Check Yaglom inversion properties¶
Exercise I.6.33 [1] $ \newcommand{\scalar}[3][]{\left\langle #2,#3 \right\rangle_{#1}} \newcommand{\Space}[3][]{\mathbb{#2}^{#3}_{#1}} \newcommand{\Space}[3][]{\mathbb{#2}^{#3}_{#1}} \newcommand{\cycle}[3][]{{#1 C^{#2}_{#3}}} \newcommand{\realline}[3][]{#1 R^{#2}_{#3}} \newcommand{\bs}{\breve{\sigma}} \newcommand{\zcycle}[3][]{#1 Z^{#2}_{#3}} \newcommand{\SL}[1][2]{\mathrm{SL}_{#1}(\Space{R}{})} \newcommand{\rs}{\sigma_r} \newcommand{\lvec}[1]{\overrightarrow{#1}} \newcommand{\rmi}{\mathrm{i}} \newcommand{\alli}{\iota} \newcommand{\rme}{\mathrm{e}} \newcommand{\rmd}{\mathrm{d}} \newcommand{\rmh}{\mathrm{j}} \newcommand{\rmp}{\varepsilon} \newcommand{\modulus}[2][]{\left| #2 \right|_{#1}} \newcommand{\sperp}{⋋} $ The inversion of the second kind is a composition of three Möbius transformations defined by cycles $(1,l,2m,l^2+m/k)$, $(1,l,0,l^2+m/k)$ and the real line in the parabolic point space $\Space[p]{R}{}$.
Solution. Two additional cycles are defined.
from init_cycle import *
C2=cycle2D([l, 0], e, -m/k)
C3=cycle2D([l, 2*m], e, -m/k)
Latex("Consider composition of three reflections in two cycles $%s$ and $%s$ and the real line" %\
(C3.subs({sign : 0}).normal().string(), C2.subs({sign : 0}).normal().string()))
Different formulae are used for vectors and paravector formalisms
if (UseVectors):
P0=matrix([[u,v]])
else:
P0=matrix([[u,-v]])
Latex("The composition is equal to Yaglom inversion of the second kind: %s" %\
(real_line.moebius_map(\
C2.moebius_map(\
C3.moebius_map(P0))).subs(sign==0)\
-matrix([[u, 2*(k*pow(u-l,2)+m)-v]])).normal().is_zero())
This notebook is a part of the MoebInv notebooks project [2] .
References¶
Vladimir V. Kisil. Geometry of Möbius Transformations: Elliptic, Parabolic and Hyperbolic Actions of $SL_2(\mathbb{R})$. Imperial College Press, London, 2012. Includes a live DVD.
Vladimir V. Kisil, MoebInv notebooks, 2019.