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ABSTRACT. The course gives an overview of wavelets (or coherent states) construc-
tion and its realisations in applied and pure mathematics. After a short introduc-
tion to wavelets based on the representation theory of groups we will consider:

• Spaces of analytic functions with reproducing kernels: the Hardy and the
Bergman spaces, etc.;

• The Fock-Segal-Bargmann space and Berezin-Toeplitz quantisation;
• Functional calculus of self-adjoint operators;
• Elements of signal processing.

The variety of applications is essentially grouped just around three groups:
the Heisenberg group, SL2(R), and ax+ b group.
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Preface

The purpose of this course is to sketch in ten lectures a huge area related to
wavelets. There are no precise boundaries of this area: it overlaps with many other
subjects in pure mathematics and many applications in physics and engendering.
Moreover there are many different approaches to wavelets based on rather differ-
ent techniques. However this course is not intended to be complete and encyclo-
pedic. Our main goal is to generate an interest in wavelets and to show that much
of the theory and applications are related to groups and symmetries.

The word “wavelets” came to fashion about 15 years ago and is very popular
now. On the other hand the notion of wavelets resemble coherent states used in
quantum mechanics for 75 years already. Future analysis shows that many classic
objects (e.g. from complex analysis) known at least from XIX century are essen-
tially wavelets-coherent states too. This indicates that a significance of wavelets is
above just a current fashion.

We apply the name “wavelets” to the whole range of related objects to stress
their common origin and nature. Meanwhile the common usage of this term is
much narrower. Objects called “wavelets” by us usually appear as coherent states
(CS) in the literature. While commonly “wavelets” are coherent states related to
ax+ b group.
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CHAPTER 1

What Are Wavelets and What Are They Good for?

In this introductory lecture one would only sketch an answer to the above
question: even the whole course could not be enough for that. Now we just list
several instances of wavelets appeared in different areas. All mentioned topics will
be considered in greater details in following lectures.

Most of the listed facts should be well known to reader, we are just presenting
them in a way highlighting the common structure. Similarities and differences of
these instances of wavelets will be discussed in the final section 6.

1. Fourier Transform and Bases in Hilbert Spaces

We start from two basic examples which were at the beginning of harmonic
and functional analysis.

1.1. Fourier Series and Basis in Hilbert Space. Consider the space L2[−π,π]
of square integrable functions on [−π,π] with the Lebesgue measure. It is a Hilbert
space with a scalar product

(1.1) ⟨f1, f2⟩ =
1

π

π∫
−π

f1(x)f̄2(x)dx.

Let us introduce the set of functions

(1.2) e0(x) =
1

2
, e2n(x) = cosnx, e2n−11 = sinnx, where n ∈ N.

It is a straightforward calculation that

(1.3) ⟨ei, ej⟩ = δi−j,

where δi−j is the Kronecker delta. Moreover the set (1.2) is a maximal family of
functions in L2[−π,π] with the above property. In fact (1.3) could be taken as a
definition of orthonormal base in a Hilbert space H.

It worths to state main properties of the family (1.2) in the generality of an
arbitrary orthonormal base. For such a base ej the following is true [31, § III.5.1]:

• A base ei define a linear continuous mapping W : H → ℓ2(Z) of a vector
f ∈ H to a sequence of coefficients in ℓ2(Z) by the formula:

(1.4) f̂n = ⟨f, en⟩ .
• The above mapping is an isometry of the Hilbert spaces (the Parseval(-

Pythagoras) identity):

(1.5) ⟨f, f ′⟩ =
∞∑

j=−∞ f̂jf̂
′
j.

9



10 1. WHAT ARE WAVELETS?

• The mapping W could be inverted by an operator M : ℓ2(Z) → H,
namely we could reconstruct a vector f from its sequence of coefficients
as a linear combination of ej:

(1.6) f =

∞∑
j=−∞ fjej.

• From the above we could define a reproducing operator P = MW on H,
symbolically written by the Dirac bra and ket notations:

P =

∞∑
j=−∞ |ej⟩ ⟨ej| .

1.2. Fourier Transform. It is useful to compare the above properties of the
Fourier series with the Fourier integral transform. The later is defined in L2(R)
with the scalar product

(1.7) ⟨f1, f2⟩ =
1√
2π

∫
R
f1(t)f̄2(t)dt.

by means of functions:

(1.8) ea(t) = eiat, a ∈ R.

A replacement of the orthonormal property (1.3) is the following identity (cf. (1.10)):

(1.9) ⟨ea, eb⟩ = δ(a− b),

where δ(a − b) is the Dirac delta function and the identity is true in the sense of
distributions [31, § III.4.4].

The following is true [31, § IV.2.3]:
• Functions ea define a linear continuous mapping W : L2(Z) → L2(Z) by

the formula:

f̂(a) = ⟨f, ea⟩ =
1√
2π

∫
R
f(t)e−iat dt.

• The above mapping is an isometry of the Hilbert spaces (the Plancherel
identity):

⟨f, f ′⟩ =
〈
f̂, f̂ ′

〉
.

• The mapping W could be inverted by an operator M : L2(Z) → L2(Z),
i.e. we could reconstruct a function f from its Fourier transform as a
continuous linear combination of ea(t):

f =
1√
2π

∫
R
f̂(a)eiat da.

• The composition of the above two operators P = MW gives an integral
resolution (in the distributional sense) of the Dirac delta function δ(u−t):

(1.10) f(u) =

∫
R
f(t)

∫
R
ei(u−t)a dadt.

2. Complex Analysis and Reproducing Kernels

We move to the classic Hilbert spaces in complex analysis which are examples
of wavelets in pure mathematics. Particularly the first example named after G.H. Hardy,
probably the purest mathematician of all times and nations.
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2.1. The Hardy Space. Let H2(T) be the Hardy space of L2 functions on the unit
circle T with an analytic continuation inside the unit disk D. The scalar product is
defined as follows:

(2.1) ⟨f, f ′⟩ = 1

2π

∫
T
f(t)f̄ ′(t)dt.

We could consider a set of functions in H2(T) parametrised by a point a of D:

(2.2) ea(t) =
1

āeit − 1
.

Then we could find similarly to cases of the Fourier series and integral that:
• Functions ea(t) define a linear continuous mapping W : H2(T) → H2(D)

of a function on T to an analytic function in D:

f̂(a) = [Wf](a) = ⟨f, ea⟩

=
1

2π

∫
T
f(t)

(
1

āeit − 1

)
dt

=
1

2πi

∫
T

f(t)

a− eit
ieit dt

=
1

2πi

∫
T

f(t)

a− z
dz,(2.3)

This is the Cauchy integral formula, of course.
• The above mapping is an isometry of the Hilbert spaces H2(T) and H2(D),

where the scalar product on H2(D) defined as usual:

(2.4) ⟨f, f ′⟩ = lim
r→1

1

2π

π∫
−π

f(reit)f̄ ′(reit)dt.

• The mapping W could be inverted by an operator M : H2(D) → H2(T),
with a very simple definition:

(2.5) f(t) = lim
r→1

f̂(reit).

• From the above we could define a reproducing operator P = MW on
H2(T), which is essentially the Szegö singular integral operator. Considered
on L2(T) the operator P is an orthogonal projection on its closed sub-
space H2(T).

2.2. The Bergman Space. We consider the Bergman space in a way very similar
to the Hardy space above. Let L2(D) be the space of square integrable function
on D. There is a closed linear subspace—the Bergman space B2(D)—of analytic
functions in L2(D). We define a family of functions

ea(z) =
1

(āz− 1)2
, a ∈ D.

• Functions ea(z) define a linear continuous mapping W : L2(D) → B2(D) of
a square integrable function on D to an analytic function in D:

f̂(a) = [Wf](a) = ⟨f, ea⟩

=

∫
T

f(t)

(az̄− 1)2
dz,(2.6)

• The above mapping is an isometry of the Hilbert spaces if restricted to
B2(D) ⊂ L2(D), in fact it is the identity operator on B2(D).
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• Consequently W could be trivially “inverted” by the identity operator
M : B2(D) → B2(D).

• It is follows from the above that the operator P = MW = M = W is
reproducing on B2(D) and is orthogonal projection L2(D) onto B2(D).
This is the Bergman projection.

REMARK 2.1. In both cases of the Hardy and the Bergman spaces we meet
orthogonal projection P from the spaces of square integrable functions onto their
subspace of analytic functions. Let Mb be a (bounded) operator on L2 of multi-
plication by a bounded function b. It is easy to see that for any such b the Töplitz
operator Tb = PMb is a bounded operator on the subspace of analytical functions.
We will link later such operators with the wavelet theory.

3. Qantum Mechanics and Quantisation

Now we turn to the object which combines the beauty of the mentioned above
classic spaces of complex analysis and importance in applied area of quantum
mechanics. As in case of the Fourier integral we start from L2(R) with the scalar
product (1.7). Let us consider the family of functions:

ez(t) = e−(z̄2+t2)/2+
√
2z̄t, t ∈ R, z ∈ C.

Note that e0(t) = e−t2/2 is the celebrated Gaussian shown on Figure 1. All other
functions obtained from it by horizontal shifts and multiplication by a function
eipt which takes value on the unit circle in C. In quantum mechanical language
the function ez(t) with z = q+ip describes a state of a particle with an expectation
of its coordinate equal to q, an expectation of its momentum—p, and the minimal
value of product of coordinate and momentum dispersions [24, § 1.3]. We will
discuss a physical meaning in details letter on.

We again find a similar structure:
• Functions ez(t) define a linear continuous mapping W : L2(R) → SB2(C)

of square integrable function f(t) on R to an analytic function in C:

f̂(z) = [Wf](z) = ⟨f, ez⟩

=
1√
2π

∫
R
f(t)e−(z2+t2)/2+

√
2zt dt.(3.1)

Such analytic functions are square integrable on C with respect to the
Gaussian measure dβ(z) = e−|z|2dz and form Segal-Bargmann space SB2(C).

• The above mapping is an isometry of the Hilbert spaces L2(R) and SB2(C),
where the scalar product on SB2(C) defined as follows:

(3.2) ⟨f, f ′⟩ =
∫
C
f(z)f̄ ′(z)dβ(z).

• The mapping W could be inverted by an operator M : SB2(C) → L2(R)
such that the original functions is a linear combination of ez(t):

(3.3) f(t) =

∫
C
f̂(z)e−(z̄2+t2)/2+

√
2z̄t dβ(z).

• From the above we could define a reproducing operator P = MW on
L2(R) and P ′ = WM on SB2(C). The former gives yet another integral
resolution of the delta function, cf. the Fourier integral case. The later is
Segal-Bargmann projection. Considered on L2(C,dβ(z)) the operator P ′ is
an orthogonal projection on its closed subspace SB2(C). We again could
consider Töplitz operator of the form Tb = P ′Mb for a bounded function
b, cf. Remark 2.1.
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4. Signal Prosessing

FIGURE 1. An example of Windowed Fourier Transform

The Fourier series and integral appeared as a tool for decomposition of an ar-
bitrary oscillation (or signals) into a superposition of harmonic oscillations with
a fixed frequencies. This technique is quite successful in the cases then spectrum
of frequencies is independent from time or changes very slowly. But in many
common situation like music, speech, etc. this is not true and the Fourier trans-
formation is out of help.

To improve performance it is useful to introduce Windowed Fourier Transform
(WFT ). It analyses the spectrum of frequence of not entire signal but only a part
“seen” through a small windows. The position and size of the windows are among
parameters of WFT. An example of such a transformation is shown on Figure 1



14 1. WHAT ARE WAVELETS?

which is taken from the book [40], it is also instructional to view other pictures
from this book on-line.

The word “wavelets” is commonly attributed to the area of signal processing.
Decompositions of that type are of huge importance in signal processing and are
under active investigation. We will discuss this topic in details due to course.

5. Functional Calculus

In the above consideration we oftenly meet a decomposition of an arbitrary
function in to linear superposition of elementary ones, cf. (1.6), (2.6), (3.3). Because
functions are used as models for operators such formulas could be employed for
constructions of functional calculi. Particularly the Cauchy integral formula (2.2)
inspires the Riesz-Dunford functional calculus defined by the integral formula:

(5.1) f(A) =
1

2πi

∫
T

f(t)

A− z
dz,

for an operator A.

6. Discussion

The above consideration could rise many questions. We list now our answers
to some of them:

• Why is there a common pattern in the above different examples?
Opinions vary. Our feeling that the common structure related to the
symmetries. In each of the above case there is a group (or even several
groups) which is represented by transformations in the function spaces.
The groups are:

the Fourier series the group of integers Z;
the Fourier integral the group of reals R;

the Hardy space the SL2(R) group;
the Bergman space the SL2(R) group;

the Segal-Bargmann space the Heisenberg group H1;
the signal processing the ax+ b group.

For example all functions ax, which are essentially wavelets or coherent
states, could be obtained from the function e0 (mother wavelet or vacuum
vector) by means of the corresponding group.

• Why are there significant differences? (e.g. in the Hardy space the inverse
operator M (2.5) is not defined as an integral)
The above group are different with different properties, therefore pic-
tures generated by them even within a common scheme could signific-
ant differences. Even the same group could have representations with
very different properties. For example we will see later that the same
group SL2(R) group could generate analytic function theories of “el-
liptic” and “hyperbolic” types. By the way the mentioned operator M

(2.5) could be expressed as integral similar to the scalar product (2.4).
• Do groups provide the ultimate explanations in the above examples?

Probably not. One could expect the “ultimate explanation” only in a
very simple situation and we hope that the above examples are more
complicated and consequently interesting. But group do explain many
fundamental properties of the mentioned objects and allow to put many
different cases within a common framework (cf. with the Erlangen pro-
gram of F. Klein ;-).

http://www.cs.nyu.edu/cs/faculty/mallat/book.html
http://www.cs.nyu.edu/cs/faculty/mallat/book.html
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• In section 2 we meet the Cauchy integral formula. Are wavelets related to other
objects of complex analysis (Cauchy-Riemann equation, Laplacian, Taylor and
Lorant expansion, etc.)?
Yes. We will see it later. For the moment we will mention that the Taylor
expansion is a close relative of the Fourier series from the range of our
examples.

• Are groups useful in classification of known types of wavelets or they could help
to discover new one?
We already mentioned above few new objects derived from the group
approach: hyperbolic complex analysis and new types of functional cal-
culi of operators.

The following lecture should give answer to more questions. But before we
could proceed we will need a short overview of the representation theory.





CHAPTER 2

Groups and Homogeneous Spaces

Group theory and representation theory are themselves two enormous and
interesting subjects. However, they are auxiliary in our presentation and we are
forced to restrict our consideration to a brief overview.

Besides introduction to that areas presented in [41, 55] we recommend addi-
tionally the books [30,54]. The representation theory intensively uses tools of func-
tional analysis and on the other hand inspires its future development. We use the
book [31] for references on functional analysis here and recommend it as a nice
reading too.

1. Groups and Transformations

We start from the definition of the central object, which formalises the univer-
sal notion of symmetries [30, § 2.1].

DEFINITION 1.1. A transformation group G is a non-void set of mappings of a
certain set X into itself with the following properties:

(i) The identical map is included in G.
(ii) If g1 ∈ G and g2 ∈ G then g1g2 ∈ G.

(iii) If g ∈ G then g−1 exists and belongs to G.

EXERCISE 1.2. List all transformation groups on a set of three elements.

EXERCISE 1.3. Verify that the following sets are transformation groups:
(i) The group of permutations of n elements.

(ii) The group of rotations of the unit circle T.
(iii) The groups of shifts of the real line R and the plane R2.
(iv) The group of one-to-one linear maps of an n-dimensional vector space

over a field F onto itself.
(v) The group of linear-fractional (Möbius) transformations:

(1.1)
(
a b
c d

)
: z 7→ az+ b

cz+ d
,

of the extended complex plane such that ad− bc ̸= 0.

It is worth (and often done) to push abstraction one level higher and to keep
the group alone without the underlying space:

DEFINITION 1.4. An abstract group (or simply group) is a non-void set G on
which there is a law of group multiplication (i.e. mapping G × G → G) with the
properties:

(i) Associativity: g1(g2g3) = (g1g2)g3.
(ii) The existence of the identity: e ∈ G such that eg = ge = g for all g ∈ G.

(iii) The existence of the inverse: for every g ∈ G there exists g−1 ∈ G such
that gg−1 = g−1g = e.

EXERCISE 1.5. Check that
(i) any transformation group is an abstract group; and

17



18 2. GROUPS AND HOMOGENEOUS SPACES

(ii) any abstract group is isomorphic to a transformation group. HINT: Use
the action of the abstract group on itself by left (or rightthe right shift) shifts from
Exercise .⋄

If we forget the nature of the elements of a transformation group G as trans-
formations of a set X then we need to supply a separate “multiplication table” for
elements of G. By the previous Exercise both concepts are mathematically equi-
valent. However, an advantage of a transition to abstract groups is that the same
abstract group can act by transformations of apparently different sets.

EXERCISE 1.6. Check that the following transformation groups (cf. Example 1.3)
have the same law of multiplication, i.e. are equivalent as abstract groups:

(i) The group of isometric mapping of an equilateral triangle onto itself.
(ii) The group of all permutations of a set of three elements.

(iii) The group of invertible matrices of order 2 with coefficients in the field
of integers modulo 2.

(iv) The group of linear fractional transformations of the extended complex
plane generated by the mappings z 7→ z−1 and z 7→ 1− z.

HINT: Recall that linear fractional transformations are represented by matrices (1.1). Fur-
thermore, a linear fractional transformation is completely defined by the images of any
three different points (say, 0, 1 and ∞), see Exercise ??. What are images of 0, 1 and ∞
under the maps specified in 1.6(iv)?⋄

EXERCISE∗ 1.7. Expand the list in the above exercise.

It is much simpler to study groups with the following additional property.

DEFINITION 1.8. A group G is commutative (or abelian) if, for all g1, g2 ∈ G, we
have g1g2 = g2g1.

However, most of the interesting and important groups are non-commutative.

EXERCISE 1.9. Which groups among those listed in Exercises 1.2 and 1.3 are
commutative?

Groups may have some additional analytical structures, e.g. they can be a to-
pological space with a corresponding notion of limit and respective continuity. We
also assume that our topological groups are always locally compact [30, § 2.4], that
is there exists a compact neighbourhood of every point. It is common to assume
that the topological and group structures are in agreement:

DEFINITION 1.10. If, for a group G, group multiplication and inversion are
continuous mappings, then G is continuous group.

EXERCISE 1.11. (i) Describe topologies which make groups from Exer-
cises 1.2 and 1.3 continuous.

(ii) Show that a continuous group is locally compact if there exists a compact
neighbourhood of its identity.

An even better structure can be found among Lie groups [30, § 6], e.g. groups
with a differentiable law of multiplication. In the investigation of such groups, we
could employ the whole arsenal of analytical tools. Hereafter, most of the groups
studied will be Lie groups.

EXERCISE 1.12. Check that the following are non-commutative Lie (and, thus,
continuous) groups:

(i) The ax+ b group (or the affine group) [54, Ch. 7] of the real line: the set of
elements (a,b), a ∈ R+, b ∈ R with the group law:

(a,b) ∗ (a ′,b ′) = (aa ′,ab ′ + b).
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The identity is (1, 0) and (a,b)−1 = (a−1,−b/a).
(ii) The Heisenberg group H1 [Ch. 1]MTaylor86; 25; ?[]: a set of triples of real

numbers (s, x,y) with the group multiplication:

(1.2) (s, x,y) ∗ (s ′, x ′,y ′) = (s+ s ′ +
1

2
(x ′y− xy ′), x+ x ′,y+ y ′).

The identity is (0, 0, 0) and (s, x,y)−1 = (−s,−x,−y).

(iii) The SL2(R) group [27,38]: a set of 2×2 matrices
(
a b
c d

)
with real entries

a, b, c, d ∈ R and the determinant det = ad−bc equal to 1 and the group
law coinciding with matrix multiplication:(

a b
c d

)(
a ′ b ′

c ′ d ′

)
=

(
aa ′ + bc ′ ab ′ + bd ′

ca ′ + dc ′ cb ′ + dd ′

)
.

The identity is the unit matrix and(
a b
c d

)−1

=

(
d −b
−c a

)
.

The above three groups are behind many important results of real and com-
plex analysis [25, 27, 38,?Kisil06a] and we meet them many times later.

2. Subgroups and Homogeneous Spaces

A study of any mathematical object is facilitated by a decomposition into smal-
ler or simpler blocks. In the case of groups, we need the following:

DEFINITION 2.1. A subgroup of a group G is subset H ⊂ G such that the re-
striction of multiplication from G to H makes H a group itself.

EXERCISE 2.2. Show that the ax+ b group is a subgroup of SL2(R).

HINT: Consider matrices
1√
a

(
a b

0 1

)
.⋄

While abstract groups are a suitable language for investigation of their general
properties, we meet groups in applications as transformation groups acting on a
set X. We will describe the connections between those two viewpoints. It can
be approached either by having a homogeneous space build the class of isotropy
subgroups or by having a subgroup define respective homogeneous spaces. The
next two subsections explore both directions in detail.

2.1. From a Homogeneous Space to the Isotropy Subgroup. Let X be a set
and let us define, for a group G, an operation G : X → X of G on X. We say that a
subset S ⊂ X is G-invariant if g · s ∈ S for all g ∈ G and s ∈ S.

EXERCISE 2.3. Show that if S ⊂ X is G-invariant then its complement X \ S is
G-invariant as well.

Thus, if X has a non-trivial invariant subset, we can split X into disjoint parts.
The finest such decomposition is obtained from the following equivalence relation
on X, say, x1 ∼ x2, if and only if there exists g ∈ G such that gx1 = x2, with respect
to which X is a disjoint union of distinct orbits [37, § I.5], that is subsets of all gx0
with a fixed x0 ∈ X and arbitrary g ∈ G.

EXERCISE 2.4. Let the group SL2(R) act on C by means of linear-fractional
transformations (1.1). Show that there exist three orbits: the real axis R, the upper
R2

+ and lower R2
− half-planes:

R2
+ = {x± iy | x,y ∈ R, y > 0} and R2

− = {x± iy | x,y ∈ R, y < 0}.
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Thus, from now on, without loss of generality, we assume that the action of G
on X is transitive, i.e. for every x ∈ X we have

Gx :=
⋃
g∈G

gx = X.

In this case, X is G-homogeneous space.

EXERCISE 2.5. Show that either of the following conditions define a transitive
action of G on X:

(i) For two arbitrary points x1, x2 ∈ X, there exists g ∈ G such that gx1 = x2.
(ii) There is a point x0 ∈ X with the property that for an arbitrary point

x ∈ X, there exists g ∈ G such that gx0 = x.

EXERCISE 2.6. Show that, for any group G, we can define its action on X = G
as follows:

(i) The conjugation g : x 7→ gxg−1.
(ii) The left shift Λ(g) : x 7→ gx and the right shift R(g) : x 7→ xg−1.

The above actions define group homomorphisms from G to the transformation
group of G. However, the conjugation is trivial for all commutative groups.

EXERCISE 2.7. Show that:
(i) The set of elements Gx = {g ∈ G | gx = x} for a fixed point x ∈ X forms a

subgroup of G, which is called the isotropy (sub)group of x in G [37, § I.5].
(ii) For any x1, x2 ∈ X, isotropy subgroups Gx1

and Gx2
are conjugated, that

is, there exists g ∈ G such that Gx1
= g−1Gx2

g.

This provides a transition from a G-action on a homogeneous space X to a sub-
group of G, or even to an equivalence class of such subgroups under conjugation.

EXERCISE 2.8. Find a subgroup which corresponds to the given action of G on
X:

(i) Action of ax + b group on R by the formula: (a,b) : x 7→ ax + b for the
point x = 0.

(ii) Action of SL2(R) group on one of three orbit from Exercise 2.4 with re-
spective points x = 0, i and −i.

2.2. From a Subgroup to the Homogeneous Space. We can also go in the
opposite direction—given a subgroup of G, find the corresponding homogeneous
space. Let G be a group and H be its subgroup. Let us define the space of cosets
X = G/H by the equivalence relation: g1 ∼ g2 if there exists h ∈ H such that
g1 = g2h.

There is an important type of subgroups:

DEFINITION 2.8.1. A subgroup H of a group G is said to be normal if H is
invariant under conjugation, that is g−1hg ∈ H for all g ∈ G, h ∈ H.

The special role of normal subgroups is explained by the following property:

EXERCISE 2.8.2. Check that, the binary operation g1H · g2H = (g1g2)H, where
g1, g2 ∈ G, is well-defined on X = G/H. Furthermore, this operation turns X into
a group, called the quotient group.

In our studies normal subgroup will not appear and the set X = G/H will not
be a group. However, for any subgroup H ⊂ G the set X = G/H is a homogeneous
space under the left G-action g : g1H 7→ (gg1)H. For practical purposes it is more
convenient to have a parametrisation of X and express the above G-action through
those parameters, as shown below.



3. DIFFERENTIATION ON LIE GROUPS AND LIE ALGEBRAS 21

We define a function (section) [30, § 13.2] s : X → G such that it is a right inverse
to the natural projection p : G → G/H, i.e. p(s(x)) = x for all x ∈ X. Depending on
situation some additional properties of s may be required, e.g. continuity. In our
work we will usually need only that the section s is a measurable function.

EXERCISE 2.9. Check that, for any g ∈ G, we have s(p(g)) = gh, for some
h ∈ H depending on g.

Then, any g ∈ G has a unique decomposition of the form g = s(x)h, where
x = p(g) ∈ X and h ∈ H. We define a map r associated to s through the identities:

x = p(g), h = r(g) := s(x)−1g.

EXERCISE 2.10. Show that:
(i) X is a left G-space with the G-action defined in terms of maps s and p as

follows:

(2.1) g : x 7→ g · x = p(g ∗ s(x)),
where ∗ is the multiplication on G. This is illustrated by the diagram:

(2.2) G

p

��

g∗ // G

p

��
X

s

OO

g· // X

s

OO

(ii) The above action of G : X → X is transitive on X, thus X is a G-homogeneous
space.

(iii) The choice of a section s is not essential in the following sense. Let s1
and s2 be two maps, such that p(si(x)) = x for all x ∈ X, i = 1, 2. Then,
p(g ∗ s1(x)) = p(g ∗ s2(x)) for all g ∈ G.

Thus, starting from a subgroup H of a group G, we can define a G-homogeneous
space X = G/H.

3. Differentiation on Lie Groups and Lie Algebras

To do some analysis on groups, we need suitably-defined basic operations:
differentiation and integration.

Differentiation is naturally defined for Lie groups. If G is a Lie group and Gx

is its closed subgroup, then the homogeneous space G/Gx considered above is a
smooth manifold (and a loop as an algebraic object) for every x ∈ X [30, Thm. 2
in § 6.1]. Therefore, the one-to-one mapping G/Gx → X from § 2.2 induces a
structure of C∞-manifold on X. Thus, the class C∞

0 (X) of smooth functions with
compact supports on X has the natural definition.

For every Lie group G there is an associated Lie algebra g. This algebra can be
realised in many different ways. We will use the following two out of four listed
in [30, § 6.3].

3.1. One-parameter Subgroups and Lie Algebras. For the first realisation,
we consider a one-dimensional continuous subgroup x(t) of G as a group homo-
morphism of x : (R,+) → G. For such a homomorphism x, we have x(s + t) =
x(s)x(t) and x(0) = e.

EXERCISE 3.1. Check that the following subsets of elements parametrised by
t ∈ R are one-parameter subgroups:

(i) For the affine group: a(t) = (et, 0) and n(t) = (1, t).
(ii) For the Heisenberg group H1:

s(t) = (t, 0, 0), x(t) = (0, t, 0) and y(t) = (0, 0, t).
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(iii) For the group SL2(R):

a(t) =

(
e−t/2 0
0 et/2

)
, n(t) =

(
1 t
0 1

)
,(3.1)

b(t) =

(
cosh t

2 sinh t
2

sinh t
2 cosh t

2

)
, z(t) =

(
cos t sin t

− sin t cos t

)
.(3.2)

The one-parameter subgroup x(t) defines a tangent vector X = x ′(0) belong-
ing to the tangent space Te of G at e = x(0). The Lie algebra g can be identified
with this tangent space. The important exponential map exp : g → G works in the
opposite direction and is defined by expX = x(1) in the previous notations. For
the case of a matrix group, the exponent map can be explicitly realised through
the exponentiation of the matrix representing a tangent vector:

exp(A) = I+A+
A2

2
+

A3

3!
+

A4

4!
+ . . . .

EXERCISE 3.2. (i) Check that subgroups a(t), n(t), b(t) and z(t) from
Exercise 3.1(iii) are generated by the exponent map of the following zero-
trace matrices:

a(t) = exp

(
− t

2 0
0 t

2

)
, n(t) = exp

(
0 t
0 0

)
,(3.3)

b(t) = exp

(
0 t

2
t
2 0

)
, z(t) = exp

(
0 t
−t 0

)
.(3.4)

(ii) Check that for any g ∈ SL2(R) there is a unique (up to a parametrisation)
one-parameter subgroup passing g. Alternatively, the identity etX = esY

for some X, Y ∈ sl2 and t, s ∈ R implies X = uY for some u ∈ R.

3.2. Invariant Vector Fields and Lie Algebras. In the second realisation of the
Lie algebra, g is identified with the left (right) invariant vector fields on the group G,
that is, first-order differential operators X defined at every point of G and invariant
under the left (right) shifts: XΛ = ΛX (XR = RX). This realisation is particularly us-
able for a Lie group with an appropriate parametrisation. The following examples
describe different techniques for finding such invariant fields.

EXAMPLE 3.3. Let us build left (right) invariant vector fields on G—the ax+b
group using the plain definition. Take the basis {∂a,∂b} ({−∂a,−∂b}) of the tangent
space Te to G at its identity. We will propagate these vectors to an arbitrary point
through the invariance under shifts. That is, to find the value of the invariant field
at the point g = (a,b), we

(i) make the left (right) shift by g,
(ii) apply a differential operator from the basis of Te,

(iii) make the inverse left (right) shift by g−1 = ( 1
a
,−b

a
).

Thus, we will obtain the following invariant vector fields:

(3.5) Al = a∂a, Nl = a∂b; and Ar = −a∂a − b∂b, Nr = −∂b.

EXAMPLE 3.4. An alternative calculation for the same Lie algebra can be done
as follows. The Jacobians at g = (a,b) of the left and the right shifts

Λ(u, v) : f(a,b) 7→ f

(
a

u
,
b− v

u

)
, and R(u, v) : f(a,b) 7→ f(ua, va+ b)

by h = (u, v) are:

JΛ(h) =

(
1
u

0
0 1

u

)
, and JR(h) =

(
u 0
v 1

)
.
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Then the invariant vector fields are obtained by the transpose of Jacobians:(
Al

Nl

)
= JtΛ(g

−1)

(
∂a
∂b

)
=

(
a 0
0 a

)(
∂a
∂b

)
=

(
a∂a
a∂b

)
(
Ar

Nr

)
= JtR(g)

(
−∂a
−∂b

)
=

(
a b
0 1

)(
−∂a
−∂b

)
=

(
−a∂a − b∂b

−∂b

)
This rule is a very special case of the general theorem on the change of variables in
the calculus of pseudo-differential operators (PDO), cf. [§ 4.2]Shubin87 Thm. 18.1.17]Hor-
mander85; ?[; ?[].

EXAMPLE 3.5. Finally, we calculate the invariant vector fields on the ax +
b group through a connection to the above one-parameter subgroups. The left-
invariant vector field corresponding to the subgroup a(t) from Exercise 3.1(i) is
obtained through the differentiation of the right action of this subgroup:

[Alf](a,b) =
d

dt
f((a,b) ∗ (et, 0))

∣∣∣∣
t=0

=
d

dt
f(aet,b)

∣∣∣∣
t=0

= af ′a(a,b),

[Nlf](a,b) =
d

dt
f((a,b) ∗ (1, t))

∣∣∣∣
t=0

=
d

dt
f(a,at+ b)

∣∣∣∣
t=0

= af ′b(a,b).

Similarly, the right-invariant vector fields are obtained by the derivation of the left
action:

[Arf](a,b) =
d

dt
f((e−t, 0) ∗ (a,b))

∣∣∣∣
t=0

=
d

dt
f(e−ta, e−tb)

∣∣∣∣
t=0

= −af ′a(a,b) − bf ′b(a,b),

[Nrf](a,b) =
d

dt
f((1,−t) ∗ (a,b))

∣∣∣∣
t=0

=
d

dt
f(a,b− t)

∣∣∣∣
t=0

= −f ′b(a,b).

EXERCISE 3.6. Use the above techniques to calculate the following left (right)
invariant vector fields on the Heisenberg group:

(3.6) Sl(r) = ±∂s, Xl(r) = ±∂x − 1
2y∂s, Yl(r) = ±∂y + 1

2x∂s.

3.3. Commutator in Lie Algebras. The important operation in a Lie algebra
is a commutator. If the Lie algebra of a matrix group is realised by matrices, e.g.
Exercise 3.2, then the commutator is defined by the expression [A,B] = AB−BA in
terms of the respective matrix operations. If the Lie algebra is realised through left
(right) invariant first-order differential operators, then the commutator [A,B] =
AB − BA again defines a left (right) invariant first-order operator—an element of
the same Lie algebra.

Among the important properties of the commutator are its anti-commutativity
([A,B] = −[B,A]) and the Jacobi identity

(3.7) [A, [B,C]] + [B, [C,A]] + [C, [A,B]] = 0.

EXERCISE 3.7. Check the following commutation relations:
(i) For the Lie algebra (3.5) of the ax+ b group

[Al(r),Nl(r)] = Nl(r).
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(ii) For the Lie algebra (3.6) of Heisenberg group

(3.8) [Xl(r), Yl(r)] = Sl(r), [Xl(r),Sl(r)] = [Yl(r),Sl(r)] = 0.

These are the celebrated Heisenberg commutation relations, which are very
important in quantum mechanics.

(iii) Denote by A, B and Z the generators of the one-parameter subgroups
a(t), b(t) and z(t) in (3.3) and (3.4). The commutation relations in the
Lie algebra sl2 are

(3.9) [Z,A] = 2B, [Z,B] = −2A, [A,B] = − 1
2Z.

The procedure from Example 3.5 can also be used to calculate the derived action
of a G-action on a homogeneous space.

EXAMPLE 3.8. Consider the action of the ax+ b group on the real line associ-
ated with group’s name:

(a,b) : x 7→ ax+ b, x ∈ R.

Then, the derived action on the real line is:

[Adf](x) =
d

dt
f(e−tx)

∣∣∣∣
t=0

= −xf ′(x),

[Ndf](a,b) =
d

dt
f(x− t)

∣∣∣∣
t=0

= −f ′(x).

4. Integration on Groups

In order to perform an integration we need a suitable measure. A measure dµ
on X is called (left) invariant measure with respect to an operation of G on X if

(4.1)
∫
X

f(x)dµ(x) =

∫
X

f(g · x)dµ(x), for all g ∈ G, f(x) ∈ C∞
0 (X).

EXERCISE 4.1. Show that measure y−2dydx on the upper half-plane R2
+ is

invariant under action from Exercise 2.4.

Left invariant measures on X = G is called the (left) Haar measure. It always
exists and is uniquely defined up to a scalar multiplier [54, § 0.2]. An equivalent
formulation of (4.1) is: G operates on L2(X,dµ) by unitary operators. We will transfer
the Haar measure dµ from G to g via the exponential map exp : g → G and will
call it as the invariant measure on a Lie algebra g.

EXERCISE 4.2. Check that the following are Haar measures for corresponding
groups:

(i) The Lebesgue measure dx on the real line R.
(ii) The Lebesgue measure dϕ on the unit circle T.

(iii) dx/x is a Haar measure on the multiplicative group R+;
(iv) dxdy/(x2 + y2) is a Haar measure on the multiplicative group C \ {0},

with coordinates z = x+ iy.
(v) a−2 dadb and a−1 dadb are the left and right invariant measure on ax+

b group.
(vi) The Lebesgue measure dsdxdy of R3 for the Heisenberg group H1.

In this notes we assume all integrations on groups performed over the Haar meas-
ures.

EXERCISE 4.3. Show that invariant measure on a compact group G is finite
and thus can be normalised to total measure 1.
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The above simple result has surprisingly important consequences for repres-
entation theory of compact groups.

DEFINITION 4.4. The left convolution f1 ∗ f2 of two functions f1(g) and f2(g)
defined on a group G is

f1 ∗ f2(g) =
∫
G

f1(h) f2(h
−1g)dh

EXERCISE 4.5. Let k(g) ∈ L1(G,dµ) and operator K on L1(G,dµ) is the left
convolution operator with k, .i.e. K : f 7→ k ∗ f. Show that K commutes with all right
shifts on G.

The following Lemma characterizes linear subspaces of L1(G,dµ) invariant un-
der shifts in the term of ideals of convolution algebra L1(G,dµ) and is of the separate
interest.

LEMMA 4.6. A closed linear subspace H of L1(G,dµ) is invariant under left (right)
shifts if and only if H is a left (right) ideal of the right group convolution algebra L1(G,dµ).

PROOF. Of course we consider only the “right-invariance and right-convolution”
case. Then the other three cases are analogous. Let H be a closed linear subspace
of L1(G,dµ) invariant under right shifts and k(g) ∈ H. We will show the inclusion

(4.2) [f ∗ k]r(h) =
∫
G

f(g)k(hg)dµ(g) ∈ H,

for any f ∈ L1(G,dµ). Indeed, we can treat integral (4.2) as a limit of sums

(4.3)
N∑
j=1

f(gj)k(hgj)∆j.

But the last sum is simply a linear combination of vectors k(hgj) ∈ H (by the
invariance of H) with coefficients f(gj). Therefore sum (4.3) belongs to H and this
is true for integral (4.2) by the closeness of H.

Otherwise, let H be a right ideal in the group convolution algebra L1(G,dµ)
and let ϕj(g) ∈ L1(G,dµ) be an approximate unit of the algebra [20, § 13.2], i.e. for
any f ∈ L1(G,dµ) we have

[ϕj ∗ f]r(h) =
∫
G

ϕj(g)f(hg)dµ(g) → f(h), when j → ∞.

Then for k(g) ∈ H and for any h ′ ∈ G the right convolution

[ϕj ∗ k]r(hh ′) =

∫
G

ϕj(g)k(hh
′g)dµ(g) =

∫
G

ϕj(h
′−1g ′)k(hg ′)dµ(g ′), g ′ = h ′g,

from the first expression is tensing to k(hh ′) and from the second one belongs to
H (as a right ideal). Again the closeness of H implies k(hh ′) ∈ H that proves the
assertion. □





CHAPTER 3

Elements of the Representation Theory

1. Representations of Groups

Objects unveil their nature in actions. Groups act on other sets by means of
representations. A representation of a group G is a group homomorphism of G in
a transformation group of a set. It is a fundamental observation that linear objects
are easer to study. Therefore we begin from linear representations of groups.

DEFINITION 1.1. A linear continuous representation of a group G is a continuous
function T(g) on G with values in the group of non-degenerate linear continuous
transformation in a linear space H (either finite or infinite dimensional) such that
T(g) satisfies to the functional identity:

(1.1) T(g1g2) = T(g1) T(g2).

REMARK 1.2. If we have a representation of a group G by its action on a set X
we can use the following linearization procedure. Let us consider a linear space L(X)
of functions X → C which may be restricted by some additional requirements (e.g.
integrability, boundedness, continuity, etc.). There is a natural representation of G
on L(X) which produced by its action on X:

(1.2) g : f(x) 7→ ρgf(x) = f(g−1 · x), where g ∈ G, x ∈ X.

Clearly this representation is already linear. However in many practical cases the
formula for linearization (1.2) has some additional terms which are required to
make it, for example, unitary.

EXERCISE 1.3. Show that T(g−1) = T−1(g) and T(e) = I, where I is the identity
operator on H.

EXERCISE 1.4. Show that these are linear continuous representations of cor-
responding groups:

(i) Operators T(x) such that [T(x) f](t) = f(t+x) form a representation of R
in L2(R).

(ii) Operators T(n) such that T(n)ak = ak+n form a representation of Z in
ℓ2.

(iii) Operators T(a,b) defined by

(1.3) [T(a,b) f](x) =
√
af(ax+ b), a ∈ R+, b ∈ R

form a representation of ax+ b group in L2(R).
(iv) Operators T(s, x,y) defined by

(1.4) [T(s, x,y) f](t) = ei(2s−
√
2yt+xy)f(t−

√
2x)

form Schrödinger representation of the Heisenberg group H1 in L2(R).
(v) Operators T(g) defined by

(1.5) [T(g)f](t) =
1

ct+ d
f

(
at+ b

ct+ d

)
, where g−1 =

(
a b
c d

)
,

form a representation of SL2(R) in L2(R).

27
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In the sequel a representation always means linear continuous representation.
T(g) is an exact representation (or faithful representation if T(g) = I only for g = e.
The opposite case when T(g) = I for all g ∈ G is a trivial representation. The
space H is representation space and in most cases will be a Hilber space [31, § III.5].
If dimensionality of H is finite then T is a finite dimensional representation, in the
opposite case it is infinite dimensional representation.

We denote the scalar product on H by ⟨·, ·⟩. Let {ej} be an (finite or infinite)
orthonormal basis in H, i.e.

⟨ej, ej⟩ = δjk,

where δjk is the Kroneker delta, and linear span of {ej} is dense in H.

DEFINITION 1.5. The matrix elements tjk(g) of a representation T of a group G
(with respect to a basis {ej} in H) are complex valued functions on G defined by

(1.6) tjk(g) = ⟨T(g)ej, ek⟩ .

EXERCISE 1.6. Show that [55, § 1.1.3]
(i) T(g) ek =

∑
j tjk(g) ej.

(ii) tjk(g1g2) =
∑

n tjn(g1) tnk(g2).

It is typical mathematical questions to determine identical objects which may
have a different appearance. For representations it is solved in the following defin-
ition.

DEFINITION 1.7. Two representations T1 and T2 of the same group G in spaces
H1 and H2 correspondingly are equivalent representations if there exist a linear op-
erator A : H1 → H2 with the continuous inverse operator A−1 such that:

T2(g) = AT1(g)A
−1, ∀g ∈ G.

EXERCISE 1.8. Show that representation T(a,b) of ax+b group in L2(R) from
Exercise 1.4(iii) is equivalent to the representation

(1.7) [T1(a,b) f](x) =
ei

b
a

√
a
f
( x
a

)
.

HINT. Use the Fourier transform. □

The relation of equivalence is reflexive, symmetric, and transitive. Thus it splits
the set of all representations of a group G into classes of equivalent representations.
In the sequel we study group representations up to their equivalence classes only.

EXERCISE 1.9. Show that equivalent representations have the same matrix ele-
ments in appropriate basis.

DEFINITION 1.10. Let T be a representation of a group G in a Hilbert space H
The adjoint representation T ′(g) of G in H is defined by

T ′(g) =
(
T(g−1)

)∗
,

where ∗ denotes the adjoint operator in H.

EXERCISE 1.11. Show that
(i) T ′ is indeed a representation.

(ii) t ′jk(g) = t̄kj(g
−1).

Recall [31, § III.5.2] that a bijection U : H → H is a unitary operator if

⟨Ux,Uy⟩ = ⟨x,y⟩ , ∀x,y ∈ H.

EXERCISE 1.12. Show that UU∗ = I.
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DEFINITION 1.13. T is a unitary representation of a group G in a space H if T(g)
is a unitary operator for all g ∈ G. T1 and T2 are unitary equivalent representations if
T1 = UT2U

−1 for a unitary operator U.

EXERCISE 1.14. (i) Show that all representations from Exercises 1.4 are
unitary.

(ii) Show that representations from Exercises 1.4(iii) and 1.8 are unitary equi-
valent.

HINT. Take that the Fourier transform is unitary for granted. □

EXERCISE 1.15. Show that if a Lie group G is represented by unitary operat-
ors in H then its Lie algebra g is represented by selfadjoint (possibly unbounded)
operators in H.

The following definition have a sense for finite dimensional representations.

DEFINITION 1.16. A character of representation T is equal χ(g) = tr(T(g)), where
tr is the trace [31, § III.5.2 (Probl.)] of operator.

EXERCISE 1.17. Show that
(i) Characters of a representation T are constant on the adjoint elements

g−1hg, for all g ∈ G.
(ii) Character is an algebra homomorphism from an algebra of represent-

ations with Kronecker’s (tensor) multiplication [55, § 1.9] to complex
numbers.

HINT. Use that tr(AB) = tr(BA), tr(A + B) = trA + trB, and tr(A ⊗ B) =
trA trB. □

For infinite dimensional representation characters can be defined either as dis-
tributions [30, § 11.2] or in infinitesimal terms of Lie algebras [30, § 11.3].

The characters of a representation should not be confused with the following
notion.

DEFINITION 1.18. A character of a group G is a one-dimensional representation
of G.

EXERCISE 1.19. (i) Let χ be a character of a group G. Show that a char-
acter of representation χ coincides with it and thus is a character of G.

(ii) A matrix element of a group character χ coincides with χ.
(iii) Let χ1 and χ1 be characters of a group G. Show that χ1 ⊗ χ2 = χ1χ2 and

χ ′(g) = χ1(g
−1) are again characters of G. In other words characters of a

group form a group themselves.

2. Decomposition of Representations

The important part of any mathematical theory is classification theorems on
structural properties of objects. Very well known examples are:

(i) The main theorem of arithmetic on unique representation an integer as
a product of powers of prime numbers.

(ii) Jordan’s normal form of a matrix.
The similar structural results in the representation theory are very difficult. The
easiest (but still rather difficult) questions are on classification of unitary repres-
entations up to unitary equivalence.

DEFINITION 2.1. Let T be a representation of G in H. A linear subspace L ⊂ H
is invariant subspace for T if for any x ∈ L and any g ∈ G the vector T(g)x again
belong to L.
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There are always two trivial invariant subspaces: the null space and entire H.
All other are non-trivial invariant subspaces.

DEFINITION 2.2. If there are only two trivial invariant subspaces then T is
irreducible representation. Otherwise we have reducible representation.

For any non-trivial invariant subspace we can define the restriction of represent-
ation of T on it. In this way we obtain a subrepresentation of T .

EXAMPLE 2.3. Let T(a), a ∈ R+ be defined as follows: [T(a)]f(x) = f(ax).
Then spaces of even and odd functions are invariant.

DEFINITION 2.4. If the closure of liner span of all vectors T(g)v is dense in H
then v is called cyclic vector for T .

EXERCISE 2.5. Show that for an irreducible representation any non-zero vector
is cyclic.

The following important result of representation theory of compact groups is
a consequence of the Exercise 4.3 and we state here it without a proof.

THEOREM 2.6. [30, § 9.2]
(i) Every topologically irreducible representation of a compact group G is finite-

dimensional and unitarizable.
(ii) If T1 and T2 are two inequivalent irreducible representations, then every matrix

element of T1 is orthogonal in L2(G) to every matrix element of T2.
(iii) For a compact group G its dual space Ĝ is discrete.

The important property of unitary representation is complete reducibility.

EXERCISE 2.7. Let a unitary representation T has an invariant subspace L ⊂ H,
then its orthogonal completion L⊥ is also invariant.

DEFINITION 2.8. A representation on H is called decomposable if there are
two non-trivial invariant subspaces H1 and H2 of H such that H = H1 ⊕H2.

If a representation is not decomposable then its primary.

THEOREM 2.9. [30, § 8.4] Any unitary representation T of a locally compact group G
can be decomposed in a (continuous) direct sum irreducible representations: T =

∫
X
Tx dµ(x).

The necessity of continuous sums appeared in very simple examples:

EXERCISE 2.10. Let T be a representation of R in L2(R) as follows: [T(a)f](x) =
eiaxf(x). Show that

(i) Any measurable set E ⊂ R define an invariant subspace of functions
vanishing outside E.

(ii) T does not have invariant irreducible subrepresentations.

DEFINITION 2.11. The set of equivalence classes of unitary irreducible repres-
entations of a group G is denoted by Ĝ and called dual object (or dual space) of the
group G.

DEFINITION 2.12. A left regular representation Λ(g) of a group G is the repres-
entation by left shifts in the space L2(G) of square-integrable function on G with
the left Haar measure

(2.1) Λg : f(h) 7→ f(g−1h).

The main problem of representation theory is to decompose a left regular representa-
tion Λ(g) into irreducible components.
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3. Invariant Operators and Schur’s Lemma

It is a pleasant feature of an abstract theory that we obtain important general
statements from simple observations. Finiteness of invariant measure on a com-
pact group is one such example. Another example is Schur’s Lemma presented
here.

To find different classes of representations we need to compare them each
other. This is done by intertwining operators.

DEFINITION 3.1. Let T1 and T2 are representations of a group G in a spaces
H1 and H2 correspondingly. An operator A : H1 → H2 is called an intertwining
operator if

AT1(g) = T2(g)A, ∀g ∈ G.

If T1 = T2 = T then A is interntwinig operator or commuting operator for T .

EXERCISE 3.2. Let G, H, T(g), and A be as above. Show the following: [55,
§ 1.3.1]

(i) Let x ∈ H be an eigenvector for A with eigenvalue λ. Then T(g)x for all
g ∈ G are eigenvectors of A with the same eigenvalue λ.

(ii) All eigenvectors of A with a fixed eigenvalue λ for a linear subspace
invariant under all T(g), g ∈ G.

(iii) If an operator A is commuting with irreducible representation T then
A = λI.

HINT. Use the spectral decomposition of selfadjoint operators [31, § V.2.2].
□

The next result have very important applications.

LEMMA 3.3 (Schur). [30, § 8.2] If two representations T1 and T2 of a group G are
irreducible, then every intertwining operator between them is either zero or invertible.

HINT. Consider subspaces kerA ⊂ H1 and imA ⊂ H2. □

EXERCISE 3.4. Show that
(i) Two irreducible representations are either equivalent or disjunctive.

(ii) All operators commuting with an irreducible representation form a field.
(iii) Irreducible representation of commutative group are one-dimensional.
(iv) If T is unitary irreducible representation in H and B(·, ·) is a bounded

semi linear form in H invariant under T : B(T(g)x, T(g)y) = B(x, y) then
B(·, ·) = λ ⟨·, ·⟩.

HINT. Use that B(·, ·) = ⟨A·, ·⟩ for some A [31, § III.5.1]. □

4. Induced Representations

The general scheme of induced representations is as follows, see [30, § 13.2;
33, § 3.1; 54, Ch. 5; ?Folland95, Ch. 6] and subsection 2.2. Let G be a group and let
H be its subgroup. Let X = G/H be the corresponding left homogeneous space and
s : X → G be a continuous function (section) [30, § 13.2] which is a right inverse to
the natural projection p : G → G/H.

Then any g ∈ G has a unique decomposition of the form g = s(x)h−1 where
x = p(g) ∈ X and h ∈ H. We define the map r : G → H:

(4.1) r(g) = s(x)−1g, where x = p(g).

Note that X is a left homogeneous space with the G-action defined in terms of p
and s as follows, see Ex. 2.10:

(4.2) g : x 7→ g · x = p(g ∗ s(x)),
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where ∗ is the multiplication on G. A useful consequences of the above formulae
is:

s(x) = g ∗ s(y) ∗ (r(g ∗ s(y)))−1,(4.3)

r(g−1 ∗ s(x)) = r(g ∗ s(y)), where y = g−1 · x for x,y ∈ X and g ∈ G.(4.4)

Let χ : H → B(V) be a linear representation of H in a vector space V , e.g. by
unitary rotations in the algebra of either complex, dual or double numbers. Then
χ induces a linear representation of G, which is known as induced representation in
the sense of Mackey [30, § 13.2]. This representation has the canonical realisation ρ
in a space of V-valued functions on X. It is given by the formula (cf. [30, § 13.2.(7)–
(9)]):

(4.5) [ρχ(g)f](x) = χ(r(g−1 ∗ s(x))) f(g−1 · x),
where g ∈ G, x ∈ X, h ∈ H and r : G → H, s : X → G are maps defined above;
∗ denotes multiplication on G and · denotes the action (4.2) of G on X from the left.

In the case of complex numbers this representation automatically becomes
unitary in the space L2(X) of the functions square integrable with respect to a
measure dµ if instead of the representation χ one uses the following substitute:

(4.6) χ0(h) = χ(h)

(
dµ(h · x)
dµ(x)

) 1
2

.

However in our study the unitarity of representations or its proper replacements
is a more subtle issue and we will consider it separately.

An alternative construction of induced representations is realised on the space
of functions on G which have the following property:

(4.7) F(gh) = χ(h)F(g), for all h ∈ H.

This space is invariant under the left shifts. The restriction of the left regular rep-
resentation to this subspace is equivalent to the induced representation described
above.

EXERCISE 4.1. (i) Write the intertwining operator for this equivalence.
(ii) Define the corresponding inner product on the space of functions 4.7 in

such a way that the above intertwining operator becomes unitary.

HINT. Use the map s : X → G. □



CHAPTER 4

Wavelets on Groups and Square Integrable
Representations

A matured mathematical theory looks like a tree. There is a solid trunk which
supports all branches and leaves but could not be alive without them. In the case
of group approach to wavelets the trunk of the theory is a construction of wavelets
from a square integrable representation [10], [?AliAntGaz00, Chap. 8]. We begin from
this trunk which is a model for many different generalisations and will continue
with some smaller “generalising” branches later.

1. Wavelet Transform on Groups

Let G be a group with a left Haar measure dµ and let ρ be a unitary irreducible
representation of a group G by operators ρg, g ∈ G in a Hilbert space H.

DEFINITION 1.1. Let us fix a vector w0 ∈ H. We call w0 ∈ H a vacuum vector
or a mother wavelet (other less-used names are ground state, fiducial vector, etc.). We
will say that set of vectors wg = ρ(g)w0, g ∈ G form a family of coherent states
(wavelets).

EXERCISE 1.2. If ρ is irreducible then wg, g ∈ G is a total set in H, i.e. the linear
span of these vectors is dense in H.

The wavelet transform can be defined as a mapping from H to a space of func-
tions over G via its representational coefficients (also known as matrix coefficients):

(1.1) W : v 7→ v̂(g) =
〈
ρ(g−1)v,w0

〉
= ⟨v, ρ(g)w0⟩ = ⟨v,wg⟩ .

EXERCISE 1.3. Show that the wavelet transform W is a continuous linear map-
ping and the image of a vector is a bounded continuous function on G. The liner
space of all such images is denoted by W(G).

EXERCISE 1.4. Let a Hilbert space H has a basis ej, j ∈ Z and a unitary rep-
resentation ρ of G = Z defined by ρ(k)ej = ej+k. Write a formula for wavelet
transform with w0 = e0 and characterise W(Z).

ANSWER. v̂(n) = ⟨v, en⟩. □

EXERCISE 1.5. Let G be ax+ b group and ρ is given by (cf. (1.3)):

(1.2) [T(a,b) f](x) =
1√
a
f

(
x− b

a

)
,

in L2(R). Show that
(i) The representation is reducible and describe its irreducible components.

(ii) for w0(x) =
1

2πi(x+i) coherent states are v(a,b)(x) =
√
a

2πi(x−(b−ia)) .
(iii) Wavelet transform is given by

v̂(a,b) =

√
a

2πi

∫
R

v(x)

x− (b+ ia)
dx,

which resembles the Cauchy integral formula.

33
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(iv) Give a characteristic of W(G).
(v) Write the wavelet transform for the same representation of the group

ax+b and the Gaussian (or Gauss function)e−x2/2 (see Fig. 1) as a mother
wavelets.

y

−2 −1 0 1 2
x

e−x2/2

1

FIGURE 1. The Gaussian function e−x2/2.

PROPOSITION 1.6. The wavelet transform W intertwines ρ and the left regular rep-
resentation Λ (2.1) of G:

Wρ(g) = Λ(g)W.

PROOF. We have:

[W(ρ(g)v)](h) =
〈
ρ(h−1)ρ(g)v,w0

〉
=

〈
ρ((g−1h)−1)v,w0

〉
= [Wv](g−1h)

= [Λ(g)Wv](h).

□

COROLLARY 1.7. The function space W(G) is invariant under the representation Λ
of G.

Wavelet transform maps vectors of H to functions on G. We can consider a
map in the opposite direction sends a function on G to a vector in H.

DEFINITION 1.8. The inverse wavelet transform Mw′
0

associated with a vector
w ′

0 ∈ H maps L1(G) to H and is given by the formula:

Mw′
0
: L1(G) → H : v̂(g) 7→ M[v̂(g)] =

∫
G

v̂(g)w ′
g dµ(g)

=

∫
G

v̂(g)ρ(g)dµ(g)w ′
0,(1.3)

where in the last formula the integral express an operator acting on vector w ′
0.

EXERCISE 1.9. Write inverse wavelet transforms for Exercises 1.4 and 1.5.

ANSWER. (i) For Exercises 1.4: v =
∑∞

−∞ v̂(n)en.
(ii) For Exercises 1.5:

v(x) =
1

2πi

∫
R2

+

v̂(a,b)

x− (b− ia)

dadb

a
3
2

.

□

LEMMA 1.10. If the wavelet transform W and inverse wavelet transform M are
defined by the same vector w0 then they are adjoint operators: W∗ = M.
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PROOF. We have:

⟨Mv̂,wg⟩ =

〈∫
G

v̂(g ′)wg′ dµ(g ′),wg

〉
=

∫
G

v̂(g ′) ⟨wg′ ,wg⟩ dµ(g ′)

=

∫
G

v̂(g ′)⟨wg,wg′⟩dµ(g ′)

= ⟨v̂,Wwg⟩ ,
where the scalar product in the first line is on H and in the last line is on L2(G).
Now the result follows from the totality of coherent states wg in H. □

PROPOSITION 1.11. The inverse wavelet transform M intertwines the representation
Λ (2.1) on L2(G) and ρ on H:

MΛ(g) = ρ(g)M.

PROOF. We have:

M[Λ(g)v̂(h)] = M[v̂(g−1h)]

=

∫
G

v̂(g−1h)wh dµ(h)

=

∫
G

v̂(h ′)w ′
gh′ dµ(h ′)

= ρ(g)

∫
G

v̂(h ′)w ′
h′ dµ(h ′)

= ρ(g)M[v̂(h ′)],

where h ′ = g−1h. □

COROLLARY 1.12. The image M(L1(G)) ⊂ H of subspace under the inverse wavelet
transform M is invariant under the representation ρ.

An important particular case of such an invariant subspace is Gårding space.

DEFINITION 1.13. Let C0∞(G) be the space of infinitely differentiable functions
with compact supports. Then for the given representation ρ in H the Gårding
space G(ρ) ⊂ H is the image of C0∞(G) under the inverse wavelet transform with
all possible reconstruction vectors:

G(ρ) = {Mwϕ | w ∈ H,ϕ ∈ C0∞(G)}.

COROLLARY 1.14. The Gårding space is invariant under the derived representation
dρ.

The following proposition explain the usage of the name “inverse” (not “ad-
joint” as it could be expected from Lemma 1.10) for M.

THEOREM 1.15. The operator

(1.4) P = MW : H → H

maps H into its linear subspace for which w ′
0 is cyclic. Particularly if ρ is an irreducible

representation then P is cI for some constant c depending from w0 and w ′
0.

PROOF. It follows from Propositions 1.6 and 1.11 that operator MW : H → H
intertwines ρ with itself. Then Corollaries 1.7 and 1.12 imply that the image MW

is a ρ-invariant subspace of H containing w0. From irreducibility of ρ by Schur’s
Lemma [30, § 8.2] one concludes that MW = cI on C for a constant c ∈ C. □
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REMARK 1.16. From Exercises 1.4 and 1.9 it follows that irreducibility of ρ is
not necessary for MW = cI, it is sufficient that w0 and w ′

0 are cyclic only.

We have similarly

THEOREM 1.17. Operator WM is up to a complex multiplier a projection of L1(G)
to W(G).

2. Square Integrable Representations

So far our consideration of wavelets was mainly algebraic. Usually in ana-
lysis we wish that the wavelet transform can preserve an analytic structure, e.g.
values of scalar product in Hilbert spaces. This accomplished if a representation ρ
possesses the following property.

DEFINITION 2.1. [30, § 9.3] Let a group G with a left Haar measure dµ have
a unitary representation ρ : G → L(H). A vector w ∈ H is called admissible vector
if the function ŵ(g) = ⟨ρ(g)w,w⟩ is non-void and square integrable on G with
respect to dµ:

(2.1) 0 < c2 =

∫
G

⟨ρ(g)w,w⟩ ⟨w, ρ(g)w⟩ dµ(g) < ∞.

If an admissible vector exists then ρ is a square integrable representation.

Square integrable representations of groups have many interesting properties
(see [21, § 14] for unimodular groups and [22], [?AliAntGaz00, Chap. 8] for not
unimodular generalisation) which are crucial in the construction of wavelets. For
example, for a square integrable representation all functions ⟨ρ(g)v1, v2⟩ with an
admissible vector v1 and any v2 ∈ H are square integrable on G; such representa-
tion belong to dicrete series; etc.

EXERCISE 2.2. Show that
(i) Admissible vectors form a linear space.

(ii) For an irreducible ρ the set of admissible vectors is dense in H or empty.

HINT. The set of all admissible vectors is an ρ-invariant subspace of H. □

EXERCISE 2.3. (i) Find a condition for a vector to be admissible for the
representation (1.2) (and therefore the representation is square integ-
rable).

(ii) Show that w0(x) =
1

2πi(x+i) is admissible for ax+ b group.

(iii) Show that the Gaussian e−x2
is not admissible for ax+ b group.

For an admissible vector w we take its normalisation w0 = ∥w∥
c

w to obtain:

(2.2)
∫
G

|⟨ρ(g)w0,w0⟩|2 dµ(g) = ∥w0∥2 .

Such a w0 as a vacuum state produces many useful properties.

PROPOSITION 2.4. If both wavelet transform W and inverse wavelet transform M

for an irreducible square integrable representation ρ are defined by the same admissible
vector w0 then the following three statements are equivalent:

(i) w0 satisfy (2.2);
(ii) MW = I;

(iii) for any vectors v1, v2 ∈ H:

(2.3) ⟨v1, v2⟩ =
∫
G

v̂1(g)v̂2(g)dµ(g).
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PROOF. We already knew that MW = cI for a constant c ∈ C. Then (2.2)
exactly says that c = 1. Because W and M are adjoint operators it follows from
MW = I on H that:

⟨v1, v2⟩ = ⟨MWv1, v2⟩ = ⟨Wv1,M
∗v2⟩ = ⟨Wv1,Wv2⟩ ,

which is exactly the isometry of W (2.3). Finally condition (2.2) is a partticular
case of general isometry of W for vector w0. □

EXERCISE 2.5. Write the isometry conditions (2.3) for wavelet transforms for
Z and ax+ b groups (Exercises 1.4 and 1.5).

Wavelets from square integrable representation closely related to the follow-
ing notion:

DEFINITION 2.6. A reproducing kernel on a set X with a measure is a function
K(x,y) such that:

K(x, x) > 0, ∀x ∈ X,(2.4)

K(x,y) = K(y, x),(2.5)

K(x, z) =

∫
X

K(x,y)K(y, z)dy.(2.6)

PROPOSITION 2.7. The image W(G) of the wavelet transform W has a reproducing
kernel K(g,g ′) = ⟨wg,wg′⟩. The reproducing formula is in fact a convolution:

v̂(g ′) =

∫
G

K(g ′,g)v̂(g)dµ(g)

=

∫
G

ŵ0(g
−1g ′)v̂(g)dµ(g)(2.7)

with a wavelet transform of the vacuum vector ŵ0(g) = ⟨w0, ρ(g)w0⟩.

PROOF. Again we have a simple application of the previous formulas:

v̂(g ′) =
〈
ρ(g ′−1)v,w0

〉
=

∫
G

〈
ρ(h−1)ρ(g ′−1)v,w0

〉
⟨ρ(h−1)w0,w0⟩dµ(h)(2.8)

=

∫
G

〈
ρ((g ′h)−1)v,w0

〉
⟨ρ(h)w0,w0⟩ dµ(h)

=

∫
G

v̂(g ′h) ŵ0(h
−1)dµ(h)

=

∫
G

v̂(g) ŵ0(g
−1g ′)dµ(g),

where transformation (2.8) is due to (2.3). □

EXERCISE 2.8. Write reproducing kernels for wavelet transforms for Z and
ax+ b groups (Exercises 1.4 and 1.5.

EXERCISE∗ 2.9. Operator (2.7) of convolution with ŵ0 is an orthogonal projec-
tion of L2(G) onto W(G).

HINT. Use that an left invariant subspace of L2(G) is in fact an right ideal in
convolution algebra, see Lemma 4.6. □

REMARK 2.10. To possess a reproducing kernel—is a well-known property
of spaces of analytic functions. The space W(G) shares also another important
property of analytic functions: it belongs to a kernel of a certain first order differ-
ential operator with Clifford coefficients (the Dirac operator) and a second order
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operator with scalar coefficients (the Laplace operator) [4, 33–35], which we will
consider that later too.

We consider only fundamentals of the wavelet construction here. There are
much results which can be stated in an abstract level. To avoid repetition we will
formulate it later on together with an interesting examples of applications.

The construction of wavelets from square integrable representations is general
and straightforward. However we can not use it everywhere we may wish:

(i) Some important representations are not square integrable.
(ii) Some groups, e.g. Hn, do not have square representations at all.

(iii) Even if representation is square integrable, some important vacuum vec-
tors are not admissible, e.g. the Gaussian e−x2

in 2.3(iii).
(iv) Sometimes we are interested in Banach spaces, while unitary square in-

tegrable representations are acting only on Hilbert spaces.
To be vivid the trunk of the wavelets theory should split into several branches

adopted to particular cases and we describe some of them in the next lectures.



CHAPTER 5

Wavelets on Homogeneous Spaces: the
Segal-Bargmann Space

We investigate a situation when a representation ρ of G is not square integrable
in the sense of the previous Lecture but is square integrable modulo subgroup. An
example which we use for illustration is the classic construction from quantum
mechanics and is origin of coherent states.

1. Quantum Mechanical Setting

We begin from a statement of quantum problem [5, 45] which could be nat-
urally solved in the terms of wavelet transform. Mathematical formulation of
quantum mechanics could be founded for example in [39], [31, § V.3].

The states of a quantum mechanical system of n degrees of freedom (e.g. particle)
are usually described by a function from the space H = L2(Rn). Depending on a
physical interpretation it could be considered either as configuration space with real
variables (q1,q2, . . . ,qn) describing coordinates of the particle or momentum space
with real variables (p1,p2, . . . ,pn) describing its momenta. One could move from
one description to another by the Fourier transform. Elements of H are also called
wave functions.

The observables of the system are self-adjoint (possibly unbounded) operators
on H. The result of measurement of an observable A on a state (wave function) ϕ
with ∥ϕ∥ = 1 is a random distribution with an expectation ⟨A⟩ϕ:

⟨A⟩ϕ = ⟨Aϕ,ϕ⟩

EXERCISE 1.1. Let we could find all expectations ⟨A⟩ϕ for a fixed ϕ and any
self-adjoint A. Show that we may calculate the random distributions of measure-
ment.

HINT. Use expectation
〈
χ[a,b](A)ϕ,ϕ

〉
, where χ[a,b](A) is a spectral projec-

tion of A on the interval [a,b] [31, § V.1.3] to find a probability that the result of
measurement of A on ϕ will be within interval [a,b]. □

Among observables there is a special set of 2n primary ones: these are n ob-
servables of coordinates q1, . . . , qn and n observables of momentum p1, . . . , pn.
All other observables usually could be expressed by means of primary ones: either
as functions [39] or as wavelets [34]. The relation between primary observables are
given by the Heisenberg commutation relations, i.e. the only non-trivial commutators
among them are:

(1.1) [qj,pk] = i hδjkI.

EXERCISE 1.2. Check that the Heisenberg commutation relations (1.1) define
a representation of the Lie Algebra of the Heisenberg group Hn.

Therefore a realisation of primary observables as self-adjoint operators H is
connected with a unitary representation of the Heisenberg group in L2(Rn). We
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already met it, this is the Schrödinger representation (1.4):

(1.2) [ρ h(s, x,y) f](q) = ei(2
 hs−

√
2 hxq+ hxy)f(q−

√
2 hy).

(the representation (1.4) correspond to the case  h = 1).
The important result is the following theorem which asserts that we know all

possible realisation of the Heisenberg commutation relations (1.1).

THEOREM 1.3 (Stone-von Neumann). [30, § 18.4], [54, § 1.2] All unitary irredu-
cible representations of the Heisenberg group Hn up to unitary equivalence are as follows

(i) For any  h ∈ (0,∞) the Schrödinger irreducible noncommutative unitary rep-
resentations in L2(Rn)

(1.3) ρ± h(s, x,y) = ei(±s· hI±x· h1/2M+y· h1/2D),

where xM and yD are such unbounded self-adjoint operators on L2(Rn):

(x ·  h1/2M)u(q) =  h1/2
∑

xjqju(q),(1.4)

(y ·  h1/2D)u(q) =
 h1/2

i

∑
yj

∂u(q)

∂qj
.(1.5)

(ii) For (q,p) ∈ R2n commutative one-dimensional representations on C:

(1.6) ρ(q,p)(s, x,y)u = ei(qx+py)u, u ∈ C.

Therefore there is essentially unique model for a quantum mechanical particle.
Nevertheless it is worthwhile to look for some models which can act as alternatives
for the Schrödinger representation. In particular, the Segal-Bargmann representa-
tion [5, 45] serves to

• give a realisation of states by “true” functions, not an equivalent classes
from L2(Rn.

• give a geometric representation of the dynamics of the harmonic oscil-
lators;

• present a nice model for the creation and annihilation operator:

(1.7) a+
j =

1√
2
(qj + ipj), a−

j =
1√
2
(qj − ipj),

which are important for quantum field theory;
• allow applying tools of analytic function theory.

The huge abilities of the Segal-Bargmann (or Fock [23]) model are not yet com-
pletely employed, see for example new ideas in a recent paper [42].

Since the Segal-Bargmann model should give a representation Hn which is
unitary equivalent to the Schrödinger one then it is naturally to construct an inter-
twining operator between them as a wavelet transform.

2. Fundamentals of Wavelets on Homogeneous Spaces

Let G be a group and G0 be its closed subgroup. Let X = G/G0 be the corres-
ponding homogeneous space with a left invariant measure dµ. Let s : X → G be a
Borel section in the principal bundle G → G/g0. Let ρ be a continuous represent-
ation of a group G by invertible unitary operators ρ(g), g ∈ G in a Hilbert space
H.

For any g ∈ G there is a unique decomposition of the form g = s(x)h, h ∈ G0,
x ∈ X. We will define r : G → G0 : r(g) = h = (s−1(g))−1g from the previous
equality and write a formal notation x = s−1(g). Then there is a geometric action
of G on X → X defined as follows

g : x 7→ g−1 · x = s−1(g−1s(x)).
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EXAMPLE 2.1. As a subgroup G0 we select now the center of Hn consisting of
elements (t, 0). Of course X = G/G0 isomorphic to Cn and mapping s : Cn → G
simply is defined as s(z) = (0, z). The Haar measure on Hn coincides with the
standard Lebesgue measure on R2n+1 [54, § 1.1] thus the invariant measure on X
also coincides with the Lebesgue measure on Cn. Note also that composition law
s−1(g ·s(z)) reduces to Euclidean shifts on Cn. We also find s−1((s(z1))

−1 ·s(z2)) =
z2 − z1 and r((s(z1))

−1 · s(z2)) = 1
2ℑz̄1z2.

DEFINITION 2.2. Let G, G0, X = G/G0, s : X → G, ρ : G → L(H) be as above.
We say that w0 ∈ H is a vacuum vector if it satisfies to the following two conditions:

ρ(h)w0 = χ(h)w0, χ(h) ∈ C, for all h ∈ G0;(2.1) ∫
X

|⟨w0, ρ(s(x))w0⟩|2 dx = ∥w0∥2 .(2.2)

We will say that set of vectors wx = ρ(x)w0, x ∈ X form a family of coherent states.

Note that mapping h → χ(h) from (2.1) defines a character of the subgroup
G0. The condition (2.2) could be easily achieved by a renormalisation w0 as soon
as we sure that the integral in the left hand side is finite.

CONVENTION 2.3. In that follow we will usually write x ∈ X and x−1 ∈ X
instead of s(x) ∈ G and s(x)−1 ∈ G correspondingly. The right meaning of “x”
could be easily found from the context (whether an element of X or G is expected
there).

EXAMPLE 2.4. As a “vacuum vector” we will select the original vacuum vector
of quantum mechanics—the Gauss function w0(q) = e−q2/2 (see Figure 1), which
belongs to all L2(Rn). Its transformations are defined as follow:

wg(q) = [ρ(s,z)w0](q) = ei(2s−
√
2xq+xy) e−(q−

√
2y)

2
/2

= e2is−(x2+y2)/2e((x+iy)2−q2)/2−
√
2i(x+iy)q

= e2is−zz̄/2e(z
2−q2)/2−

√
2izq.

Particularly [ρ(t,0)w0](q) = e−2itw0(q), i.e., it really is a vacuum vector in the
sense of our definition with respect to G0.

EXERCISE 2.5. Check the square integrability condition (2.2) for w0(q) =

e−q2/2.

The wavelet transform (similarly to the group case) could be defined as a map-
ping from G0 to a space of bounded continuous functions over G via representa-
tional coefficients

v 7→ v̂(g) =
〈
ρ(g−1)v,w0

〉
= ⟨v, ρ(g)∗w0⟩ .

Due to (2.1) such functions have simple transformation properties along orbits
gG0, i.e. v̂(gh) = χ̄(h)v̂(g), g ∈ G, h ∈ G0. Thus they are completely defined by
their values indexed by points of X = G/G0. Therefore we prefer to consider so
called reduced wavelet transform.

DEFINITION 2.6. The reduced wavelet transform W from a Hilbert space G0 to a
space of function W(X) on a homogeneous space X = G/G0 defined by a repres-
entation ρ of G on G0, a vacuum vector w0 is given by the formula

(2.3) W : H → W(X) : v 7→ v̂(x) = [Wv](x) =
〈
ρ(x−1)v,w0

〉
= ⟨v, ρ∗(x)w0⟩ .
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EXAMPLE 2.7. The transformation (2.3) with the kernel [ρ(0,z)w0](q) is an em-
bedding L2(Rn) → L2(Cn) and is given by the formula

f̂(z) =
〈
f, ρs(z)f0

〉
= π−n/4

∫
Rn

f(q) e−zz̄/2 e−(z2+q2)/2+
√
2zq dq

= e−zz̄/2π−n/4

∫
Rn

f(q) e−(z2+q2)/2+
√
2zq dq.(2.4)

Then f̂(g) belongs to L2(Cn,dg) or its preferably to say that function f̆(z) = ezz̄/2f̂(t0, z)

belongs to space L2(Cn, e−|z|2dg) because f̆(z) is analytic in z. Such functions form
the Segal-Bargmann space F2(Cn, e−|z|2dg) of functions [5, 45], which are analytic
by z and square-integrable with respect to the Gaussian measure e−|z|2dz. We use
notation W̆ for the mapping v 7→ v̆(z) = ezz̄/2Wv. Analyticity of f̆(z) is equival-
ent to the condition ( ∂

∂z̄j
+ 1

2zjI)f̂(z) = 0. The integral in (2.4) is the well-known
Segal-Bargmann transform [5, 45].

EXERCISE 2.8. Check that w̆0(z) = 1 for the vacuum vector w0(q) = e−q2/2.

There is a natural representation of G in W(X). It could be obtained if we first
lift functions from X to G, apply the left regular representation Λ and then pul
them back to X. The result defines a representation λ(g) : W(X) → W(X) as follow

(2.5) [λ(g)f](x) = χ(r(g−1 · x))f(g−1 · x).
We recall that χ(h) is a character of G0 defined in (2.1) by the vacuum vector w0. Of
course, for the case of trivial G0 = {e} (2.5) becomes the left regular representation
Λ(g) of G.

PROPOSITION 2.9. The reduced wavelet transform W intertwines ρ and the repres-
entation λ (2.5) on W(X):

Wρ(g) = λ(g)W.

PROOF. We have with obvious adjustments in comparison with Proposition 1.6:

[W(ρ(g)v)](x) =
〈
ρ(x−1)ρ(g)v,w0

〉
=

〈
ρ((g−1s(x))−1)v,w0

〉
=

〈
ρ(r(g−1 · x)−1)ρ(s(g−1 · x)−1)v,w0

〉
=

〈
ρ(s(g−1 · x)−1)v, ρ∗(r(g−1 · x)−1)w0

〉
= χ(r(g−1 · x)−1)[Wv](g−1x)

= λ(g)[Wv](x).

□

COROLLARY 2.10. The function space W(X) is invariant under the representation
λ of G.

EXAMPLE 2.11. Integral transformation (2.4) intertwines the Schrödinger rep-
resentation (1.2) with the following realization of representation (2.5):

λ(s, z)f̂(u) = f̂0(z
−1 · u)χ̄(s+ r(z−1 · u))

= f̂0(u− z)eis+iℑ(z̄u)(2.6)

EXERCISE 2.12. (i) Using relation W̆ = e−|z|2/2W derive from above
that W̆ intertwines the Schrödinger representation with the following:

λ̆(s, z)f̆(u) = f̆0(u− z)e2is−z̄u−|z|2/2.
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(ii) Show that infinitesimal generators of representation λ̆ are:

∂λ̆(s, 0, 0) = iI, ∂λ̆(0, x, 0) = −∂u − uI, ∂λ̆(0, 0,y) = i(−∂z + zI)

We again introduce a transform adjoint to W.

DEFINITION 2.13. The inverse wavelet transform M from W(X) to H is given by
the formula:

M : W(X) → H : v̂(x) 7→ M[v̂(x)] =

∫
X

v̂(x)wx dµ(x)

=

∫
X

v̂(x)ρ(x)dµ(x)w0.(2.7)

PROPOSITION 2.14. The inverse wavelet transform M intertwines the representation
λ on W(X) and ρ on H:

Mλ(g) = ρ(g)M.

PROOF. We have:

M[λ(g)v̂(x)] = M[χ(r(g−1 · x))v̂(g−1 · x)]

=

∫
X

χ(r(g−1 · x))v̂(g−1 · x)wx dµ(x)

= χ(r(g−1 · x))
∫
X

v̂(x ′)wg·x′ dµ(x ′)

= ρg

∫
X

v̂(x ′)wx′ dµ(x ′)

= ρgM[v̂(x ′)],

where x ′ = g−1 · x. □

COROLLARY 2.15. The image M(W(X)) ⊂ H of subspace W(X) under the inverse
wavelet transform M is invariant under the representation ρ.

EXAMPLE 2.16. Inverse transformation to (2.4) is given by a realization of (2.7):

f(q) =

∫
Cn

f̂(z)fs(z)(q)dz

=

∫
Cn

f̂(x,y)eiy(x−
√
2y) e−(q−

√
2y)

2
/2 dxdy(2.8)

=

∫
Cn

f̆(z)e−(z̄2+q2)/2+
√
2z̄q e−|z|2 dz.

The transformation (2.8) intertwines the representations (2.6) and the Schrödinger
representation (1.2) of the Heisenberg group.

The following proposition explain the usage of the name for M.

THEOREM 2.17. The operator

(2.9) P = MW : H → H

is a projection of H to its linear subspace for which w0 is cyclic. Particularly if ρ is an
irreducible representation then the inverse wavelet transform M is a left inverse operator
on H for the wavelet transform W:

MW = I.

PROOF. It follows from Propositions 2.9 and 2.14 that operator MW : H → H
intertwines ρ with itself. Then Corollaries 2.10 and 2.15 imply that the image MW

is a ρ-invariant subspace of H containing w0. Because of MWw0 = w0 we conclude
that MW is a projection.
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From irreducibility of ρ by Schur’s Lemma [30, § 8.2] one concludes that MW =
cI on H for a constant c ∈ C. Particularly

MWw0 =

∫
X

〈
ρ(x−1)w0,w0

〉
ρ(x)w0 dµ(x) = cw0.

From the condition (2.2) it follows that ⟨cw0,w0⟩ = ⟨MWw0,w0⟩ = ⟨w0,w0⟩ and
therefore c = 1. □

We have similar

THEOREM 2.18. Operator WM is a projection of L1(X) to W(X).

COROLLARY 2.19. In the space W(X) the strong convergence implies point-wise
convergence.

PROOF. From the definition of the wavelet transform:∣∣∣f̂(x)∣∣∣ = |⟨f, ρ(x)w0⟩| ⩽ ∥f∥ ∥w0∥ .

Since the wavelet transform is an isometry we conclude that
∣∣∣f̂(x)∣∣∣ ⩽ c ∥f∥ for

c = ∥w0∥, which implies the assertion about two types of convergence. □

EXAMPLE 2.20. The corresponding operator for the Segal-Bargmann space
P (2.9) is an identity operator L2(Rn) → L2(Rn) and (2.9) gives an integral present-
ation of the Dirac delta.

While the orthoprojection L2(Cn, e−|z|2dg) → F2(Cn, e−|z|2dg) is of a separate
interest and is a principal ingredient in Berezin quantization [8,15]. We could easy
find its kernel from (2.12). Indeed, f̂0(z) = e−|z|2 , then the kernel is

K(z,w) = f̂0(z
−1 ·w)χ̄(r(z−1 ·w))

= f̂0(w− z)eiℑ(z̄w)

= exp

(
1

2
(− |w− z|2 +wz̄− zw̄)

)
= exp

(
1

2
(− |z|2 − |w|

2) +wz̄

)
.

To receive the reproducing kernel for functions f̆(z) = e|z|
2

f̂(z) in the Segal-Bargmann
space we should multiply K(z,w) by e(−|z|2+|w|

2)/2 which gives the standard re-
producing kernel = exp(− |z|2 +wz̄) [5, (1.10)].

We denote by W∗ : W∗(X) → H and M∗ : H → W∗(X) the adjoint (in the
standard sense) operators to W and M respectively.

COROLLARY 2.21. We have the following identity:

(2.10) ⟨Wv,M∗l⟩W(X) = ⟨v, l⟩H , ∀v, l ∈ H,

or equivalently

(2.11)
∫
X

〈
ρ(x−1)v,w0

〉
⟨ρ(x)w0, l⟩ dµ(x) = ⟨v, l⟩ .

PROOF. We show the equality in the first form (2.11) (but we will apply it often
in the second one):

⟨Wv,M∗l⟩W(X) = ⟨MWv, l⟩H = ⟨v, l⟩H .

□
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COROLLARY 2.22. The space W(X) has the reproducing formula

(2.12) v̂(y) =

∫
X

v̂(x) b̂0(x
−1 · y)dµ(x),

where b̂0(y) = [Ww0](y) is the wavelet transform of the vacuum vector w0.

PROOF. Again we have a simple application of the previous formulas:

v̂(y) =
〈
ρ(y−1)v,w0

〉
=

∫
X

〈
ρ(x−1)ρ(y−1)v,w0

〉
⟨ρ(x)w0,w0⟩ dµ(x)(2.13)

=

∫
X

〈
ρ(s(y · x)−1)v,w0

〉
⟨ρ(x)w0,w0⟩ dµ(x)

=

∫
X

v̂(y · x) b̂0(x
−1)dµ(x)

=

∫
X

v̂(x) b̂0(x
−1y)dµ(x),

where transformation (2.13) is due to (2.11). □

3. Advanced Properties

We make the following simple but nice observation about the integral kernel
of wavelet transform:

PROPOSITION 3.1. Let ej, j ∈ N be an orthonormal basis in H, êj be their images
under a wavelet transform W then the kernel ⟨·, ρ(x)w0⟩ of the wavelet transform W :
v 7→ ⟨x, ρ(x)w0⟩ has the following decomposition in the Dirac bra-ket notations:

⟨·, ρ(x)w0⟩ =
∞∑
j=1

|êj⟩ ⟨ej| =
∞∑
j=1

⟨·, ej⟩ êj.

Particularly if ej are orthogonal polynomials and êj(x) are just powers of x then the
kernel of the wavelet transform W is a generating function for ej.

EXERCISE 3.2. Give a proof.

EXERCISE 3.3. (i) Let Hn(q) be the Hermite polynomials, show that
functions Hn(q)e

−q2/2 form an orthonormal basis in L2(Rn).
(ii) Show that functions zn/

√
n! are images under the Segal-Bargmann trans-

form W̆ of functions Hn(q)e
−q2/2. (Hint use that the Hermite polyno-

mial obtained from the Gaussian by derivatives which are infinitesimals
of the Schödinger representation of the Heisenberg group).

(iii) Show that the Segal-Bargmann kernel is the generating function of Hermite
polynomials.

Another example of this type is given by Bargmann in [5, § 2g]. It links rep-
resentations of SL2(R) in the Berman space and Laguerre polynomials, we will
consider it later.

PROPOSITION 3.4. Let A be an operator H → H. Then the wavelet transform W

intertwines A with an operator Â on W(X) given by the integral kernel â(g,g ′):

(3.1) Âv̂(x) =

∫
X

â(x, x ′)v̂(x ′)dx ′, where â(x, x ′) = ⟨Awx′ ,wx⟩ .

EXAMPLE 3.5. [24, (1.81)] For the Segal-Bargmann space: if an operator A on
L2(Rn) is given as an integral operator with a kernel a(q,q ′) then â(z, z ′) is its
double Segal-Bargmann transform.
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EXAMPLE 3.6 (Harmonic Oscillator). Let

H =
1

2

n∑
k=1

(p2
k + q2

k − 1) =

n∑
k=1

a+
ka

−
k ,

be the Hamiltonian of a harmonic oscillator—the simplest non-trivial system in
classic and quantum mechanics (creation a+ and annihilation a− operators were
defined in (1.7)). The dynamics of quantum oscillator is governed by the Schrödinger
equation:

d

dt
ϕ(t) = iHϕ(t),

and its solution ϕ(t) = eiHtϕ(0) is given by means of the evolution operator eiHt.
It is easier to construct the exponent (as any other function) of H if we could
diagonalise H and that is done in the Segal-Bargmann representation. Indeed,
H =

∑n
k=1 zk

∂
∂zk

—the Euler operator. Its eigenvectors are zm with eigenvalues
|m|. Consequently the evolution of the harmonic oscillator is given by

eiHtf(z) = f(eitz),

which is in a nice resemblance with geometrical dynamic of classic harmonic os-
cillator. In the contrast, the picture in L2(Rn) is not as simple. The eigenvectors of
H are constructed from the Hermite polynomials (see Exercise 3.3) and dynamic is
given by the complicated Mehler’s formula [54, Chap. 1, (7.15)] .



CHAPTER 6

Wavelets in Banach Spaces and Functional Calculus

1. Coherent States for Banach Spaces

1.1. Abstract Nonsence. Let G be a group and G0 be its closed normal sub-
group. Let X = G/G0 be the corresponding homogeneous space with an invariant
measure dµ and s : X → G be a Borel section in the principal bundle G → G/G0.
Let π be a continuous representation of a group G by invertible isometry operators
ρg, g ∈ G in a (complex) Banach space B.

The following definition simulates ones from the Hilbert space case [1, § 3.1].

DEFINITION 1.1. Let G, G0, X = G/G0, s : X → G, π : G → L(B) be as above.
We say that b0 ∈ B is a vacuum vector if for all h ∈ G0

(1.1) ρ(h)b0 = χ(h)b0, χ(h) ∈ C.

We will say that set of vectors bx = ρ(x)b0, x ∈ X form a family of coherent states if
there exists a continuous non-zero linear functional l0 ∈ B∗ such that

(i) ∥b0∥ = 1, ∥l0∥ = 1, ⟨b0, l0⟩ ≠ 0;
(ii) ρ(h)∗l0 = χ̄(h)l0, where ρ(h)∗ is the adjoint operator to ρ(h);

(iii) The following equality holds

(1.2)
∫
X

〈
ρ(x−1)b0, l0

〉
⟨ρ(x)b0, l0⟩ dµ(x) = ⟨b0, l0⟩ .

The functional l0 is called the test functional. According to the strong tradition we
call the set (G,G0,π,B,b0, l0) admissible if it satisfies to the above conditions.

We note that mapping h → χ(h) from (1.1) defines a character of the subgroup
G0. The following Lemma demonstrates that condition (1.2) could be relaxed.

LEMMA 1.2. For the existence of a vacuum vector b0 and a test functional l0 it is
sufficient that there exists a vector b ′

0 and continuous linear functional l ′0 satisfying to
(1.1) and 1.1(ii) correspondingly such that the constant

(1.3) c =

∫
X

〈
ρ(x−1)b ′

0, l
′
0

〉
⟨ρ(x)b ′

0, l
′
0⟩ dµ(x)

is non-zero and finite.

PROOF. There exist a x0 ∈ X such that
〈
ρ(x−1

0 )b ′
0, l

′
0

〉
̸= 0, otherwise one has

c = 0. Let b0 = ρ(x−1)b ′
0

∥∥ρ(x−1)b ′
0

∥∥−1 and l0 = l ′0 ∥l ′0∥
−1. For such b0 and l0

we have 1.1(i) already fulfilled. To obtain (1.2) we change the measure dµ(x). Let
c0 = ⟨b0, l0⟩ ≠ 0 then dµ ′ =

∥∥ρ(x−1)b ′
0

∥∥ ∥l ′0∥ c0c−1dµ is the desired measure. □

REMARK 1.3. Conditions (1.2) and (1.3) are known for unitary representations
in Hilbert spaces as square integrability (with respect to a subgroup G0). Thus
our definition describes an analog of square integrable representations for Banach
spaces. Note that in Hilbert space case b0 and l0 are often the same function, thus
condition 1.1(ii) is exactly (1.1). In the particular but still important case of trivial
G0 = {e} (and thus X = G) all our results take simpler forms.
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CONVENTION 1.4. In that follow we will usually write x ∈ X and x−1 instead
of s(x) ∈ G and s(x)−1 correspondingly. The right meaning of “x” could be easily
found from the context (whether an element of X or G is expected there).

The wavelet transform (similarly to the Hilbert space case) could be defined
as a mapping from B to a space of bounded continuous functions over G via rep-
resentational coefficients

v 7→ v̂(g) =
〈
ρ(g−1)v, l0

〉
= ⟨v,π(g)∗l0⟩ .

Due to 1.1(ii) such functions have simple transformation properties along orbits
gG0, i.e. v̂(gh) = χ̄(h)v̂(g), g ∈ G, h ∈ G0. Thus they are completely defined
by their values indexed by points of X = G/G0. Therefore we prefer to consider
so-called reduced wavelet transform.

DEFINITION 1.5. The reduced wavelet transform W from a Banach space B to a
space of function F(X) on a homogeneous space X = G/G0 defined by a repres-
entation π of G on B, a vacuum vector b0 and a test functional l0 is given by the
formula

(1.4) W : B → F(X) : v 7→ v̂(x) = [Wv](x) =
〈
ρ(x−1)v, l0

〉
= ⟨v, ρ∗(x)l0⟩ .

There is a natural representation of G in F(X). For any g ∈ G there is a unique
decomposition of the form g = s(x)h, h ∈ G0, x ∈ X. We will define r : G → G0 :
r(g) = h = (s−1(g))−1g from the previous equality and write a formal notation
x = s−1(g). Then there is a geometric action of G on X → X defined as follows

g : x 7→ g−1 · x = s−1(g−1s(x)).

We define a representation λ(g) : F(X) → F(X) as follow

(1.5) [λ(g)f](x) = χ(r(g−1 · x))f(g−1 · x).
We recall that χ(h) is a character of G0 defined in (1.1) by the vacuum vector b0.
For the case of trivial G0 = {e} (1.5) becomes the left regular representation ρl(g)
of G.

PROPOSITION 1.6. The reduced wavelet transform W intertwines π and the repres-
entation λ (1.5) on F(X):

Wρ(g) = λ(g)W.

PROOF. We have:

[W(ρ(g)v)](x) =
〈
ρ(x−1)ρ(g)v, l0

〉
=

〈
ρ((g−1s(x))−1)v, l0

〉
=

〈
ρ(r(g−1 · x)−1)ρ(s(g−1 · x)−1)v, l0

〉
=

〈
ρ(s(g−1 · x)−1)v, ρ∗(r(g−1 · x)−1)l0

〉
= χ(r(g−1 · x)−1)[Wv](g−1x)

= λ(g)[Wv](x).

□

COROLLARY 1.7. The function space F(X) is invariant under the representation λ of
G.

We will see that F(X) possesses many properties of the Hardy space. The duality
between l0 and b0 generates a transform dual to W.
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DEFINITION 1.8. The inverse wavelet transform M from F(X) to B is given by the
formula:

M : F(X) → B : v̂(x) 7→ M[v̂(x)] =

∫
X

v̂(x)bx dµ(x)

=

∫
X

v̂(x)ρ(x)dµ(x)b0.(1.6)

PROPOSITION 1.9. The inverse wavelet transform M intertwines the representation
λ on F(X) and π on B:

Mλ(g) = ρ(g)M.

PROOF. We have:

M[λ(g)v̂(x)] = M[χ(r(g−1 · x))v̂(g−1 · x)]

=

∫
X

χ(r(g−1 · x))v̂(g−1 · x)bx dµ(x)

= χ(r(g−1 · x))
∫
X

v̂(x ′)bg·x′ dµ(x ′)

= ρg

∫
X

v̂(x ′)bx′ dµ(x ′)

= ρgM[v̂(x ′)],

where x ′ = g−1 · x. □

COROLLARY 1.10. The image M(F(X)) ⊂ B of subspace F(X) under the inverse
wavelet transform M is invariant under the representation π.

The following proposition explain the usage of the name for M.

THEOREM 1.11. The operator

(1.7) P = MW : B → B

is a projection of B to its linear subspace for which b0 is cyclic. Particularly if π is an
irreducible representation then the inverse wavelet transform M is a left inverse operator
on B for the wavelet transform W:

MW = I.

PROOF. It follows from Propositions 1.6 and 1.9 that operator MW : B → B
intertwines π with itself. Then Corollaries 1.7 and 1.10 imply that the image MW

is a π-invariant subspace of B containing b0. Because MWb0 = b0 we conclude
that MW is a projection.

From irreducibility of π by Schur’s Lemma [30, § 8.2] one concludes that MW =
cI on B for a constant c ∈ C. Particularly

MWb0 =

∫
X

〈
ρ(x−1)b0, l0

〉
ρ(x)b0 dµ(x) = cb0.

From the condition (1.2) it follows that ⟨cb0, l0⟩ = ⟨MWb0, l0⟩ = ⟨b0, l0⟩ and there-
fore c = 1. □

We have similar

THEOREM 1.12. Operator WM is a projection of L1(X) to F(X).

We denote by W∗ : F∗(X) → B∗ and M∗ : B∗ → F∗(X) the adjoint (in the
standard sense) operators to W and M respectively.
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COROLLARY 1.13. We have the following identity:

(1.8) ⟨Wv,M∗l⟩F(X) = ⟨v, l⟩B , ∀v ∈ B, l ∈ B∗

or equivalently

(1.9)
∫
X

〈
ρ(x−1)v, l0

〉
⟨ρ(x)b0, l⟩ dµ(x) = ⟨v, l⟩ .

PROOF. We show the equality in the first form (1.9) (but will apply it often in
the second one):

⟨Wv,M∗l⟩F(X) = ⟨MWv, l⟩B = ⟨v, l⟩B .

□

COROLLARY 1.14. The space F(X) has the reproducing formula

(1.10) v̂(y) =

∫
X

v̂(x) b̂0(x
−1 · y)dµ(x),

where b̂0(y) = [Wb0](y) is the wavelet transform of the vacuum vector b0.

PROOF. Again we have a simple application of the previous formulas:

v̂(y) =
〈
ρ(y−1)v, l0

〉
=

∫
X

〈
ρ(x−1)ρ(y−1)v, l0

〉
⟨ρ(x)b0, l0⟩ dµ(x)(1.11)

=

∫
X

〈
ρ(s(y · x)−1)v, l0

〉
⟨ρ(x)b0, l0⟩ dµ(x)

=

∫
X

v̂(y · x) b̂0(x
−1)dµ(x)

=

∫
X

v̂(x) b̂0(x
−1y)dµ(x),

where transformation (1.11) is due to (1.9). □

REMARK 1.15. To possess a reproducing kernel—is a well-known property of
spaces of analytic functions. The space F(X) shares also another important prop-
erty of analytic functions: it belongs to a kernel of a certain first order differential
operator with Clifford coefficients (the Dirac operator) and a second order oper-
ator with scalar coefficients (the Laplace operator) [4, 33–35].

Let us now assume that there are two representations π ′ and π ′′ of the same
group G in two different spaces B ′ and B ′′ such that two admissible sets (G,G0,π

′,B ′,b ′
0, l

′
0)

and (G,G0,π
′′,B ′′,b ′′

0 , l
′′
0 ) could be constructed for the same normal subgroup

G0 ⊂ G.

PROPOSITION 1.16. In the above situation if F ′(X) ⊂ F ′′(X) then the composition
T = M ′′W ′ of the wavelet transform W ′ for π ′ and the inverse wavelet transform M ′′ for
π ′′ is an intertwining operator between π ′ and π ′′:

Tπ ′ = π ′′T.

T is defined as follows

(1.12) T : b 7→
∫
X

〈
π ′(x−1)b, l ′0

〉
π ′′(x)b ′′

0 dµ(x).

This transformation defines a B ′′-valued linear functional (a distribution for function
spaces) on B ′.
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The Proposition has an obvious proof. This simple result is a base for an al-
ternative approach to functional calculus of operators [32, 34] and will be used in
Subsection 2.2. Note also that formulas (1.4) and (1.6) are particular cases of (1.12)
because W and M intertwine π and λ.

1.2. Wavelets and a Positive Cone. The above results are true for wavelets
in general. In applications a Banach space B is usually equipped with additional
structures and wavelets are interplay with them. We consider an example of such
interaction.

We recall [36], [29, Chap. X] the notion of positivity in Banach spaces. Let
C ⊂ B be a sharp cone, i.e. x ∈ C implies that λx ∈ C and −λx ̸∈ C for λ > 0. We
call such elements x ∈ C positive vectors. We say also that x ⩾ y iff x−y is positive.
There is the dual cone C∗ ⊂ B∗ defined by the condition

C∗ = {f | f ∈ B∗, ⟨b, f⟩ ⩾ 0 ∀x ∈ C}.

An operator A : B → B is called positive if Ab ⩾ 0 for all b ⩾ 0. If A is positive with
respect to C then A∗ is positive with respect to C∗.

DEFINITION 1.17. We call a representation ρ(g) positive if there exists a vector
b0 ∈ C such that ρ(x)b0 ∈ C for all x ∈ X. A linear functional f ∈ B∗ is positive
(f > 0) with respect to a vacuum vector b0 if ⟨ρ(x)b0, f⟩ ⩾ 0 for all x ∈ X and
⟨ρ(x)b0, f⟩ is not identically equal to 0.

LEMMA 1.18. For any positive representation ρ(g) and vacuum vector b0 there exists
a positive test functional.

PROOF. Obvious. □

We consider an estimation of positive linear functionals.

PROPOSITION 1.19. Let b ∈ B be a vector such that b =
∫
X
b̂(x)bx dµ(x). Let

(i) D(b) = {
〈
ρ(x−1)b, l0

〉
| x ∈ X} be the set of value of reduced wavelets trans-

form;
(ii) D̆(b) be a convex shell of the values of b̂(x);

(iii) D̂(b) = {⟨b, f⟩ | f ∈ C∗, ∥f∥ = 1, f ⩾ 0}.
Then

D(b) ⊂ D̂(b) ⊂ D̆(b).

PROOF. The first inclusion is obvious. The second could be easily checked:

⟨b, f⟩ =
〈∫

X

b̂(x)bx dµ(x), f

〉
=

∫
X

b̂(x) ⟨bx, f⟩ dµ(x).

□

1.3. Singular Vacuum Vectors. In many important cases the above general
scheme could not be carried out because the representation π of G is not square-
integrable or even not square-integrable modulo a subgroup G0. Thereafter the
vacuum vector b0 could not be selected within the original space B which the rep-
resentation π acts on. The simplest mathematical example is the Fourier transform
(see Example 3.1). In physics this is the well-known problem of absence of vacuum
state in the constructive algebraic quantum field theory [46–48]. The absence of the
vacuum within the linear space of system’s states is another illustration to the old
thesis Natura abhorret vacuum1 or even more specifically Natura abhorret vectorem
vacui2.

1Nature is horrified by (any) vacuum (Lat.).
2Nature is horrified by a carrier of nothingness (Lat.). This illustrates how far a humane beings

deviated from Nature.
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We will present a modification of our construction which works in such a situ-
ation. For a singular vacuum vector the algebraic structure of group represent-
ations could not describe the situation alone and requires an essential assistance
from analytical structures.

DEFINITION 1.20. Let G, G0, X = G/G0, s : X → G, π : G → L(B) be as in
Definition 1.1. We assume that there exist a topological linear space B̂ ⊃ B such
that

(i) B is dense in B̂ (in topology of B̂) and representation π could be uniquely
extended to the continuous representation π̂ on B̂.

(ii) There exists b0 ∈ B̂ be such that for all h ∈ G0

(1.13) π̂(h)b0 = χ(h)b0, χ(h) ∈ C.

(iii) There exists a continuous non-zero linear functional l0 ∈ B∗ such that
ρ(h)∗l0 = χ̄(h)l0, where ρ(h)∗ is the adjoint operator to ρ(h);

(iv) The composition MW : B → B̂ of the wavelet transform (1.4) and the
inverse wavelet transform (1.6) maps B to B.

(v) For a vector p0 ∈ B the following equality holds

(1.14)
〈∫

X

〈
ρ(x−1)p0, l0

〉
ρ(x)b0 dµ(x), l0

〉
= ⟨p0, l0⟩ ,

where the integral converges in the weak topology of B̂.
As before we call the set of vectors bx = ρ(x)b0, x ∈ X by coherent states; the vector
b0—a vacuum vector; the functional l0 is called the test functional and finally p0 is
the probe vector.

This Definition is more complicated than Definition 1.1. The equation (1.14) is
a substitution for (1.2) if the linear functional l0 is not continuous in the topology
of B̂. Example 3.1 shows that the Definition does not describe an empty set. The
function theory in R1,1 constructed in [33] provides a more exotic example of a
singular vacuum vector.

We shall show that 1.20(v) could be satisfied by an adjustment of other com-
ponents.

LEMMA 1.21. For the existence of a vacuum vector b0, a test functional l0, and a
probe vector p0 it is sufficient that there exists a vector b ′

0 and continuous linear functional
l ′0 satisfying to 1.20(i)–1.20(iv) and a vector p ′

0 ∈ B such that the constant

c =

〈∫
X

〈
ρ(x−1)p0, l0

〉
ρ(x)b0 dµ(x), l0

〉
is non-zero and finite.

The proof follows the path for Lemma 1.2. The following Proposition sum-
marizes results which could be obtained in this case.

PROPOSITION 1.22. Let the wavelet transform W (1.4), its inverse M (1.6), the
representation λ(g) (1.5), and functional space F(X) be adjusted accordingly to Defini-
tion 1.20. Then

(i) W intertwines ρ(g) and λ(g) and the image of F(X) = W(B) is invariant under
λ(g).

(ii) M intertwines λ(g) and π̂(g) and the image of M(F(B)) = MW(B) ⊂ B is
invariant under ρ(g).



2. WAVELETS IN OPERATOR ALGEBRAS 53

(iii) If M(F(X)) = B (particularly if ρ(g) is irreducible) then MW = I otherwise
MW is a projection B → M(F(X)). In both cases MW is an operator defined
by integral

(1.15) b 7→
∫
X

〈
ρ(x−1)b, l0

〉
ρ(x)b0 dµ(x),

(iv) Space F(X) has a reproducing formula

(1.16) v̂(y) =

〈∫
X

v̂(x) ρ(x−1y)b0 dx, l0

〉
which could be rewritten as a singular convolution

v̂(y) =

∫
X

v̂(x) b̂(x−1y)dx

with a distribution b(y) =
〈
ρ(y−1)b0, l0

〉
defined by (1.16).

The proof is algebraic and completely similar to Subsection 1.1.

2. Wavelets in Operator Algebras

We are going to apply the above abstract scheme to special spaces, which our
main targets—wavelets on operator algebras. This gives a possibility to study
operators by means of functions—symbols of operators.

2.1. Co- and Contravariant Symbols of Operators. We construct a realization
of the wavelet transform as co- and contravariant symbols (also known as Wick
and anti-Wick symbols) of operators. These symbols and their connections with
wavelets in Hilbert spaces are known for a while [6–9]. However their realization
(described below) as wavelets in Banach algebras seems to be new.

Let ρ(g) be a representation of a group G in a Banach space B by isometry
operators. Then we could define two new representations for groups G and G×G
correspondingly in the space L(B) of bounded linear operators B → B:

π̂ : G → L(L(B)) : A 7→ ρ(g)−1Aρ(g),(2.1)
π̃ : G×G → L(L(B)) : A 7→ ρ(g1)

−1Aρ(g2),(2.2)

where A ∈ L(B). Note that π̂(g) are algebra automorphisms of L(B) for all g.
Representation π̃(g1,g2) is an algebra homomorphism from L(B) to the algebra
L(g1,g2)

(B) of linear operators on B equipped with a composition

A1 ◦A2 = A1 ρ(g1)
−1ρ(g2)A2

with the usual multiplication of operators in the right-hand side. The rôle of
such algebra homomorphisms in a symbolical calculus of operators was explained
in [26]. It is also obvious that π̂(g) is the restriction of π̃(g1,g2) to the diagonal of
G×G.

Let there are selected a vacuum vector b0 ∈ B and a test functional l0 ∈ B∗

for π. Then there are the canonically associated vacuum vector P0 ∈ L(B) and test
functional f0 ∈ L∗(B) defined as follows:

P0 : B → B : b 7→ P0b = ⟨b, l0⟩b0;(2.3)
f0 : L(B) → C : A 7→ ⟨Ab0, l0⟩ .(2.4)

They define the following coherent states and transformations of the test func-
tional

Pg = π̂(g)P0 = ⟨·, lg⟩bg, P(g1,g2) = π̃(g1,g2)P0 = ⟨·, lg1
⟩bg2

,

fg = π̂∗(g)f0 = ⟨ ·bg, lg⟩ , f(g1,g2) = π̂∗(g1,g2)f0 = ⟨ ·bg1
, lg2

⟩
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where as usually we denote bg = ρ(g)b0, lg = ρ∗(g)l0. All these formulas take
simpler forms for Hilbert spaces if l0 = b0.

DEFINITION 2.1. The covariant (pre-)symbol A(x) (A(x1, x2)) of an operator A
acting on a Banach space B defined by b0 ∈ B and l0 ∈ B∗ is its wavelet transform
with respect to representation π̂(g) (2.1) (π̃(g1,g2) (2.2)) and the functional f0 (2.4),
i.e. they are defined by the formulas

A(x) = (π̂(x)A, f0) =
〈
ρ(x)−1Aρ(x)b0, l0

〉
= ⟨Abx, lx⟩ ,(2.5)

A(x1, x2) = (π̃(x1, x2)A, f0) =
〈
ρ(x1)

−1Aρ(x2)b0, l0
〉
= ⟨Abx2

, lx1
⟩ .(2.6)

The contravariant (pre-)symbol of an operator A is a function Ă(x) (a function Ă(x1, x2)

correspondingly) such that A is the inverse wavelet transform of Ă(x) (of Ă(x1, x2)
correspondingly) with respect to π̂(g) (π̃(g1,g2)), i.e.

A =

∫
X

Ă(x)π̂(x)P0 dµ(x) =

∫
X

Ă(x)Px dµ(x),(2.7)

A =

∫
X

∫
X

Ă(x1, x2)π̃(x1, x2)P0 dµ(x1)dµ(x2)

=

∫
X

∫
X

Ă(x1, x2)P(x1,x2) dµ(x1)dµ(x2),(2.8)

where the integral is defined in the weak sense.

Obviously the covariant symbol Ă(x) is the restriction of the covariant pre-
symbol Ă(x1, x2) to the diagonal of G×G.

PROPOSITION 2.2. A mapping σ : A 7→ σA(x1, x2) of operators to their covariant
symbols is the algebra homomorphism from algebra of operators on B to algebra of integral
operators on F(G), i.e.

(2.9) σA1A2
(x1, x3) =

∫
X

σA1
(x1, x2)σA2

(x2, x3)dµ(x2).

PROOF. One could easily see that:∫
X

σA1
(x1, x2)σA2

(x2, x3)dµ(x2)

=

∫
X

〈
ρ(x1)A1ρ(x

−1
2 )b0, l0

〉 〈
ρ(x2)A2ρ(x

−1
3 )b0, l0

〉
dµ(x2)

=

∫
X

〈
ρ(x−1

2 )b0,A
∗
1ρ

∗(x1)l0
〉 〈

ρ(x2)A2ρ(x
−1
3 )b0, l0

〉
dµ(x2)

=
〈
A2ρ(x

−1
3 )b0,A

∗
1ρ

∗(x1)l0
〉

(2.10)

=
〈
ρ(x1)A1A2ρ(x

−1
3 )b0, l0

〉
= σA1A2

(x1, x3),

where transformation (2.10) is due to (1.9). □

The following proposition is obvious.

PROPOSITION 2.3. An operator A could be reconstructed from its covariant presym-
bol A(g1,g2) by the formula

Av =

∫
G

∫
G

A(g1,g2)v̂(g2)dµ(g2)bg1
dµ(g1).

We have a particular interest in operators closely connected with the repres-
entation ρg.
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PROPOSITION 2.4. Let an operator A on B is defined by the formula

Av =

∫
G

a(g) ρgv dµ(g)

for a function a(g) on G. Then A ′W = WA where A ′ is a two-sided convolution on G
defined by the formula

[A ′v̂](h) =

∫
G

∫
G

a(g1)b̂0(g2)v̂(g
−1
1 hg2)dµ(g1)dµ(g2).

For operator algebras there are the standard notions of positivity: any operator
of the form A∗A is positive; if algebra is realized as operators on a Hilbert space
H then b ∈ H defines a positive functional fb(A) = ⟨Ab,b⟩. Thus the following
proposition is a direct consequence of the Proposition 1.19.

PROPOSITION 2.5. [6, Thm. 1] Let A be an operator, let D(A) be the set of values
of the covariant symbol A(x), let D̆(A) be a convex shell of the values of contravariant
symbol Ă(x). Let D̂(A) be the set of values of the quadratic form ⟨Ab,b⟩ for all vectors
∥b∥ = 1. Then

D(b) ⊂ D̂(b) ⊂ D̆(b).

EXAMPLE 2.6. There are at least two very important realizations of symbolical
calculus of operators. The theory of pseudodifferential operators (PDO) [17,49,53]
is based on the Schrödinger representation of the Heisenberg group Hn (see Sub-
section 3.1) on the spaces of functions Lp(Rn) [26]. The Wick and anti-Wick sym-
bolical calculi [6, 8] arise from the Segal-Bargmann representation [5, 45] (see Sub-
section 2.1) of the same group Hn. Connections (intertwining operators) between
these two representations were exploited in [26] to obtain fundamentals of the the-
ory of PDO.

2.2. Functional Calculus and Group Representations. This Subsection illus-
trates a new approach to functional calculus of operators outlined in [32, 34]. The
approach uses the intertwining property for two representations instead of an al-
gebraic homomorphism.

Let B be a Banach algebra and T ⊂ B be its subset of elements. Let G be a
group, G0 be its normal subgroup and X = G/G0—the corresponding homogen-
eous space. We assume that there is a representation τ depending from T ⊂ B
defined on measurable functions from L(X,B) by the formula

(2.11) τ(g)f(x) = t(g, x)f(g−1 · x), f(x) ∈ L(X,B),

where t(g, x) : B → B depends from x ∈ X and g ∈ G. It is convenient to use a
linear functional l ∈ B ′ to make the situation more tractable by reducing it to the
scalar case. Using l we could define a representation τl(x) on F(X) by the following
formula

(2.12) τl(x) : fl(y) = ⟨f(y), l⟩ 7→ [τl(x)fl](y) = ⟨τ(x)f(y), l⟩ ,
where f(y) ∈ L(X,B), l ∈ B ′. We will understand convergence of all integrals
involving τ in a weak sense, i.e. as convergence of all corresponding integrals
with τl, l ∈ B ′. We also say that τ is irreducible if all τl are irreducible.

REMARK 2.7. If B is realized as an algebra of operators on a Banach space B
then l ∈ B ′ could be realized as an element of B⊗B ′. In this case the formula (2.12)
looks like (2.5). The important difference is the following. In (2.5) the representa-
tion in the operator algebra B arises from a representation in Banach space B and
is the same for all elements of B. Representation τl in (2.12) is defined via the
representation τ which depends in its turn from a set T ⊂ B. Such representa-
tions are usually connected with some (non-linear) geometric actions of a group
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directly on operator algebra. Examples of these geometric actions are the repres-
entation of the Heisenberg group (3.10) leading to the Weyl functional calculus,
fractional-linear transformations of operators leading [34] to Dunford-Riesz func-
tional calculus and monogenic functional calculus [32]. Thus such representations
contain important information on T.

We also assume that there is a representation π of G in F(X) with a vacuum
vector b0, a test functional l0 and the system of wavelets (coherent states) bx, x ∈
X, which were main actors in the previous Section. Let ρ∗(g) = ρ(g−1)∗ be the
adjoint representation of ρ(g) in F ′(X).

We need a preselected element T0(x) ∈ L(X,B) which plays a rôle of a vacum
vector for the representation τ, it is defined by the condition:

(2.13)
∫
X

b̂0(x
′) τ(x ′)T0(x)dx

′ = T0(x),

where b̂0(x) =
〈
ρ(x−1)b0, l0

〉
is the wavelet transform of the vacuum vector b0 ∈

F(X) for π.

LEMMA 2.8. A vacuum vector for τ always exists and is given by the formula

(2.14) T0(x) =

∫
X

b̂0(x
′) τ(x ′)T(x)dx ′,

where T(x) ∈ L(X,B) is an arbitrary element which the integral (2.14) converges for. If
τ is irreducible (i.e. all τl (2.12) are irreducible) in the linear span of τ(x ′)T(x), x ′ ∈ X
then T0(x) does not depend from a particular chose of T(x).

PROOF. First we could easily verify condition (2.13) for the T0 defined by (2.14):∫
X

b̂0(x) τ(x)T0(x1)dx =

∫
X

b̂0(x) τ(x)

∫
X

b̂0(x
′) τ(x ′)T(x1)dx

′ dx

=

∫
X

∫
X

b̂0(x) b̂0(x
′) τ(x)τ(x ′)T(x1)dx

′ dx

=

∫
X

(∫
X

b̂0(x)b̂0(x
−1x ′′)dx

)
τ(x ′′)T(x1)dx

′′(2.15)

=

∫
X

b̂0(x
′′) τ(x ′′)T(x1)dx

′′(2.16)

= T0(x1).

Here we use the change of variables x ′′ = x · x ′ in (2.15) and reproducing prop-
erty (1.10) of b̂0(x) in (2.16).

To prove that for any admissible T(x) we will receive the same T0(x) is enough
to pass from the representation τ to representations τl (2.12) defined by l ∈ B ′.
Then we deal with scalar valued (not operator valued) functions and knew that
one could use any admissible vector Tl(x) = ⟨T(x), l⟩ as a vacuum vector in the
reconstruction formula (1.6). □

Now we could specify the Definition 1.1 from [32] as follows.

DEFINITION 2.9. Let G, G0, X = G/G0, B, T, τ, π, F, b0, T0 be as described
above. One says that a continuous linear B-valued functional ΦT(·, x) : F(X) → B,
parametrized by a point x ∈ X and depending from T ⊂ B:

ΦT(·, x) : f(y) 7→ [ΦTf](x) =

∫
X

f(y)ΦT(y, x)dy

is a functional calculus if
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(i) ΦT is an intertwining operator between ρ(g) and τ(g), namely

(2.17) [ΦTρ(g)f(y)](x) = τ(g)[ΦTf(y)](x),

for all g ∈ G and f(y) ∈ F(X)
(ii) ΦT maps the vacuum vector b0(y) for the representation π to the va-

cuum vector T0(x) for the representation τ:

(2.18) [ΦTb0(y)](x) = T0(x).

B-valued distribution ΦT(y, x0), s(x0) = e ∈ G associated with B-valued linear
functional on F(X) is called a spectral decomposition of operators T.

Representation τ in (2.17) is defined by (2.11):

τ(g)[ΦTf(y)](x) = t(g, x)[ΦTf(y)](g
−1 · x).

We could state (2.17) equivalently as

[Iy ⊗ τx(g)]Φ(y, x) = [ρ∗y(g
−1)⊗ Ix]Φ(y, x).

REMARK 2.10. The functional calculus ΦT(y, x) as defined here has the explicit
covariant property with respect to variable x. Thus it could be restored by the
representation τ from a single value, e.g. ΦT(y, s

−1(e)), where e is the identity of
G. We particularly will calculate only [ΦTf](s

−1(e)) in Subsection 3.3 as the value
of a functional calculus. This value is usually denoted by f(T) and is exactly the
functional calculus of operators in the traditional meaning.

In particular cases different characteristics of the spectral decomposition could
give relevant information on the set of operators T, e.g. the support suppyΦT(y, x0)
of ΦT(y, x0)

f(y) = 0 ∀y ∈ suppyΦT(y, x0) ⇒ [ΦTf](x0) = 0

is called (joint) spectrum of set T ⊂ B. This definition of the spectrum is connected
with the Arveson-Connes spectral theory [3, 16, 51] while there are several important
differences mentioned in [32, Rem. 4.4].

In the paper [32] the approach was illustrated by a newly developed functional
calculus for several non-commuting operators based on Möbius transformations
of the unit ball in Rn. It was shown in [34, § 7] that the classic Dunford-Riesz func-
tional calculus is generated by a representation of SL(2,R) within this procedure.
However an abstract scheme of the approach was not presented yet. We give some
its elements here.

From Proposition 1.16 we know a general form of an intertwining operator of
two related representations of a group, which could be employed here. Let l0(y)
be the distribution corresponding to a test functional l0 for the representation π on
F(X) such that we could write

⟨f(y), l0⟩F(X) =

∫
X

f(y)l0(y)dy.

We denote also by ρ∗(x)l0(y), x ∈ X, y ∈ X distributions corresponding to linear
functionals ρ∗(x)l0, where ρ∗(x) is the adjoint representation to π on the space
F(X).

PROPOSITION 2.11 (Spectral syntesis). Under assumption of Proposition 1.16 the
functional calculus exists and is unique. The spectral decomposition ΦT(y, x) as a distri-
bution on X is given by the formula

(2.19) ΦT(y, x) =

∫
X

ρ∗(x)l0(y) τ(x)T0(x)dx.
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The functional calculus ΦT(·, x) as a mapping F(X) → B is given correspondingly

(2.20) ΦT(·, x) : f(y) 7→ [ΦTf(y)](x) =

∫
X

∫
X

⟨f(y), ρ∗(x ′)l0(y)⟩ τ(x ′)T0(x)dydx ′.

PROOF. Obviously (2.19) and (2.20) are equivalent. Thus we will prove (2.20)
only. For an arbitrary f(y) ∈ F(X) we could write

[ΦTf(y)](x) =

[
ΦT

∫
X

f̂(x ′)ρ(x ′)b0(y)dx
′
]
(x)(2.21)

=

∫
X

f̂(x ′)[ΦTρ(x
′)b0(y)](x)dx

′(2.22)

=

∫
X

f̂(x ′)τ(x ′)[ΦTb0(y)](x)dx
′(2.23)

=

∫
X

f̂(x ′) τ(x ′)T0(x)dx
′(2.24)

=

∫
X

⟨f(y), ρ∗(x ′)l0⟩ τ(x ′)T0(x)dx
′(2.25)

We use in (2.21) that functions in F(X) are superpositions of coherent states, trans-
formation (2.22) is made by linearity and continuity of ΦT, step (2.23) is due to
condition (2.17) and we finally apply (2.18) to receive (2.24). Thus it is proven that
the functional calculus which is continuous, linear, and satisfies to (2.17) and (2.18)
(if exists) is unique and given by (2.25). Now we should check that (2.25) really
gives the right answer.

We will check first that (2.25) satisfies to (2.17):

τ(g)Φ(y, x) = τ(x1)

∫
X

ρ∗(x ′)l0(y) τ(x
′)T0(x)dx

′

=

∫
X

ρ∗(x ′)l0(y) τ(g · x ′)T0(x)dx
′

=

∫
X

ρ∗(g−1 · x ′′)l0(y) τ(x
′′)T0(x)dx

′′(2.26)

= ρ∗(g−1)

∫
X

ρ∗(x ′′)l0(y) τ(x
′′)T0(x)dx

′′

= ρ∗(g−1)Φ(y, x),

where we made substitution x ′′ = g · x ′ in (2.26). Finally (2.18) directly follows
from the condition (2.13). □

Let there exists L0(x) ∈ L ′(X,B)—a test functional for a vacuum vector T0(x)
and representation τ, i.e.

⟨T0,L0⟩L(X,B) =

∫
X

〈
τ(x−1T0),L0

〉
L(X,B)

⟨τ(x)T0,L0⟩L(X,B) dx,

where
⟨T0,L0⟩L(X,B) =

∫
X

⟨T0(x),L0(x)⟩B dx

and ⟨T0(x),L0(x)⟩B is the pairing between B and B ′.

PROPOSITION 2.12 (Spectral analysis). If a B-valued function F(x) from L(X,B)
belongs to the closer of the linear span of τ(x ′)T0(x), x ′ ∈ X then

F(x) = [ΦTf(y)](x),

where

(2.27) f(y) =

∫
X

〈
τ(x−1F),L0

〉
L(X,B)

ρ(x)b0(y)dx.
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PROOF. The formula (2.27) is just another realization of intertwining oper-
ator (1.12) from Proposition 1.16. □

Let K : F(X1) → F(X2) be an intertwining mapping between two representa-
tions ρ1 and ρ2 of groups G1 and G2 in spaces F(X1) and F(X2) respectively. Let
K(z,y), z ∈ X1, y ∈ X2 be the Schwartz kernel of K.

THEOREM 2.13 (Mapping of spectral decompositions). Let

f1(z) = [Kf2](z) =

∫
X2

f2(y)K(z,y)dy

ΦT1
(z, x) =

∫
X2

K(z,y)ΦT2
(y, x)dy,

where a functional calculus ΦT2
is defined by representations ρ2 and τ. Then ΦT2

(z, x) is
a functional calculus for ρ1 and τ and we have an identity:

(2.28) [ΦT1
f1(z)](x) = [ΦT2

f2(y)](x).

PROOF. The intertwining property for ΦT2
(z, x) follows from transitivity. The

identity (2.28) is a simple application of the Fubini theorem:

[ΦSg(z)](x) =

∫
X1

g(z)ΦS(z, x)dz

=

∫
X1

g(z)

∫
X2

K(z,y)ΦT(y, x)dydz

=

∫
X2

∫
X1

g(z)K(z,y)dzΦT(y, x)dy

=

∫
X2

g(f(y))ΦT(y, x)dy

= [ΦTg(f(y))](x).

□

This Theorem could be turned in the spectral mapping theorem under suitable
conditions [32, Thm. 3.19].

3. Examples

We are going to demonstrate that the above construction is not only algebra-
ically attractive but also belongs to the heart of analysis. More examples could be
found in [14, 33, 34] and will be given elsewhere.

3.1. The Heisenberg Group and Schrödinger Representation. We will con-
sider a realization of the previous results in a particular cases of the Fourier trans-
form and Segal-Bargmann [5, 45] type spaces Fp(Cn). They arise from representa-
tions of the Heisenberg group Hn [24, 25, 54] on Lp(Rn).

The Lie algebra hn of Hn spanned by {T ,Pj,Qj}, n = 1, . . . ,n is defined by the
commutation relations:

(3.1) [Pi,Qj] = Tδij.

They are known from quantum mechanics as the canonical commutation relations
of coordinates and momentum operators. An element g ∈ Hn could be represen-
ted as g = (t, z) with t ∈ R, z = (z1, . . . , zn) ∈ Cn and the group law is given
by

(3.2) g ∗ g ′ = (t, z) ∗ (t ′, z ′) = (t+ t ′ +
1

2

n∑
j=1

ℑ(z̄jz
′
j), z+ z ′),
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where ℑz denotes the imaginary part of a complex number z. The Heisenberg
group is (non-commutative) nilpotent step 2 Lie group.

We take a representation of Hn in Lp(Rn), 1 < p < ∞ by operators of shift and
multiplication [54, § 1.1]:

(3.3) g = (t, z) : f(y) → [σ(t,z)f](y) = ei(2t−
√
2vy+uv)f(y−

√
2u), z = u+ iv,

i.e., this is the Schrödinger type representation with parameter  h = 1. These op-
erators are isometries in Lp(Rn) and the adjoint representation ρ∗(t,z) = ρ(−t,−z) in
Lq(Rn), p−1 + q−1 = 1 is given by a formula similar to (3.3).

3.2. Wavelet Transforms for the Heisenberg Group in Function Spaces.

EXAMPLE 3.1. We start from the subgroup G0 = Rn+1 = {(t, z) | ℑ(z) = 0}.
Then X = G/G0 = Rn and an invariant measure coincides with the Lebesgue
measure. Mappings s : Rn → Hn and r : Hn → H are defined by the identities
s(x) = (0, ix), s−1(t, z) = ℑz, r(t,u + iv) = (t,u). The composition law s−1((t, z) ·
s(x)) = x+u reduces to Euclidean shifts on Rn. We also find s−1((s(x1))

−1·s(x2)) =
x2 − x1 and r((s(x1))

−1 · s(x2)) = 0.
We consider the representation σ(g) of Hn in the space of smooth rapidly

decreasing functions B = S(Rn). As a character of G0 = Rn+1 we take the
χ(t,u) = e2it. The corresponding test functional l0 satisfying to 1.20(iii) is the
integration l0(f) = (2π)−n/2

∫
Rn f(y)dy. Thus the wavelet transform is as follows

(3.4) f̂(x) =

∫
Rn

σ(s(x)−1)f(y)dy = (2π)−n/2

∫
Rn

ei
√
2xyf(y)dy

and is nothing else but the Fourier transform3.
Now we arrive to the absence of a vacuum vector in B, indeed there is no a

f(x) ∈ S(Rn) such that

[σ(t,u)f](y) = χ(t,u)f(y) ⇐⇒ ei2tf(y−
√
2u) = ei2tf(y).

There is a way out accordingly to Subsection 1.3. We take B ′ = L∞(Rn) ⊃ B

and the vacuum vector b0(y) ≡ (2π)−n/2 ∈ B ′. Then coherent states are bx(y) =

(2π)−n/2e−i
√
2xy and the inverse wavelet transform is defined by the inverse Four-

ier transform

f(y) =

∫
Rn

f̂(y)bx(y)dx = (2π)−n/2

∫
Rn

f̂(y)e−i
√
2xy dx.

The condition 1.20(iv) MW : B → B follows from the composition of two facts
W : B → B and almost identical to it M : B → B, which are proved in standard
analysis textbooks (see for example [31, § IV.2.3]). To check scaling (1.14) according
to the tradition in analysis [25] we take a probe vector p0 = e−y2/2 ∈ B. Due to
well known formula

∫+∞
−∞ e−y2/2dy = (2π)1/2 of real analysis we have〈∫

X

⟨p̂0(x), l0⟩bx dx, l0

〉
= (2π)−n

∫∫∫
ei

√
2xye−y2/2 dye−i

√
2xw dxdw

= (2π)n/2

∫
Rn

e−y2/2dy

= ⟨p0, l0⟩ .

3The inverse Fourier transform in fact. In our case the signs selection is opposite to the standard
one, but we will neglect this difference.
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Thus our scaling is correct. W and M intertwine the left regular representation —
multiplication by ei

√
2yv with operators

[λ(g)f](x) = χ(r(g−1 · x))f(g−1 · x)
= ei

√
2·0f(x−

√
2u) = f(x−

√
2u),

i.e. with Euclidean shifts. From the identity ⟨Wv,M∗l⟩F(X) = ⟨v, l⟩B (1.8) follows
the Plancherel’s identity:∫

Rn

v̂(y)̂l(y)dy =

∫
Rn

v(x)l(x)dx.

These are basic and important properties of the Fourier transform.
The Schrödinger representation is irreducible on S(Rn) thus M = W−1. There-

after integral formulas (1.15) and (1.16) representing operators MW = WM = 1
correspondingly give an integral resolution for a convolution with the Dirac delta
δ(x). We have integral resolution for the Dirac delta

δ(x− y) = (2π)−n/2

∫
Rn

eiξ(x−y) dξ.

All described results on the Fourier transform are a part of any graduate cur-
riculum. What is a reason for a reinvention of a bicycle here? First, the same path
works with minor modifications for a function theory in R1,1 described in [33].
Second we will use this interpretation of the Fourier transform in Example 3.5
for a demonstration how the Weyl functional calculus fits in the scheme outlined
in [32, 34] and Subsection 2.2.

REMARK 3.2. Of course, the Heisenberg group is not the only possible source
for the Fourier transform. We could consider the “ax + b” group [54, Chap. 7] of
the affine transformations of Euclidean space Rn. The normal subgroup G0 = R
of dilations generates the homogeneous space X = Rn on which shifts act simply
transitively. The Fourier transform deduced from this setting will naturally exhibit
scaling properties. We could alternatively consider a group Mn of Möbius trans-
formation [12, Chap. 2] in Rn+1 which map upper half plane to itself. Then there is
an induced action of Mn on Rn—the boundary of upper half plane. Mn generated
by composition of the affine transformations and the Kelvin inverse [12, Chap. 2].
If we take the normal subgroup G0 generated by dilations and the Kelvin inverse
then the quotient space X will again coincide with Rn and we immediately ar-
rive to the above case. On the other hand the Fourier transform derived in such a
way could be easily connected with the plane wave decomposition [50] in Clifford
analysis [11, 19].

EXAMPLE 3.3. As a subgroup G0 we select now the center of Hn consisting of
elements (t, 0). Of course X = G/G0 isomorphic to Cn and mapping s : Cn → G
simply is defined as s(z) = (0, z). The Haar measure on Hn coincides with the
standard Lebesgue measure on R2n+1 [54, § 1.1] thus the invariant measure on X
also coincides with the Lebesgue measure on Cn. Note also that composition law
s−1(g ·s(z)) reduces to Euclidean shifts on Cn. We also find s−1((s(z1))

−1 ·s(z2)) =
z2 − z1 and r((s(z1))

−1 · s(z2)) = 1
2ℑz̄1z2.

As a “vacuum vector” we will select the original vacuum vector of quantum
mechanics—the Gauss function f0(x) = e−x2/2 which belongs to all Lp(Rn). Its
transformations are defined as follow:

fg(x) = [ρ(t,z)f0](x) = ei(2t−
√
2vx+uv) e−(x−

√
2u)

2
/2

= e2it−(u2+v2)/2e−((u−iv)2+x2)/2+
√
2(u−iv)x

= e2it−zz̄/2e−(z̄2+x2)/2+
√
2z̄x.
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Particularly [ρ(t,0)f0](x) = e−2itf0(x), i.e., it really is a vacuum vector in the sense
of our definition with respect to G0. For the same reasons we could take l0(x) =

e−x2/2 ∈ Lq(Rn), p−1 + q−1 = 1 as the test functional.
It could be shown that [ρ(0,z)f0](x) belongs to Lq(Rn) ⊗ Lp(Cn) for all p > 1

and q > 1, p−1 +q−1 = 1. Thus transformation (1.4) with the kernel [ρ(0,z)f0](x) is
an embedding Lp(Rn) → Lp(Cn) and is given by the formula

f̂(z) =
〈
f, ρs(z)f0

〉
= π−n/4

∫
Rn

f(x) e−zz̄/2 e−(z2+x2)/2+
√
2zx dx

= e−zz̄/2π−n/4

∫
Rn

f(x) e−(z2+x2)/2+
√
2zx dx.(3.5)

Then f̂(g) belongs to Lp(Cn,dg) or its preferably to say that function f̆(z) = ezz̄/2f̂(t0, z)

belongs to space Lp(Cn, e−|z|2dg) because f̆(z) is analytic in z. Such functions for
p = 2 form the Segal-Bargmann space F2(Cn, e−|z|2dg) of functions [5,45], which are
analytic by z and square-integrable with respect the Gaussian measure e−|z|2dz.
For this reason we call the image of the transformation (3.5) by Segal-Bargmann
type space Fp(Cn, e−|z|2dg). Analyticity of f̆(z) is equivalent to condition ( ∂

∂z̄j
+

1
2zjI)f̂(z) = 0.

The integral in (3.5) is the well-known Segal-Bargmann transform [5, 45]. In-
verse to it is given by a realization of (1.6):

f(x) =

∫
Cn

f̂(z)fs(z)(x)dz

=

∫
Cn

f̂(u, v)eiv(u−
√
2x) e−(x−

√
2u)

2
/2 dudv(3.6)

=

∫
Cn

f̆(z)e−(z̄2+x2)/2+
√
2z̄x e−|z|2 dz.

The corresponding operator P (1.7) is an identity operator Lp(Rn) → Lp(Rn)
and (1.7) gives an integral presentation of the Dirac delta.

Integral transformations (3.5) and (3.6) intertwines the Schrödinger represent-
ation (3.3) with the following realization of representation (1.5):

λ(t, z)f(w) = f̂0(z
−1 ·w)χ̄(t+ r(z−1 ·w))(3.7)

= f̂0(w− z)eit+iℑ(z̄w)(3.8)

Meanwhile the orthoprojection L2(Cn, e−|z|2dg) → F2(Cn, e−|z|2dg) is of a
separate interest and is a principal ingredient in Berezin quantization [8, 15]. We
could easy find its kernel from (1.10). Indeed, f̂0(z) = e−|z|2 , then the kernel is

K(z,w) = f̂0(z
−1 ·w)χ̄(r(z−1 ·w))

= f̂0(w− z)eiℑ(z̄w)

= exp

(
1

2
(− |w− z|2 +wz̄− zw̄)

)
= exp

(
1

2
(− |z|2 − |w|

2) +wz̄

)
.

To receive the reproducing kernel for functions f̆(z) = e|z|
2

f̂(z) in the Segal-Bargmann
space we should multiply K(z,w) by e(−|z|2+|w|

2)/2 which gives the standard re-
producing kernel = exp(− |z|2 +wz̄) [5, (1.10)].
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3.3. Operator Valued Representations of the Heisenberg Group. We pro-
ceed now with our main targets: wavelets in operator algebras. We shell show
that well-known and new functional calculi are realizations of the scheme from
Subsection 2.2.

CONVENTION 3.4. [2] Let B be a Banach space. We will say that an operator
A : B → B is unitary if A is invertible and ∥Ab∥ = ∥b∥ for all b ∈ B. An operator
A : B → B is called self-adjoint if the operator exp(iA) is unitary. In the Hilbert
space case this convention coincides with the standard definition.

Let T1, . . . , Tn be an n-tuples of selfadjoint linear operators on a Banach space
B. We put for our convenience T0 = I—the identical operator. It follows from the
Trotter-Daletskii4 formula [44, Thm. VIII.31] that any linear combination

∑n
j=0 ajTj

is again a selfadjoint operator. We will consider a set of unitary operators

(3.9) T(a0,a1, . . . ,an) = exp

i

n∑
j=0

ajTj


parametrized by vectors (a0,a1, . . . ,an) ∈ Rn+1. Particularly T(0, 0, . . . , 0) = I. A
family of their transformations ω(t, z), t ∈ R, z ∈ Cn is defined by the rule

ω(t, z)T(a0,a1, . . . ,an) = T

a0 + t+

n∑
j=1

(ujvj −
√
2ajuj),

a1 −
√
2v1, . . . ,an −

√
2vn

)
,(3.10)

where zj = uj+ivj. A direct calculation shows that ω(t ′, z ′)ω(t ′′, z ′′) = ω(t ′+t ′′+
1
2ℑ(z̄

′z ′′), z ′+ z ′′)—this is a non-linear geometric representation of the Heisenberg
group Hn. We could observe that

T(a0,a1, . . . ,an) = ω(a0,a)T(0, 0, . . . , 0) = ω(a0,a)T0 = ω(a0,a)I,

where a = (ia1, . . . , ian). Obviously all transformations ω(t, z) are isometries if
the norm of elements T(a0,a1, . . . ,an) is defined as their operator norm.

The representation ω (3.10) is not linear and we would like to use the pro-
cedure outlined in Remark 1.2. We construct the linear space of operator valued
functions L(Rn,B) for a Hn-homogeneous space X as follows

(3.11) [Tf](t) =

∫
X

f(x)ω(s(x))dx T(t), t ∈ Rn, s(x) ∈ Hn.

We also extend the representation ω to L(X,B) as follows:

(3.12) ω : [Tf](t) 7→ ω(g)[Tf](t) =

∫
X

f(g · x)ω(s(x))dx T(t),

where [Tf](t) ∈ L1(Hn), g ∈ Hn.
We will go on with coherent states defined by such a representation. In the

notations of Subsection 2.2 operators T1, . . . , Tn form a set T defining the repres-
entation τ = ω in (3.10) with T0(x) = I being a vacuum vector.

EXAMPLE 3.5. We are ready to demonstrate that the Weyl functional calculus
is an application of Definition 2.9 and Example 3.1 as was announced in [32, Re-
mark 4.3]. Consider again the subgroup G0 = Rn+1 = {(t, z) | ℑ(z) = 0} and a
realization of scheme from Subsection 1.3 for this subgroup. Then the first para-
graph of Example 3.1 is applicable here.

4The formula is usually attributed to Trotter alone. It is widely unknown that the result appeared
in [18] also.
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We could easily see that ω(t,u1, . . . ,un)I = eit+i
∑n

1 ujI and we select the
identity operator I times (2π)−n/2 as the vacuum vector T0(x) of the representa-
tion ω. Thereafter the transformation T : S(Rn) → L(Rn,B) (3.11) is exactly the
inverse wavelet transform for the representation ω. This transformation is defined
at least for all f ∈ S(Rn). The space S(Rn) is the image of the wavelet (Fourier)
transform (3.4). Thus as outlined in Proposition 2.11 we could construct an inter-
twining operator F between σ (3.3) and ω (3.10) from the formula (2.20) as follow
(see Remark 2.10):

[ΦTf](0) = MωWσf = (2π)−n/2

∫
Rn

f̂(x)ω(0, x1, . . . , xn) I dx

= (2π)−n/2

∫
Rn

f̂(x) ei
∑n

1 xjTj dx.(3.13)

This formula is exactly the integral formula for the Weyl functional calculus [2,43,
52]. As an example one could define a function

(3.14) e−
∑n

1 T2
j /2 = (2π)−n/2

∫
Rn

e−
∑n

1 x2
j/2ei

∑n
1 xjTj dx.

As we have seen (2.19) one could formally write the integral kernel from (3.13) as
convolution of the integral kernels for Wσ and Mω:

(3.15) Φ(y, 0) =

∫
Rn

e−i
∑n

1 yjxjei
∑n

1 xjTj dx.

This expression looks very formal, but it is possible to give it a precise mathemat-
ical meaning as an operator valued distribution. Such an approach was explored
by ANDERSON in [2]. The support of this distribution was defined as the Weyl joint
spectrum for n-tuple of non-commuting operators T1, . . . ,Tn and studied in [2].

REMARK 3.6. As was mentioned in Remark 3.2 one could construct the Four-
ier transform from representations of ax + b group or the group Mn of Möbius
transformations of the upper half plane. Analogously one could deduce the Weyl
functional calculus as an intertwining operator between two representation of this
group. The Cauchy kernel G(x) [11, § 9] in Clifford analysis is the kernel of the
Cauchy integral transform

f(y) =

∫
∂X

Gy(x)n⃗(x)f(x)dσ(x), y ∈ X,

where n⃗(x) is the outer unit vector orthogonal to ∂X and dσ(x) is the surface ele-
ment at a point x. The Cauchy integral formula (as any wavelet transform) in-
tertwines two representations acting on X and ∂X of Mn similarly to the case of
complex analysis [34, § 6]. Thus we could apply here Theorem 2.13 on a mapping
of spectral distributions. The formula (2.28) take the form

ΦWf =

∫
∂X

ΦW(G)(x)n⃗(x)f(x)dσ(x),

where ΦW stands for the Weyl functional calculus. This gives another interpreta-
tion for the main result of the paper [28, Thm. 5.4].

There is no a reason to restrict ourselves only to the case of subgroup G0 =
Rn+1 = {(t, z) | ℑ(z) = 0}. Thus we proceed with the next example.

EXAMPLE 3.7. In an analogy with Example 3.3 let us consider now the wavelet
theory associated to the subgroup G0 = R1 = {(t, 0)} and the representation ω. The
first paragraph of Example 3.3 depends only on G = Hn and G0 = R1 and thus is
applicable in our case.
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It is easy to see from formula (3.10) that any operator valued function [Tf](x) (3.11)
is an eigen vector for ω(h), h ∈ G0. To be concise with function models we select
as a vacuum vector the operator exp(−

∑n
1 T2

j ) (3.14). Then the condition (2.13)
immediately follows from (3.14). Thus we could define a functional calculus Φ :
Fp(Cn) → L(Cn,B) by the formula (see Remark 2.10):

[ΦTf](0) =

∫
Cn

f(z)ω(0, z) exp(−

n∑
1

T2
j /2)dz

=

∫
Cn

f(z)ω(0, z)(2π)−
n
2

∫
Rn

e−
∑n

1 x2
j/2ei

∑n
1 xjTj dxdz

= (2π)−
n
2

∫
Cn

f(z)

∫
Rn

e−
∑n

1 x2
j/2ω(0, z)ei

∑n
1 xjTj dxdz

= (2π)−
n
2

∫
R3n

exp

n∑
j=1

(
−
x2j

2
+ i(vj −

√
2xj)uj + i(xj −

√
2vj)Tj

)
×f(z)dxdudv.(3.16)

The last formula could be rewritten for mutually commuting operators Tj as fol-
lows:

[ΦTf](0) = (2π)−
n
2

∫
R2n

∫
Rn

exp

n∑
j=1

(
−
x2j

2
+ ixj(Tj −

√
2uj)

)
dx

× exp

n∑
j=1

i(vjuj −
√
2vjTj) f(z)dudv

= (2π)−
n
2

∫
Cn

exp

n∑
j=1

(
ivj(uj −

√
2Tj) −

(Tj −
√
2uj)

2

2

)
f(z)dz

where the exponent of operator is defined in the standard sense, e.g. via the Weyl
functional calculus (3.13) or the Taylor expansion. The last formula is similar
to (3.6). This is very natural for commuting operators as well as that for non-
commuting operators fromula (3.16) is more complicated.

The spectral distribution

ΦT(z, 0) = (2π)−
n
2

∫
Rn

exp

n∑
j=1

(
−
x2j

2
+ i(vj −

√
2xj)uj + i(xj −

√
2vj)Tj

)
dx

derived from (3.16) contains at least as much information on operators T1, . . . , Tn
as the Weyl distribution (3.15) and deserves a careful separate investigation. We
will just mention in conclusion that the Segal-Bargmann space is an example of
the Fock space—space of second quantization for bosonic fields. Thus the func-
tional calculus based on the Segal-Bargmann model sketched here seems to be an
appropriate model for quantized bosonic fields.
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