Check formulas for Moebius action¶
Exercise I.3.7 [1] Use CAS to check the formula for all $\sigma=-1$, $0$, $1$: \begin{equation} \label{eq:moebius-cumbersome} \begin{pmatrix} a&b\\c&d \end{pmatrix}:\ (u,v)\mapsto \left(\frac{(au+b)(c u+d) -\sigma cav^2}{( c u+d)^2 -\sigma (cv)^2}, \frac{v}{( c u+d)^2 -\sigma (cv)^2}\right). \tag{I.3.23} \end{equation}
Solution. Use map s (3.13) from the book [1]
from init_cycle import *
def s(P):
return matrix([[pow(P[1],half),P[0]/pow(P[1],half)],[0,pow(P[1],-half)]])
Also define map p (3.14), (3.17), (3.20) from [1]
def p(M,sig):
return [(M.op(1)*M.op(3)-sig*M.op(0)*M.op(2))/(M.op(3)*M.op(3)-sig*M.op(2)*M.op(2)),
1/(M.op(3)*M.op(3)-sig*M.op(2)*M.op(2))]
Here is the three different types of the non-conjugated subgroups
subgr=["K", "N", "A"]
Now we ready to output results of calculation:
result = []
for i in range(3):
P1=p((matrix([[a,b],[c,d]])*s([u,v])).evalm(), i-1)
display(Latex(f"For subgroup {subgr[i]} action is: ${P1[0].normal()}$, ${P1[1].normal()}$"))
This notebook is a part of the MoebInv notebooks project [2] .
References¶
Vladimir V. Kisil. Geometry of Möbius Transformations: Elliptic, Parabolic and Hyperbolic Actions of $SL_2(\mathbb{R})$. Imperial College Press, London, 2012. Includes a live DVD.
Vladimir V. Kisil, MoebInv notebooks, 2019.