Cycle product is invariant under the SL(2,R) conjugation¶
Exercise I.5.12.i [1] $ \newcommand{\scalar}[3][]{\left\langle #2,#3 \right\rangle_{#1}} \newcommand{\Space}[3][]{\mathbb{#2}^{#3}_{#1}} \newcommand{\Space}[3][]{\mathbb{#2}^{#3}_{#1}} \newcommand{\cycle}[3][]{{#1 C^{#2}_{#3}}} \newcommand{\realline}[3][]{#1 R^{#2}_{#3}} \newcommand{\bs}{\breve{\sigma}} \newcommand{\zcycle}[3][]{#1 Z^{#2}_{#3}} \newcommand{\SL}[1][2]{\mathrm{SL}_{#1}(\Space{R}{})} \newcommand{\rs}{\sigma_r} \newcommand{\lvec}[1]{\overrightarrow{#1}} $ The value of cycle product will remain the same if both matrices are replaced by their images under similarity with the same element $g\in\SL$.
Solution. The straightforward calculation:
from init_cycle import *
"The cycle product is invariant under the SL2 conjugation: %s" %\
(C.cycle_product(C1)- C.sl2_similarity(a,b,c,d,e).cycle_product(\
C1.sl2_similarity(a,b,c,d,e))).subs({a : (1+b*c)/d}).normal().is_zero()
This notebook is a part of the MoebInv notebooks project [2] .
References¶
Vladimir V. Kisil. Geometry of Möbius Transformations: Elliptic, Parabolic and Hyperbolic Actions of $SL_2(\mathbb{R})$. Imperial College Press, London, 2012. Includes a live DVD.
Vladimir V. Kisil, MoebInv notebooks, 2019.