Check relation between parabolic Cayley transform and f-orthogonality¶
Exercise I.10.13 [1] $\newcommand{\Space}[3][]{\mathbb{#2}^{#3}_{#1}} \newcommand{\cycle}[3][]{{#1 C^{#2}_{#3}}} \newcommand{\realline}[3][]{#1 R^{#2}_{#3}} \newcommand{\bs}{\breve{\sigma}}$ An infinitesimal cycle $\cycle{a}{\bs}$ I.7.13 is f-orthogonal (in the sense of Exercise I.7.26.ii) to a cycle $\cycle[\tilde]{a}{\bs}$ if and only if the Cayley transform I.10.9(p) of $\cycle{a}{\bs}$ is f-orthogonal to the Cayley transform of $\cycle[\tilde]{a}{\bs}$.
Solution. We
from init_cycle import *
vp=possymbol("vp")
TC=matrix([[one, -e1], [sign1*e1, one]])
We define the procedure which will do the required steps. Cycle C10
is a cycle of infitesimal radius $\varepsilon$, C11
is the Cayley transform of C10
. We output the distance between the focus of C11
and the Cayley transform of focus of C10
. The second output gives the condition of f-orthogonality to be of order $O(\epsilon^3)$.
def cayley_ortho(nval):
epsilon_is_zero = relational(epsilon, 0, eq)
C10 = cycle2D(1, [u, n], pow(u,2)-pow(n,2)*sign1+pow(epsilon,2), e).subs(nval)
C11=cayley(C10,0,sign1)
display(Latex("Checking infinitesimal cycle: $%s$" % C10.string()))
displ = (C11.focus(er, True).subs(nval)\
- clifford_moebius_map(TC, matrix([[u],[vp]]), e)).evalm().normal()
display(Latex(" Focus of the Cayley-transformed infinitesimal cycle displaced by: ($%s$, $%s$)" %\
(displ.op(0).subs({sign : 0}, subs_options.algebraic).series(epsilon_is_zero, 2).normal(),\
displ.op(0).subs({sign : 0}, subs_options.algebraic).series(epsilon_is_zero, 2).normal())))
return Latex(" f-orthogonality of Cayley transforms of infinitesimal cycle to other: $%s$" %\
C11.is_f_orthogonal(cayley(C,0,sign1), es).series(epsilon_is_zero, 3).normal())
Finally we make check in to cases. The first one is for parabolic focus.
cayley_ortho({n : (vp-(pow(pow(vp,2)-pow(epsilon,2)*(sign2-sign1),half)))/(sign2-sign1)})
The second check is for parabolic focus (i.e. the vertex) of the parabola.
cayley_ortho({n : pow(epsilon,2)/2/vp, sign2 : sign1})
This notebook is a part of the MoebInv notebooks project [2] .
References¶
Vladimir V. Kisil. Geometry of Möbius Transformations: Elliptic, Parabolic and Hyperbolic Actions of $SL_2(\mathbb{R})$. Imperial College Press, London, 2012. Includes a live DVD.
Vladimir V. Kisil, MoebInv notebooks, 2019.