The family of infinitesimal cycles is invariant under the Cayley transform¶
Exercise I.10.12. [1] Show that images of infinitesimal cycles under the parabolic Cayley transform are, themselves, infinitesimal cycles.
Solution. First we define some suitable substitutions to simplify algebraic equations later.
from init_cycle import *
sign_cube = {pow(sign, 3) : sign}
sign1_cube = {pow(sign1, 3) : sign1}
vp=possymbol("vp")
sl2_relation = {c*b : a*d-1}
sl2_relation1 = {a : (1+b*c)/d}
The check will be performed by the next procedure. It verifies the expression of the Cayley transform on infinitesimal cycles and evaluates its radius.
def infinitesimal_trans(nval):
C10 = cycle2D(1, [u, n], pow(u,2)-pow(n,2)*sign1+pow(epsilon,2), e).subs(nval)
C11=cayley(C10,0,sign1)
display(Latex("Checking infinitesimal cycle: $%s$" % C10.string()))
display(Latex(" Image under Cayley transform of infinitesimal cycle has radius squared: $%s$" %\
C11.radius_sq(es).subs(sl2_relation1, subs_options.algebraic).\
subs(sign_cube, subs_options.algebraic).series(relational(epsilon, 0, eq), 3).normal()))
Now we do first check, the first for elliptic focus.
infinitesimal_trans({n : (vp-(pow(pow(vp,2)-pow(epsilon,2)*(sign2-sign1),half)))/(sign2-sign1)})
The second check is for the parabolic focus, i.e. the vertex of the parabola.
infinitesimal_trans({n : pow(epsilon,2)/2/vp, sign2 : sign1})
This notebook is a part of the MoebInv notebooks project [2] .
References¶
Vladimir V. Kisil. Geometry of Möbius Transformations: Elliptic, Parabolic and Hyperbolic Actions of $SL_2(\mathbb{R})$. Imperial College Press, London, 2012. Includes a live DVD.
Vladimir V. Kisil, MoebInv notebooks, 2019.