Properties of conjugation of a real line to a certain cycle¶
Exercise I.6.31 [1] $ \newcommand{\scalar}[3][]{\left\langle #2,#3 \right\rangle_{#1}} \newcommand{\Space}[3][]{\mathbb{#2}^{#3}_{#1}} \newcommand{\Space}[3][]{\mathbb{#2}^{#3}_{#1}} \newcommand{\cycle}[3][]{{#1 C^{#2}_{#3}}} \newcommand{\realline}[3][]{#1 R^{#2}_{#3}} \newcommand{\bs}{\breve{\sigma}} \newcommand{\zcycle}[3][]{#1 Z^{#2}_{#3}} \newcommand{\SL}[1][2]{\mathrm{SL}_{#1}(\Space{R}{})} \newcommand{\rs}{\sigma_r} \newcommand{\lvec}[1]{\overrightarrow{#1}} $ Let $\cycle{s}{\bs}=(k, l, n,m)$ be a cycle such that $\bs \det\cycle{s}{\bs}>0$ for $\bs\neq 0$. Let us define the cycle $\cycle[\tilde]{s}{\bs}$ by the quadruple $(k, l, n\pm\sqrt{\bs \det\cycle{s}{\bs}},m)$. Then:
- $\cycle[\tilde]{s}{\bs} \cycle{s}{\bs} \cycle[\tilde]{s}{\bs} = \Space{R}{}$ and $\cycle[\tilde]{s}{\bs} \Space{R}{} \cycle[\tilde]{s}{\bs} = \cycle{s}{\bs}$.
roots.$\cycle[\tilde]{s}{\bs}$ and $\cycle{s}{\bs}$ have common
- In the $\bs$-implementation, the cycle $\cycle{s}{\bs}$ passes the centre of $\cycle[\tilde]{s}{\bs}$.
Hint. One can directly observe for real roots, since they are fixed points of the inversion. Also, the transformation of $\cycle{s}{\bs}$ to a flat cycle implies that $\cycle{s}{\bs}$ passes the centre of inversion, hence. There is also a CAS calculation for this.
Solution. We independently check values $\sigma=-1$ and $\sigma=1$.
from init_cycle import *
for si in range(-1,2,2):
print("Inversion to the real line (with %s sign):" % si)
# We define a cycle by the required quadruple
C9 = cycle2D(k, [l, n+si*pow(C.hdet(es)*sign1, half)], m, es)
# Check that the conjugation send the real line to C and wise verse
print(" Conjugation of the real line is the cycle C: %s" %\
real_line.cycle_similarity(C9, es).subs({pow(sign1,2) : 1}, subs_options.algebraic).is_equal(C))
print(" Conjugation of the cycle C is the real line: %s" %\
C.cycle_similarity(C9, es).subs({pow(sign1,2) : 1}, subs_options.algebraic).is_equal(real_line))
# Check roots and the centre incidence
print(" Inversion cycle has common roots with C: %s" %\
(C9.val([C.roots()[0], 0]).numer().normal().is_zero()\
and C9.val([C.roots()[1], 0]).numer().normal().is_zero()))
print(" C passing the centre of inversion cycle: %s" %\
cycle2D(C, es).val(C9.center()).numer().subs({sign1 : sign}).expand()\
.subs({pow(sign,2) : 1}, subs_options.algebraic).is_zero())
This notebook is a part of the MoebInv notebooks project [2] .
References¶
Vladimir V. Kisil. Geometry of Möbius Transformations: Elliptic, Parabolic and Hyperbolic Actions of $SL_2(\mathbb{R})$. Imperial College Press, London, 2012. Includes a live DVD.
Vladimir V. Kisil, MoebInv notebooks, 2019.