Check expressions for cycle similarity¶
Exercise I.6.22 [1] Check that: $ \newcommand{\Space}[3][]{\mathbb{#2}^{#3}_{#1}} \newcommand{\cycle}[3][]{{#1 C^{#2}_{#3}}} \newcommand{\realline}[3][]{#1 R^{#2}_{#3}} \newcommand{\bs}{\breve{\sigma}} \newcommand{\zcycle}[3][]{#1 Z^{#2}_{#3}} \newcommand{\SL}[1][2]{\mathrm{SL}_{#1}(\Space{R}{})} \newcommand{\rs}{\sigma_r} \newcommand{\lvec}[1]{\overrightarrow{#1}} $
The cycle $\bs$-similarity with a cycle $\cycle[\tilde]{s}{\bs}$, where $\det \cycle[\tilde]{s}{\bs}\neq 0$, preserves the structure of FSCc matrices and $\cycle[\tilde]{s_1}{\bs}$ is its fixed point. In a non-singular case, $\det \cycle[\tilde]{s}{\bs}\neq 0$, the second iteration of similarity is the identity map.
The $\bs$-similarity with a $\bs$-zero-radius cycle $\zcycle{s}{\bs}$ always produces this cycle.
The $\bs$-similarity with a cycle $(k,l,n,m)$ is a linear transformation of the cycle space $\Space{R}{4}$ with a matrix having an apparent regularity of its entries.
Solution. We explicitly define complex matrices corresponding to the cycles
from init_cycle import *
Mat=matrix([[l+I*sign2*n,-m],[k,-l+I*sign2*n]])
Mat1=matrix([[l1+I*sign1*n1,-m1],[k1,-l1+I*sign1*n1]])
Now we calculate similarity of respective matrices
Res7=(Mat*Mat1.conjugate()*Mat).evalm().expand()
Then we calculate cycle similarity from the library
Cn=C1.cycle_similarity(C,e,diag_matrix([1,sign1]),diag_matrix([1,sign2]))
Check that we get the same answers
print("With cycle conjugation we obtain")
" coeff k is the same: %s" % (Cn.get_k().subs({sign : -1})-Res7.op(2)).normal().is_zero()
Since the first coefficient is different we need to check the projective equality (proportionality) of other coefficients:
" coeff l is proportional: %s" % (Res7.op(2)*(Cn.get_l(0)+I*Cn.get_l(1)).subs({sign : -1})\
-Cn.get_k().subs({sign : -1})*Res7.op(0)).normal().is_zero()
" coeff m is proportional: %s" % (Res7.op(2)*Cn.get_m().subs({sign : -1})\
+Cn.get_k().subs({sign : -1})*Res7.op(1)).normal().is_zero()
A separate check for zero-radius cycles, it is a projection to it
"Conjugation with a zero-radius cycle is this cycle: %s" %\
C.cycle_similarity(Z).is_equal(Z)
Finally we output the explicit expression for the similarity:
Latex("Conjugation with a generic cycle is: $%s$" %\
C1.cycle_similarity(C).string())
This notebook is a part of the MoebInv notebooks project [2] .
References¶
Vladimir V. Kisil. Geometry of Möbius Transformations: Elliptic, Parabolic and Hyperbolic Actions of $SL_2(\mathbb{R})$. Imperial College Press, London, 2012. Includes a live DVD.
Vladimir V. Kisil, MoebInv notebooks, 2019.