(ii) If a sequence is Cauchy/convergent/bounded in a norm then it is also

Cauchy/convergent/bounded in any equivalent norm.

The Cor. 16.36 implies that if the identity map (X, ∥ · ∥) → (X, ∥ · ∥∗) is bounded
then both norms are equivalent.

Corollary 16.38. Let (X, ∥ · ∥) be a Banach space and ∥ · ∥∗ be a norm on X in
which X is complete. If ∥ · ∥ ⩽ C∥ · ∥∗ for some C > 0 the norms are equivalent.

16.2.4. The closed graph theorem. Suppose that X, Y are Banach spaces and suppose
thatD ⊂ X is a linear subspace (not necessarily closed). Now suppose that T : D→
Y is a linear operator. Then the graph gr(T) is defined as the subset {(x, Tx) | x ∈
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D} ⊂ X × Y. This is a linear subspace in the Banach space X × Y, which can be
equipped with the norm ∥(x,y)∥2 = ∥x∥2X + ∥y∥2Y . One often uses the equivalent
norm ∥(x,y)∥ = ∥x∥X + ∥y∥Y but the first choice makes sure that the product X× Y
is also a Hilbert space if X and Y are Hilbert spaces. We will refer to T as an operator
from X to Y with domain D.

Definition 16.39. The operator T is called closed if and only if its graph is a
closed subset of X× Y.

It is easy to see that T is closed if an only if xn → x and Txn → y imply that
Txn → Tx. Note the difference with continuity of T !!!

If T is an operator T : D → Y then its graph is a subset of X × Y. If we close this
subset the resulting set may fail to be the graph of an operator. If the closure is the
graph as well, we say that T is closable and its closure is the operator whose graph is
obtained by closing the graph of T .

Differential operators are often closed but not bounded. Let L2[a,b] be the Hil-
bert space obtained by abstract completion of (C[a,b], ∥ · ∥2), cf. Prop. 1.59. Then
D = C1[a,b] is a dense subspace in L2[a,b] and the operator d

dx
: C1[a,b] → L2[a,b]

is of the above type. This operator is not closed, however it is closable and its clos-
ure therefore defines a closed operator with dense domain. We have already seen
that this operator is unbounded and therefore it cannot be continuous.

Of course, the map D → (x, Tx) is a bijection from D to gr(T). We can use the
norm on gr(T) to define a norm on D, which is then

∥x∥D =
(
∥x∥2X + ∥Tx∥2Y

) 1
2 .

Obviously, T is closed if and only of D with norm ∥ · ∥D is a Banach space. We are
now ready to state the closed graph theorem. It is easy to check that T continuously
maps (D, ∥ · ∥D) to Y.

Theorem 16.40 (Closed Graph Theorem). Suppose that X and Y are Banach
spaces and suppose that T : X→ Y is closed. Then T is bounded.

Proof. Since in this case we have D = X with have two norms ∥ · ∥X and ∥ · ∥D
on X that are both complete. Clearly,

∥ · ∥X ⩽ ∥ · ∥D,

and by Cor. 16.38 the norms are therefore equivalent. Hence,

∥Tx∥Y ⩽ ∥x∥D ⩽ C∥x∥X
for some constant C > 0. □

16.3. Semi-norms and locally convex topological vector spaces.
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Definition 16.41 (Semi-Norm). Let X be a vector space, then a map p : X→
R is called semi-norm if

(i) p(x) ⩾ 0 for all x ∈ X,
(ii) p(λx) = |λ|p(x), for all λ ∈ R, x ∈ X,

(iii) p(x+ y) ⩽ p(x) + p(y), for all x,y ∈ X.

An example of a semi-norm on C1[0, 1] is p(f) := ∥f ′∥∞. If (pα)α is a family of
semi-norms with the property that

(∀α ∈ I,pα(x) = 0) =⇒ x = 0

then we say X with that family is a locally convex topological vector space. There is a
topology (that is, a description of all open sets) on such a vector space, by declaring
a subset U ⊂ X to be open if and only if for every point x ∈ U and any index α ∈ I
there exists ε > 0 such that {y | pα(y− x) < ε} ⊂ U. The notion of convergence one
gets is xn → x if and only of pα(xn − x) → 0 for all α. The topology of point-wise
convergence on the space of functions S → R is for example of this type, with the
family of semi-norms given by (px)sx∈S,px(f) = |f(x)|.

Another example is the vector space C∞(Rm) with the topology of uniform con-
vergence of all derivatives on compact sets. Here the family of semi-norms pα,K is
indexed by all multi-indices α ∈ N0

m and all compact subsets K ⊂ R and is given
by

pα,K(f) = sup
x∈K

|∂αf(x)|.

If the family of semi-norms is countable then this topology is actually coming
from a metric (so the space is a metric space)

d(x,y) =

∞∑
k=1

1

2k
pk(x− y)

1+ pk(x− y)
.

Such a metric space is called Frechet space. Note that C∞(Rm) is a Frechet space
because the family of semi-norms above can be replaced by a countable one by
taking a countable exhaustion of Rm by compact subsets.

APPENDIX A. TUTORIAL PROBLEMS

These are tutorial problems intended for self-assessment of the course under-
standing.

A.1. Tutorial problems I. All spaces are complex, unless otherwise specified.

A.1. Show that ∥f∥ = |f(0)|+sup |f ′(t)| defines a norm onC1[0, 1], which is the space
of (real) functions on [0, 1] with continuous derivative.

A.2. Show that the formula ⟨(xn), (yn)⟩ =
∑∞

n=1 xnyn/n
2 defines an inner product

on ℓ∞, the space of bounded (complex) sequences. What norm does it produce?
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A.3. Use the Cauchy–Schwarz inequality for a suitable inner product to prove that
for all f ∈ C[0, 1] the inequality∣∣∣∣∣∣

1∫
0

f(x)xdx

∣∣∣∣∣∣ ⩽ C
 1∫

0

|f(x)|2 dx

1/2

holds for some constant C > 0 (independent of f) and find the smallest possible C
that holds for all functions f (hint: consider the cases of equality).

A.4. We define the following norm on ℓ∞, the space of bounded complex sequences:

∥(xn)∥∞ = sup
n⩾1

|xn|.

Show that this norm makes ℓ∞ into a Banach space (i.e., a complete normed space).

A.5. Fix a vector (w1, . . . ,wn) whose components are strictly positive real numbers,
and define an inner product on Cn by

⟨x,y⟩ =
n∑

k=1

wkxkyk.

Show that this makes Cn into a Hilbert space (i.e., a complete inner-product space).

A.2. Tutorial problems II.

A.6. Show that the supremum norm on C[0, 1] isn’t given by an inner product, by
finding a counterexample to the parallelogram law.

A.7. In ℓ2 let e1 = (1, 0, 0, . . .), e2 = (0, 1, 0, 0, . . .), e3 = (0, 0, 1, 0, 0, . . .), and so
on. Show that Lin (e1, e2, . . .) = c00, and that CLin (e1, e2, . . .) = ℓ2. What is
CLin (e2, e3, . . .)?

A.8. Let C[−1, 1] have the standard L2 inner product, defined by

⟨f,g⟩ =
1∫

−1

f(t)g(t)dt.

Show that the functions 1, t and t2 − 1/3 form an orthogonal (not orthonormal!)
basis for the subspace P2 of polynomials of degree at most 2 and hence calculate
the best L2-approximation of the function t4 by polynomials in P2.

A.9. Define an inner product on C[0, 1] by

⟨f,g⟩ =
1∫
0

√
t f(t)g(t)dt.

Use the Gram–Schmidt process to find the first 2 terms of an orthonormal sequence
formed by orthonormalising the sequence 1, t, t2, . . . .
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A.10. Consider the plane P in C4 (usual inner product) spanned by the vectors
(1, 1, 0, 0) and (1, 0, 0,−1). Find orthonormal bases for P and P⊥, and verify directly
that (P⊥)⊥ = P.

A.3. Tutorial Problems III.

A.11. Let a and b be arbitrary real numbers with a < b. By using the fact that the
functions 1√

2π
einx, n ∈ Z, are orthonormal in L2[0, 2π], together with the change

of variable x = 2π(t − a)/(b − a), find an orthonormal basis in L2[a,b] of the form
en(t) = αe

inλt, n ∈ Z, for suitable real constants α and λ.

A.12. For which real values of α is ∞∑
n=1

nαeint

the Fourier series of a function in L2[−π,π]?

A.13. Calculate the Fourier series of f(t) = et on [−π,π] and use Parseval’s identity
to deduce that ∞∑

n=−∞
1

n2 + 1
=

π

tanhπ
.

A.14. Using the fact that (en) is a complete orthonormal system in L2[−π,π], where
en(t) = exp(int)/

√
2π, show that e0, s1, c1, s2, c2, . . . is a complete orthonormal sys-

tem, where sn(t) = sinnt/
√
π and cn(t) = cosnt/

√
π. Show that every L2[−π,π]

function f has a Fourier series

a0 +

∞∑
n=1

an cosnt+ bn sinnt,

converging in the L2 sense, and give a formula for the coefficients.

A.15. Let C(T) be the space of continuous (complex) functions on the circle
T = {z ∈ C : |z| = 1} with the supremum norm. Show that, for any polynomial f(z)
in C(T) ∫

|z|=1

f(z)dz = 0.

Deduce that the function f(z) = z̄ is not the uniform limit of polynomials on the
circle (i.e., Weierstrass’s approximation theorem doesn’t hold in this form).

A.4. Tutorial Problems IV.

A.16. Define a linear functional on C[0, 1] (continuous functions on [0, 1]) by α(f) =
f(1/2). Show that α is bounded if we give C[0, 1] the supremum norm. Show that
α is not bounded if we use the L2 norm, because we can find a sequence (fn) of
continuous functions on [0, 1] such that ∥fn∥2 ⩽ 1, but fn(1/2) → ∞.
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A.17. The Hardy spaceH2 is the Hilbert space of all power series f(z) =
∑∞

n=0 anz
n,

such that
∑∞

n=0 |an|
2 <∞, where the inner product is given by〈 ∞∑

n=0

anz
n,

∞∑
n=0

bnz
n

〉
=

∞∑
n=0

anbn.

Show that the sequence 1, z, z2, z3, . . . is an orthonormal basis for H2.
Fix w with |w| < 1 and define a linear functional on H2 by α(f) = f(w). Write

down a formula for the function g(z) ∈ H2 such that α(f) = ⟨f,g⟩. What is ∥α∥?

A.18. The Volterra operator V : L2[0, 1] → L2[0, 1] is defined by

(Vf)(x) =

x∫
0

f(t)dt.

Use the Cauchy–Schwarz inequality to show that |(Vf)(x)| ⩽
√
x∥f∥2 (hint: write

(Vf)(x) = ⟨f, Jx⟩ where Jx is a function that you can write down explicitly).
Deduce that ∥Vf∥22 ⩽ 1

2∥f∥22, and hence ∥V∥ ⩽ 1/
√
2.

A.19. Find the adjoints of the following operators:
(i) A : ℓ2 → ℓ2, defined by A(x1, x2, . . .) = (0, x1

1 , x2

2 , x3

3 , . . .);
and, on a general Hilbert space H:

(ii) The rank-one operator R, defined by Rx = ⟨x,y⟩z, where y and z are fixed
elements of H;

(iii) The projection operator PM, defined by PM(m + n) = m, where m ∈ M
and n ∈M⊥, and H =M⊕M⊥ as usual.

A.20. LetU ∈ B(H) be a unitary operator. Show that (Uen) is an orthonormal basis
of Hwhenever (en) is.

Let ℓ2(Z) denote the Hilbert space of two-sided sequences (an)∞n=−∞ with

∥(an)∥2 =

∞∑
n=−∞ |an|

2 <∞.

Show that the bilateral right shift, V : ℓ2(Z) → ℓ2(Z) defined by V((an)) = (bn),
where bn = an−1 for all n ∈ Z, is unitary, whereas the usual right shift S on
ℓ2 = ℓ2(N) is not unitary.

A.5. Tutorial Problems V.

A.21. Let f ∈ C[−π,π] and letMf be the multiplication operator on L2(−π,π), given
by (Mfg)(t) = f(t)g(t), for g ∈ L2(−π,π). Find a function f̃ ∈ C[−π,π] such that
M∗

f =Mf̃.
Show that Mf is always a normal operator. When is it Hermitian? When is it

unitary?
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A.22. Let T be any operator such that Tn = 0 for some integer n (such operators are
called nilpotent). Show that I−T is invertible (hint: consider I+T +T2+ . . .+Tn−1).
Deduce that I− T/λ is invertible for any λ ̸= 0.

What is σ(T)? What is r(T)?

A.23. Let (λn) be a fixed bounded sequence of complex numbers, and define an
operator on ℓ2 by T((xn)) = ((yn)), where yn = λnxn for each n. Recall that T is a
bounded operator and ∥T∥ = ∥(λn)∥∞. Let Λ = {λ1, λ2, . . .}. Prove the following:

(i) Each λk is an eigenvalue of T , and hence is in σ(T).
(ii) If λ ̸∈ Λ, then the inverse of T − λI exists (and is bounded).

Deduce that σ(T) = Λ. Note, that then any non-empty compact set could be a spectrum
of some bounden operator.

A.24. Let S be an isomorphism between Hilbert spacesH and K, that is, S : H→ K is a
linear bijection such that S and S−1 are bounded operators. Suppose that T ∈ B(H).
Show that T and STS−1 have the same spectrum and the same eigenvalues (if any).

A.25. Define an operatorU : ℓ2(Z) → L2(−π,π) byU((an)) =
∑∞

n=−∞ aneint/
√
2π.

Show that U is a bijection and an isometry, i.e., that ∥Ux∥ = ∥x∥ for all x ∈ ℓ2(Z).
Let V be the bilateral right shift on ℓ2(Z), the unitary operator defined on Ques-

tion A.20. Let f ∈ L2(−π,π). Show that (UVU−1f)(t) = eitf(t), and hence, using
Question A.24, show that σ(V) = T, the unit circle, but that V has no eigenvalues.

A.6. Tutorial Problems VI.

A.26. Show that K(X) is a closed linear subspace of B(X), and that AT and TA are
compact whenever T ∈ K(X) and A ∈ B(X). (This means that K(X) is a closed ideal
of B(X).)

A.27. Let A be a Hilbert–Schmidt operator, and let (en)n⩾1 and (fm)m⩾1 be or-
thonormal bases of A. By writing each Aen as Aen =

∑∞
m=1⟨Aen, fm⟩fm, show

that ∞∑
n=1

∥Aen∥2 =

∞∑
m=1

∥A∗fm∥2.

Deduce that the quantity ∥A∥2HS =
∑∞

n=1 ∥Aen∥2 is independent of the choice of
orthonormal basis, and that ∥A∥HS = ∥A∗∥HS. (∥A∥HS is called the Hilbert–Schmidt
norm of A.)

A.28. (i) Let T ∈ K(H) be a compact operator. Using Question A.26, show
that T∗T and TT∗ are compact Hermitian operators.

(ii) Let (en)n⩾1 and (fn)n⩾1 be orthonormal bases of a Hilbert space H, let
(αn)n⩾1 be any bounded complex sequence, and let T ∈ B(H) be an oper-
ator defined by

Tx =

∞∑
n=1

αn⟨x, en⟩fn.



198 VLADIMIR V. KISIL

Prove that T is Hilbert–Schmidt precisely when (αn) ∈ ℓ2. Show that T
is a compact operator if and only if αn → 0, and in this case write down
spectral decompositions for the compact Hermitian operators T∗T and TT∗.

A.29. Solve the Fredholm integral equation ϕ− λTϕ = f, where f(x) = x and

(Tϕ)(x) =

1∫
0

xy2ϕ(y)dy (ϕ ∈ L2(0, 1)),

for small values of λ by means of the Neumann series.
For what values of λ does the series converge? Write down a solution which is

valid for all λ apart from one exception. What is the exception?

A.30. Suppose that h is a 2π-periodic L2(−π,π) function with Fourier series
∞∑

n=−∞ane
int.

Show that each of the functions ϕk(y) = e
iky, k ∈ Z, is an eigenvector of the integ-

ral operator T on L2(−π,π) defined by

(Tϕ)(x) =

π∫
−π

h(x− y)ϕ(y)dy,

and calculate the corresponding eigenvalues.
Now let h(t) = − log(2(1 − cos t)). Assuming, without proof, that h(t) has

the Fourier series
∑

n∈Z,n̸=0 e
int/|n|, use the Hilbert–Schmidt method to solve the

Fredholm equation ϕ − λTϕ = f, where f(t) has Fourier series
∑∞

n=−∞ cneint and
1/λ ̸∈ σ(T).
A.7. Tutorial Problems VII.

A.31. Use the Gram–Schmidt algorithm to find an orthonormal basis for the sub-
space X of L2(−1, 1) spanned by the functions t, t2 and t4.

Hence find the best L2(−1, 1) approximation of the constant function f(t) = 1 by
functions from X.

A.32. For n = 1, 2, . . . let ϕn denote the linear functional on ℓ2 defined by

ϕn(x) = x1 + x2 + . . .+ xn,

where x = (x1, x2, . . .) ∈ ℓ2. Use the Riesz–Fréchet theorem to calculate ∥ϕn∥.

A.33. Let T be a bounded linear operator on a Hilbert space, and suppose that
T = A+ iB, where A and B are self-adjoint operators. Express T∗ in terms of A and
B, and hence solve for A and B in terms of T and T∗.

Deduce that every operator T can be written T = A + iB, where A and B are
self-adjoint, in a unique way.

Show that T is normal if and only if AB = BA.
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A.34. Let Pn be the subspace of L2(−π,π) consisting of all polynomials of degree
at most n, and let Tn be the subspace consisting of all trigonometric polynomials
of the form f(t) =

∑n
k=−n ake

ikt. Calculate the spectrum of the differentiation
operator D, defined by (Df)(t) = f ′(t), when

(i) D is regarded as an operator on Pn, and
(ii) D is regarded as an operator on Tn.

Note that both Pn and Tn are finite-dimensional Hilbert spaces.
Show that Tn has an orthonormal basis of eigenvectors of D, whereas Pn does

not.

A.35. Use the Neumann series to solve the Volterra integral equation ϕ − λTϕ = f

in L2[0, 1], where λ ∈ C, f(t) = 1 for all t, and (Tϕ)(x) =
x∫
0

t2ϕ(t)dt. (You should

be able to sum the infinite series.)
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APPENDIX B. SOLUTIONS OF TUTORIAL PROBLEMS

Solutions of the tutorial problems will be distributed due in time on the paper.
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APPENDIX C. COURSE IN THE NUTSHELL

C.1. Some useful results and formulae (1).

C.1. A norm on a vector space, ∥x∥, satisfies ∥x∥ ⩾ 0, ∥x∥ = 0 if and only if x = 0,
∥λx∥ = |λ| ∥x∥, and ∥x+y∥ ⩽ ∥x∥+∥y∥ (triangle inequality). A norm defines a metric
and a complete normed space is called a Banach space.

C.2. An inner-product space is a vector space (usually complex) with a scalar product
on it, ⟨x,y⟩ ∈ C such that ⟨x,y⟩ = ⟨y, x⟩, ⟨λx,y⟩ = λ⟨x,y⟩, ⟨x+y, z⟩ = ⟨x, z⟩+ ⟨y, z⟩,
⟨x, x⟩ ⩾ 0 and ⟨x, x⟩ = 0 if and only if x = 0. This defines a norm by ∥x∥2 =
⟨x, x⟩. A complete inner-product space is called a Hilbert space. A Hilbert space is
automatically a Banach space.

C.3. The Cauchy–Schwarz inequality. |⟨x,y⟩| ⩽ ∥x∥ ∥y∥ with equality if and only if x
and y are linearly dependent.

C.4. Some examples of Hilbert spaces. (i) Euclidean Cn. (ii) ℓ2, sequences (ak) with
∥(ak)∥22 =

∑
|ak|

2 <∞. In both cases ⟨(ak), (bk)⟩ =
∑
akbk. (iii) L2[a,b], functions

on [a,b] with ∥f∥22 =
b∫
a

|f(t)|2 dt < ∞. Here ⟨f,g⟩ =
b∫
a

f(t)g(t)dt. (iv) Any closed

subspace of a Hilbert space.

C.5. Other examples of Banach spaces. (i) Cb(X), continuous bounded functions on
a topological space X. (ii) ℓ∞(X), all bounded functions on a set X. The supremum
norms on Cb(X) and ℓ∞(X) make them into Banach spaces. (iii) Any closed sub-
space of a Banach space.

C.6. On incomplete spaces. The inner-product (L2) norm on C[0, 1] is incomplete. c00
(sequences eventually zero), with the ℓ2 norm, is another incomplete i.p.s.

C.7. The parallelogram identity. ∥x + y∥2 + ∥x − y∥2 = 2∥x∥2 + 2∥y∥2 in an inner-
product space. Not in general normed spaces.

C.8. On subspaces. Complete =⇒ closed. The closure of a linear subspace is still a
linear subspace. Lin (A) is the smallest subspace containing A and CLin (A) is its
closure, the smallest closed subspace containing A.

C.9. From now on we work in inner-product spaces.

C.10. The orthogonality. x ⊥ y if ⟨x,y⟩ = 0. An orthogonal sequence has ⟨en, em⟩ = 0
for n ̸= m. If all the vectors have norm 1 it is an orthonormal sequence (o.n.s.), e.g.
en = (0, . . . , 0, 1, 0, 0, . . .) ∈ ℓ2 and en(t) = (1/

√
2π)eint in L2(−π,π).

C.11. Pythagoras’s theorem: if x ⊥ y then ∥x+ y∥2 = ∥x∥2 + ∥y∥2.

C.12. The best approximation to x by a linear combination
∑n

k=1 λkek is
∑n

k=1⟨x, ek⟩ek
if the ek are orthonormal. Note that ⟨x, ek⟩ is the Fourier coefficient of xw.r.t. ek.

C.13. Bessel’s inequality. ∥x∥2 ⩾
∑n

k=1 |⟨x, ek⟩|2 if e1, . . . , en is an o.n.s.
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C.14. Riesz–Fischer theorem. For an o.n.s. (en) in a Hilbert space,
∑
λnen converges

if and only if
∑

|λn|
2 <∞; then ∥∑ λnen∥2 =

∑
|λn|

2.

C.15. A complete o.n.s. or orthonormal basis (o.n.b.) is an o.n.s. (en) such that if
⟨y, en⟩ = 0 for all n then y = 0. In that case every vector is of the form

∑
λnen

as in the R-F theorem. Equivalently: the closed linear span of the (en) is the whole
space.

C.16. Gram–Schmidt orthonormalization process. Start with x1, x2, . . . linearly inde-
pendent. Construct e1, e2, . . . an o.n.s. by inductively setting yn+1 = xn+1 −∑n

k=1⟨xn+1, ek⟩ek and then normalizing en+1 = yn+1/∥yn+1∥.

C.17. On orthogonal complements. M⊥ is the set of all vectors orthogonal to everything
inM. IfM is a closed linear subspace of a Hilbert spaceH thenH =M⊕M⊥. There
is also a linear map, PM the projection from H ontoMwith kernelM⊥.

C.18. Fourier series. Work in L2(−π,π) with o.n.s. en(t) = (1/
√
2π)eint. Let

CP(−π,π) be the continuous periodic functions, which are dense in L2. For f ∈
CP(−π,π) write fm =

∑m
n=−m⟨f, en⟩en,m ⩾ 0. We wish to show that ∥fm − f∥2 →

0, i.e., that (en) is an o.n.b.

C.19. The Fejér kernel. For f ∈ CP(−π,π) write Fm = (f0 + . . .+ fm)/(m+ 1). Then

Fm(x) = (1/2π)
π∫
−π

f(t)Km(x − t)dt where Km(t) = (1/(m + 1))
∑m

k=0

∑k
n=−k e

int

is the Fejér kernel. Also Km(t) = (1/(m+ 1))[sin2(m+ 1)t/2]/[sin2 t/2].

C.20. Fejér’s theorem. If f ∈ CP(−π,π) then its Fejér sums tend uniformly to f on
[−π,π] and hence in L2 norm also. Hence CLin ((en)) ⊇ CP(−π,π) so must be all
of L2(−π,π). Thus (en) is an o.n.b.

C.21. Corollary. If f ∈ L2(−π,π) then f(t) =
∑
cne

int with convergence in L2,

where cn = (1/2π)
π∫
−π

f(t)e−int dt.

C.22. Parseval’s formula. If f, g ∈ L2(−π,π) have Fourier series
∑
cne

int and∑
dne

int then (1/2π)⟨f,g⟩ = ∑
cnd̄n.

C.23. Weierstrass approximation theorem. The polynomials are dense in C[a,b] for
any a < b (in the supremum norm).

C.2. Some useful results and formulae (2).

C.24. On dual spaces. A linear functional on a vector space X is a linear mapping
α : X → C (or to R in the real case), i.e., α(ax + by) = aα(x) + bα(y). When X is a
normed space, α is continuous if and only if it is bounded, i.e., sup{|α(x)| : ∥x∥ ⩽ 1} <∞. Then we define ∥α∥ to be this sup, and it is a norm on the space X∗ of bounded
linear functionals, making X∗ into a Banach space.
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C.25. Riesz–Fréchet theorem. If α : H → C is a bounded linear functional on a
Hilbert space H, then there is a unique y ∈ H such that α(x) = ⟨x,y⟩ for all x ∈ H;
also ∥α∥ = ∥y∥.

C.26. On linear operator. These are linear mappings T : X → Y, between normed
spaces. Defining ∥T∥ = sup{∥T(x)∥ : ∥x∥ ⩽ 1}, finite, makes the bounded (i.e.,
continuous) operators into a normed space, B(X, Y). When Y is complete, so is
B(X, Y). We get ∥Tx∥ ⩽ ∥T∥ ∥x∥, and, when we can compose operators, ∥ST∥ ⩽
∥S∥ ∥T∥. Write B(X) for B(X,X), and for T ∈ B(X), ∥Tn∥ ⩽ ∥T∥n. Inverse S = T−1

when ST = TS = I.

C.27. On adjoints. T ∈ B(H,K) determines T∗ ∈ B(K,H) such that ⟨Th,k⟩K =
⟨h, T∗k⟩H for all h ∈ H, k ∈ K. Also ∥T∗∥ = ∥T∥ and T∗∗ = T .

C.28. On unitary operator. ThoseU ∈ B(H) for whichUU∗ = U∗U = I. Equivalently,
U is surjective and an isometry (and hence preserves the inner product).

Hermitian operator or self-adjoint operator. Those T ∈ B(H) such that T = T∗.
On normal operator. Those T ∈ B(H) such that TT∗ = T∗T (so including Hermitian

and unitary operators).

C.29. On spectrum. σ(T) = {λ ∈ C : (T − λI) is not invertible in B(X)}. Includes all
eigenvalues λ where Tx = λx for some x ̸= 0, and often other things as well. On
spectral radius: r(T) = sup{|λ| : λ ∈ σ(T)}. Properties: σ(T) is closed, bounded and
nonempty. Proof: based on the fact that (I − A) is invertible for ∥A∥ < 1. This
implies that r(T) ⩽ ∥T∥.

C.30. The spectral radius formula. r(T) = infn⩾1 ∥Tn∥1/n = limn→∞ ∥Tn∥1/n.
Note that σ(Tn) = {λn : λ ∈ σ(T)} and σ(T∗) = {λ : λ ∈ σ(T)}. The spectrum

of a unitary operator is contained in {|z| = 1}, and the spectrum of a self-adjoint
operator is real (proof by Cayley transform: U = (T − iI)(T + iI)−1 is unitary).

C.31. On finite rank operator. T ∈ F(X, Y) if Im T is finite-dimensional.
On compact operator. T ∈ K(X, Y) if: whenever (xn) is bounded, then (Txn) has

a convergent subsequence. Now F(X, Y) ⊆ K(X, Y) since bounded sequences in a
finite-dimensional space have convergent subsequences (because when Z is f.d., Z
is isomorphic to ℓn2 , i.e., ∃S : ℓn2 → Z with S, S−1 bounded). Also limits of compact
operators are compact, which shows that a diagonal operator Tx =

∑
λn⟨x, en⟩en

is compact iff λn → 0.

C.32. Hilbert–Schmidt operators. T is H–S when
∑ ∥Ten∥2 < ∞ for some o.n.b.

(en). All such operators are compact—write them as a limit of finite rank operators
Tk with Tk

∑∞
n=1 anen =

∑k
n=1 an(Ten). This class includes integral operators

T : L2(a,b) → L2(a,b) of the form

(Tf)(x) =

b∫
a

K(x,y)f(y)dy,
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where K is continuous on [a,b]× [a,b].

C.33. On spectral properties of normal operators. If T is normal, then (i) ker T = ker T∗,
so Tx = λx =⇒ T∗x = λx; (ii) eigenvectors corresponding to distinct eigenvalues
are orthogonal; (iii) ∥T∥ = r(T).

If T ∈ B(H) is compact normal, then its set of eigenvalues is either finite or a
sequence tending to zero. The eigenspaces are finite-dimensional, except possibly
for λ = 0. All nonzero points of the spectrum are eigenvalues.

C.34. On spectral theorem for compact normal operators. There is an orthonormal se-
quence (ek) of eigenvectors of T , and eigenvalues (λk), such that Tx =

∑
k λk⟨x, ek⟩ek.

If (λk) is an infinite sequence, then it tends to 0. All operators of the above form are
compact and normal.

Corollary. In the spectral theorem we can have the same formula with an or-
thonormal basis, adding in vectors from ker T .

C.35. On general compact operators. We can write Tx =
∑
µk⟨x, ek⟩fk, where (ek)

and (fk) are orthonormal sequences and (µk) is either a finite sequence or an infinite
sequence tending to 0. Hence T ∈ B(H) is compact if and only if it is the norm limit of a
sequence of finite-rank operators.

C.36. On integral equations. Fredholm equations on L2(a,b) are Tϕ = f orϕ−λTϕ =

f, where (Tϕ)(x) =
b∫
a

K(x,y)ϕ(y)dy. Volterra equations similar, except that T is

now defined by (Tϕ)(x) =
x∫
a

K(x,y)ϕ(y)dy.

C.37. Neumann series. (I− λT)−1 = 1+ λT + λ2T2 + . . ., for ∥λT∥ < 1.
On separable kernel. K(x,y) =

∑n
j=1 gj(x)hj(y). The image of T (and hence its

eigenvectors for λ ̸= 0) lies in the space spanned by g1, . . . ,gn.

C.38. Hilbert–Schmidt theory. Suppose that K ∈ C([a,b] × [a,b]) and K(y, x) =

K(x,y). Then (in the Fredholm case) T is a self-adjoint Hilbert–Schmidt operator
and eigenvectors corresponding to nonzero eigenvalues are continuous functions.
If λ ̸= 0 and 1/λ ̸∈ σ(T), the the solution of ϕ− λTϕ = f is

ϕ =

∞∑
k=1

⟨f, vk⟩
1− λλk

vk.

C.39. Fredholm alternative. Let T be compact and normal and λ ̸= 0. Consider the
equations (i) ϕ−λTϕ = 0 and (ii) ϕ−λTϕ = f. Then EITHER (A) The only solution
of (i) is ϕ = 0 and (ii) has a unique solution for all fOR (B) (i) has nonzero solutions
ϕ and (ii) can be solved if and only if f is orthogonal to every solution of (i).
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APPENDIX D. SUPPLEMENTARY SECTIONS

D.1. Reminder from Complex Analysis. The analytic function theory is the most
powerful tool in the operator theory. Here we briefly recall few facts of complex
analysis used in this course. Use any decent textbook on complex variables for a
concise exposition. The only difference with our version that we consider function
f(z) of a complex variable z taking value in an arbitrary normed space V over the field
C. By the direct inspection we could check that all standard proofs of the listed
results work as well in this more general case.

Definition D.1. A function f(z) of a complex variable z taking value in a
normed vector space V is called differentiable at a point z0 if the following
limit (called derivative of f(z) at z0) exists:

(D.1) f ′(z0) = lim
∆z→0

f(z0 + ∆z) − f(z0)

∆z
.

Definition D.2. A function f(z) is called holomorphic (or analytic) in an open
setΩ ⊂ C it is differentiable at any point ofΩ.

Theorem D.3 (Laurent Series). Let a function f(z) be analytical in the annulus
r < z < R for some real r < R, then it could be uniquely represented by the Laurent
series:

(D.2) f(z) =

∞∑
k=−∞ ckz

k, for some ck ∈ V.

Theorem D.4 (Cauchy–Hadamard). The radii r ′ and R ′, (r ′ < R ′) of conver-
gence of the Laurent series (D.2) are given by

(D.3) r ′ = lim inf
n→∞ ∥cn∥1/n and

1

R ′ = lim sup
n→∞ ∥cn∥1/n .
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S(k), 159
Z, 73
B(X), 75
B(X,Y), 75
CP[−π,π], 58
F(X,Y), 85
H2, 196
K(X,Y), 85
L2[a,b], 42
L(X), 75
L(X,Y), 75
L1, 130
L∞, 131
Lp, 144
L, 119
S, Schwartz space, 165
S(X), 129
c0, 106
ℓ2, 37, 105
ℓ∞, 106
ℓp, 105
IX, 73
ϵ/3 argument, 88
kerT , 73
1X (the identity map on X), 180
supp, 156
∥·∥1 norm, 14, 35
∥·∥2 norm, 14, 35
∥·∥∞ norm, 14, 35
⊥, 46
σ-additivity, see countable additivity
σ-algebra, 113

Borel, 151
σ-finite

measure, 115, 121
σ-ring, 113
⊔, 113
d1 metric, 12, 13
d2 metric, 12, 13
d∞ metric, 12, 13
CLin(A), 44
ℓn1 , 35
ℓn2 , 35
ℓn∞, 35
Cb(X), 35
ℓ∞(X), 35
Lin(A), 43

a.e., see almost everywhere

absolute continuity, 137
absolutely continuous charge, 141
abstract completion of metric space, 27
accumulation point, 30
additivity, 114

countable, 114
adjoint operator, 76
adjoints, 203
algebra

convolution, 160
of sets, 113
representation, 160

almost everywhere, 121
convergence, 126

alternative
Fredholm, 100

analysis, 39
Fourier, 11

analytic function, 205
approximation, 48

by polynomials, 67
identity, of the, 64, 166
Weierstrass, of, 67

argument
ϵ/3, 88
diagonal, 88

average
continuous, 149

axiom of choice, 110

Baire’s categories, 185
Baire’s category theorem, 185
ball

closed, 15
open, 15
unit, 35

Banach Fixed point theorem, 171
Banach space, 35, 103, 201
Banach–Steinhaus Uniform Boundedness

theorem, 187
basis, 204

orthonormal, 51
Bessel’s inequality, 50, 201
best approximation, 201
bilateral right shift, 196
Borel σ-algebra, 151
Borel set, 151
bounded

functional, 56

207
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operator, 73, 107
set, 31

bounded linear functional, 56
bounded linear operator, 73

calculus
functional, 80

Cantor
function, see Cantor function, 124
set, 121, 124

Cantor function, 42
Carathéodory

measurable set, 118
category

first Baire, 185
second Baire, 186

category theory, 33
Cauchy integral formula, 66
Cauchy sequence, 25, 34
Cauchy–Schwarz inequality, 14, 201
Cauchy–Schwarz–Bunyakovskii inequality, 37
Cayley transform, 84, 203
Cesàro sum, 60
character, 161
charge, 121

absolutely continuous, 141
Hahn decomposition, 122
regular, 151
variation, 122, 152

charges
equivalent, 141

Chebyshev
inequality, 134

Chebyshev polynomials, 52
closable

operator, 192
closed

ball, 15
operator, 192
set, 16

Closed Graph theorem, 192
closed linear span, 44
closure, 18

operator, of, 192
coefficient

Fourier, 50
coefficients

Fourier, 6, 164
coherent states, 66
compact, 29

sequentially, 29

compact operator, 85, 203
singular value decomposition, 95

compact set, 85
complement

orthogonal, 54
complete

measure, 121
complete metric space, 34
complete o.n.s., 202
complete orthonormal sequence, 51
complete space, 26
condition

Lipschitz, 174
conditions

integrability, 4
continuity

absolute, 137
open sets, 23
sequential, 23

continuous
map, 22
uniformly, 24

continuous on average, 149
contraction, 171
convergence

almost everywhere, 126
in measure, 126
monotone

theorem B. Levi, on, 135
uniform, 126

on compacts, 161
convergent

sequence, 19
convex, 46
convex set, 35, 172
convolution, 159

algebra, 160
kernel, 159

convolution operator, 159
coordinates, 32
corollary about orthoprojection, 74
cosine

Fourier coefficients, 7
countable

additivity, 114
countably

countable sub-additivity, 117
countably additive

charge, 121
cover

open, 29



INTRODUCTION TO FUNCTIONAL ANALYSIS 209

decreasing
rapidly, 165

dense
set, 18

derivative, 205
diagonal argument, 88
diagonal operator, 77
diffeomorphism, 180
differentiable function, 205
differential equation

separation of variables, 9
Dirichlet kernel, 189
discrete

metric, 12
disjoint

pairwise, 113
disjunctive measures, 122
distance, see metric, 32, 33
distance function, 33
domain

fundamental, 5
operator, of, 192

dual group, 161
dual space, 56
dual spaces, 202
duality

Pontryagin’s, 162

Egorov’s theorem, 127
eigenspace, 93
eigenvalue of operator, 80
eigenvalues, 203
eigenvector, 80
equation

Fredholm, 96
first kind, 96
second kind, 96, 100

heat, 67
Volterra, 96

equivalent
norm, 191

equivalent charges, 141
essentially bounded function, 131
examples of Banach spaces, 201
examples of Hilbert spaces, 201

Fatou’s lemma, 136
Fejér

theorem, 63
Fejér kernel, 60, 202
Fejér sum, 59

Fejér’s theorem, 202
finite

measure, 115
finite rank operator, 85, 203
first category, 185
first resolvent identity, 82
fixed point, 171
formula

integral
Cauchy, 66

Parseval’s, of, 65
Fourier

coefficients, 164
cosine coefficients, 7
integral, 164, 166

inverse, 168
sine coefficients, 7
transform, 164

inverse, 168
Fourier analysis, 11
Fourier coefficient, 50
Fourier coefficients, 6
Fourier series, 7, 202
Fourier transform

windowed, 72
Fourier, Joseph, 10
frame of references, 32
Fredholm equation

first kind, 96
Fredholm alternative, 100, 204
Fredholm equation, 96

second kind, 96
Fredholm equation of the second kind, 100
Fubini theorem, 140
function

analytic, 205
bounded

essentially, 131
Cantor, 42, 124
differentiable, 205
essentially bounded, 131
generating, 164
holomorphic, 205
indicator, 127
integrable, 129
seesummable function, 129
measurable, 124
rapidly decreasing, 165
simple, 128

integral, 128
summable, 128
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square integrable, 42
step, 148, 167
summable, 129, 130
support, 156

functional, see linear functional
linear, 55

bounded, 56
positive, 154

functional calculus, 80
functions of operators, 80
fundamental domain, 5

Gaussian, 165, 168
general compact operators, 204
generating function, 164
Gram–Schmidt orthogonalisation, 52
Gram–Schmidt orthonormalization process,

202
graph

operator, of, 191
group

dual, 161
representation, 160

group representations, 66

Haar measure, 158
Hahn decomposition of a charge, 122
Hahn-Banach theorem, 110
Hardy space, 196
heat equation, 67
Heine–Borel theorem, 31, 85
Hermitian operator, 77, 203
Hilbert space, 38, 201
Hilbert–Schmidt norm, 91, 197
Hilbert–Schmidt operator, 89
Hilbert–Schmidt operators, 203
Hilbert–Schmidt theory, 204
holomorphic function, 205
Hölder’s Inequality, 104

identity
approximation of the, 64, 166
parallelogram, of, 39
Parseval’s, 65, 170
Plancherel, 169, 170

identity operator, 73
image of linear operator, 73
implicit function theorem, 182
incomplete spaces, 201
indicator function, 127
inequality

Bessel’s, 50

Cauchy–Schwarz, 14
Cauchy–Schwarz–Bunyakovskii, of, 37
Chebyshev, 134
Hölder’s, 104
Minkowski’s , 105
triangle, of, 33, 34

inner product, 14, 36
space, 14

inner product space, 37
complete, see Hilbert space

inner-product space, 201
integrability conditions, 4
integrable

function, 129
seesummable function, 129

integral
Fourier, 164, 166
Lebesgue, 42, 132
monotonicity, 129
Riemann, 42
simple function, 128

integral equations, 204
integral formula

Cauchy, 66
integral operator, 90, 96

with separable kernel, 97
interior, 19
invariant measure, 158
Inverse, 203
inverse Fourier transform, 168
Inverse Function theorem, 181
inverse operator, 75
invertible operator, 75
isometric

isomorphism, 108
isometric metric space, 15
isometry, 15, 78, 108
isomorphic

isometrically, 108
isomorphic spaces, 108
isomorphism, 108, 197

isometric, 108

Jacobian, 172

kernel, 96
Dirichlet, 189
Fejér, 60

kernel of convolution, 159
kernel of integral operator, 90
kernel of linear functional, 57
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kernel of linear operator, 73

ladder
Cantor, see Cantor function

Laguerre polynomials, 53
leading particular case, 181
Lebesgue

integral, 132
measure

outer, 117
set

measurable, 118
theorem, 119
theorem on dominated convergence, 133

Lebesgue integration, 42
Lebesgue measure, 124
left inverse, 76
left shift operator, 76
Legendre polynomials, 52
lemma

about inner product limit, 44
Fatou’s, 136
Riesz–Fréchet, 57
Urysohn’s , 153
Zorn, 110

length of a vector, 32
Levi’s theorem on monotone convergence, 135
limit

two monotonic, 126, 136, 139
for sets, 126

linear
operator, 73

linear operator
image, of, 73

linear functional, 55, 202
kernel, 57

linear operator, 203
norm, of, 73
kernel, of, 73

linear space, 32
linear span, 43
Lipschitz condition, 174
local-Ck- diffeomorphism, 180
locally compact topology, 158
locally convex topological vector space, 193
locally invertible function, 180

map
continuous, 22
locally invertible, 180
open, 190

mathematical way of thinking, 33, 45
mean value theorem, 172
measurable

function, 124
set

Carathéodory, 118
Lebesgue, 118

measure, 114
σ-finite, 115, 121
absolutely continuous, 141
complete, 121
disjunctive, 122
finite, 115
Haar, 158
invariant, 158
Lebesgue, 124

outer, 117
outer, 117

monotonicity, 117
product, 124, 138
regular, 151
signed, see charge

metric, 12, 33, 103
d1, 12, 13
d2, 12, 13
d∞, 12, 13
discrete, 12

metric space, 12, 32
abstract completion, 27
isometric, 15

Minkowski’s inequality, 105
monotonicity

outer measure, 117
monotonicity of integral, 129
multiplication operator, 73

nearest point theorem, 47
neighbourhood, 18
Neumann series, 81, 96, 204
nilpotent, 197
norm, 14, 33, 103, 201

seesup-norm, 106
∥·∥1, 14, 35
∥·∥2, 14, 35
∥·∥∞, 14, 35
equivalent, 191
Hilbert–Schmidt, 91, 197
sup, 106

norm of linear operator, 73
normal operator, 79, 203
normed space, 14, 34
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complete, see Banach space
nowhere dense set, 185

open
ball, 15
cover, 29
map, 190
set, 15

open mapping theorem, 190
operator, 107

adjoint, 76
bounded, 107
closable, 192
closed, 192
closure, 192
compact, 85

singular value decomposition, 95
convolution, 159
diagonal, 77

unitary, 78
domain, 192
eigenvalue of, 80
eigenvector of, 80
finite rank, 85
graph, 191
Hermitian, 77
Hilbert–Schmidt, 89
identity, 73
integral, 90, 96

kernel of, 90
with separable kernel, 97

inverse, 75
left, 76
right, 76

invertible, 75
isometry, 78
linear, 73

bounded, 73
image, of, 73
kernel, of, 73
norm, of, 73

nilpotent, 197
normal, 79
of multiplication, 73
self-adjoint, see Hermitian operator
shift

left, 76
right, 73

shift on a group, 160
spectrum of, 80
unitary, 78

Volterra, 196
zero, 73

orthogonal
complement, 54
projection, 74

orthogonal polynomials, 52
orthogonal complement, 54
orthogonal complements, 202
orthogonal projection, 74
orthogonal sequence, 46, 201
orthogonal system, 46
orthogonalisation

Gram–Schmidt, of, 52
orthogonality, 35, 45, 201
orthonormal basis, 51

theorem, 51
orthonormal basis (o.n.b.), 202
orthonormal sequence, 46

complete , 51
orthonormal sequence (o.n.s.), 201
orthonormal system, 46
orthoprojection, 74

corollary, about, 74
outer measure, 117

monotonicity, 117

pairwise
disjoint, 113

parallelogram identity, 39, 201
Parseval’s

formula, 65
identity, 65, 170

Parseval’s formula, 202
partial sum of the Fourier series, 59
period, 5
periodic, 5
perpendicular

theorem on, 47
Picard iteration, 177
Picard–Lindelöf theorem, 174
Plancherel

identity, 169, 170
point

accumulation, 30
fixed, 171

polynomial
trigonometric, 6

polynomial approximation, 67
polynomials

Chebyshev, 52
Laguerre, 53
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Legendre, 52
orthogonal, 52

Pontryagin’s duality, 162
positive

functional, 154
product

inner, 36
scalar, 36

product measure, 124, 138
projection

orthogonal, 74
Pythagoras’ school, 69
Pythagoras’ theorem, 46
Pythagoras’s theorem, 201

quantum mechanics, 33, 42

radius
spectral, 83

Radon–Nikodym theorem, 141
regular charge, 151
regular measure, 151
representation

of group, 66
algebra, of, 160
group, of, 160
Riesz, 156

resolvent, 80, 81
identity, first, 82
set, 80

resolvent set, 80
Riesz representation, 156
Riesz–Fischer theorem, 202
Riesz–Fisher theorem, 50
Riesz–Fréchet lemma, 57
Riesz–Fréchet theorem, 203
right inverse, 76
right shift operator, 73

scalar product, 36
school

Pythagoras’, 69
Schwartz space, 165
second category, 186
Segal–Bargmann space, 42
self-adjoint operator, see Hermitian operator,

203
semi-norm, 193
semiring, 113
separable Hilbert space, 54
separable kernel, 97, 204
separation of variables, 9

sequence
Cauchy, 25, 34
convergent, 19
orthogonal, 46
orthonormal, 46

complete , 51
sequential continuity, 23
sequentially compact, 29
series

Fourier, 7
Neumann, 81, 96

set
compact, 85
Borel, 151
bounded, 31
Cantor, 121, 124
closed, 16
convex, 35, 46, 172
dense, 18
measurable

Carathéodory, 118
Lebesgue, 118

nowhere dense, 185
open, 15
resolvent, 80
symmetric difference, 118

shift
bilaterial right, 196

shift operator, 160
signed measure, see charge
simple function, 128

integral, 128
summable, 128

sine
Fourier coefficients, 7

singular value decomposition of compact
operator, 95

space
Banach, 35, 103
complete, 26
dual, 56
Hardy, 196
Hilbert, 38

separable, 54
inner product, 14, 37

complete, see Hilbert space
linear, 32
locally convex, 193
metric, 12, 32

complete, 34
isometric, 15
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normed, 14, 34
complete, see Banach space

of bounded linear operators, 75
Schwartz, 165
Segal–Bargmann, 42
vector, see linear space

space of finite sequences, 40
span

linear, 43
closed, 44

spectral properties of normal operators, 204
spectral radius, 83
spectral radius formula, 203
spectral radius:, 203
spectral theorem for compact normal

operators, 94, 204
spectrum, 80, 203
statement

Fejér, see theorem
Gram–Schmidt, see theorem
Riesz–Fisher, see theorem
Riesz–Fréchet, see lemma

step
function, 148, 167

sub-additive
countable sub-additivity, 117

subcover, 29
subsequence

convergent
quickly, 131, 137

quickly convergent, 131, 137
subspace, 40
subspaces, 201
sum

Cesàro, of, 60
Fejér, of, 59

summable
function, 129, 130
simple function, 128

sup-norm, 106
support of function, 156
symmetric difference of sets, 118
synthesis, 39
system

orthogonal, 46
orthonormal, 46

theorem
Baire’s category, 185
Banach fixed point, 171

Banach–Steinhaus Uniform Boundedness,
187

closed graph, 192
Egorov, 127
Fejér, of, 63
Fubini, 140
Gram–Schmidt, of, 52
Hahn-Banach, 110
Heine–Borel, 31, 85
implicit function, 182
inverse function, 181
Lebesgue, 119
Lebesgue on dominated convergence, 133
mean value, 172
monotone convergence, B. Levi, 135
on nearest point , 47
on orthonormal basis, 51
on perpendicular, 47
open mapping, 190
Picard–Lindelöf , 174
Pythagoras’, 46
Radon–Nikodym, 141
Riesz–Fisher, of, 50
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