None ex.I.7.14.i

Conformality of distances

Exervise I.7.14.i [1] $ \newcommand{\Space}[3][]{\mathbb{#2}^{#3}_{#1}} \newcommand{\cycle}[3][]{{#1 C^{#2}_{#3}}} \newcommand{\realline}[3][]{#1 R^{#2}_{#3}} \newcommand{\bs}{\breve{\sigma}} \newcommand{\zcycle}[3][]{#1 Z^{#2}_{#3}} \newcommand{\SL}[1][2]{\mathrm{SL}_{#1}(\Space{R}{})} $ Show $\SL$-conformality:

The distance 

\eqref{eq:distance-first-ell-hyp} \begin{equation} \label{eq:distance-first-ell-hyp} d_{\sigma,\bs}^2(P, P') = \frac{ \bs ((u-u')^2-\sigma(v- v')^2) +4(1-\sigma\bs) v v'} {(u- u')^2 \bs-(v-v')^2} ((u-u')^2 -\sigma(v- v')^2), \tag{I.7.2} \end{equation} is conformal if and only if the type of point and cycle spaces are the same, i.e. $\sigma\bs=1$.

The parabolic distance \begin{equation} d_{p,\bs}^2(y, y') = (u-u')^2. \tag{I.7.3} \end{equation} is conformal only in the parabolic point space.

Solution. We define the simplification for matrices in $\SL$:

In [1]:
from init_cycle import *
sl2_relation1 = {a : (1+b*c)/d}
            Python wrappers for MoibInv Library
     ---------------------------------------------
Please cite this software as
V.V. Kisil, MoebInv: C++ libraries for manipulations in non-Euclidean geometry, SoftwareX, 11(2020),100385. doi:10.1016/j.softx.2019.100385.
     ---------------------------------------------

Using vector formalism and idx

Define the image of $P=(u,v)$ under the Möbius transformation and make the component-wise substitution of the simplification rule.

In [2]:
gP=clifford_moebius_map(sl2_clifford(a, b, c, d, e), P, e)
gP=[gP[0].subs(sl2_relation1,subs_options.algebraic).normal(),\
gP[1].subs(sl2_relation1,subs_options.algebraic).normal()]

The same for the image of $P_1=(u_1,v_1)$ under the Moebius transformation

In [3]:
gP1=clifford_moebius_map(sl2_clifford(a, b, c, d, e), P1, e)
gP1=[gP1[0].subs(sl2_relation1,subs_options.algebraic).normal(),\
gP1[1].subs(sl2_relation1,subs_options.algebraic).normal()]

Make a warning on the output.

In [4]:
print("Two lines below shall contain 'False' (twice) as the correct result")
Two lines below shall contain 'False' (twice) as the correct result

The routine to check conformality for various combination of matrics in point and cycle spaces

In [5]:
def check_conformality(Len_c, si=3):
    Len_cD= ((Len_c.subs({u : gP[0], v : gP[1], u1 : gP1[0],\
                          v1 : gP1[1]})\
    /Len_c).subs({u1 : u+t*x, v1 : v+t*y}));
    Len_fD = Len_cD
    print("Conformity in a cycle space with metric:   E      P      H ")
    # Iterate metric of the point space
    while (si<2):
        output="Point space is %s" % eph_case(si)
        si1 = -1
        # Iterate metric of the cycle space
        while (si1<2):
            Len_cD = Len_fD.subs({sign : numeric(si)}, subs_options.algebraic)\
            .subs({sign1 : numeric(si1)}, subs_options.algebraic).normal()
            if (Len_cD.has(t)):
                Len_cD = Len_cD.series(relational(t, 0, eq), 1).op(0).normal()
                
            is_conformal = not(Len_cD.is_zero() or Len_cD.has(t) or Len_cD.has(x) or Len_cD.has(y))
            output=output+("  %s " % is_conformal)
            si1=si1+1
        si=si+2
        print(output)

Use regularised expression for distances checked in le-distance-first.ipynb aka le.I.7.5.ipynb to check the elliptic and hyperbolic cases

In [6]:
print("Elliptic/hyperbolic distances")
dist = (sign1*(pow(u-u1,2)-sign*pow(v-v1,2))+4*(1-sign*sign1)*v*v1)*(pow(u-u1,2)\
-sign*pow(v-v1,2))/(pow(u-u1,2)*sign1-pow(v-v1,2))
check_conformality(dist, -1)
Elliptic/hyperbolic distances
Conformity in a cycle space with metric:   E      P      H 
Point space is Elliptic case (sign = -1)  True   False   False 
Point space is Hyperbolic case (sign = 1)  False   False   True 

Then check the parabolic case

In [7]:
print("Parabolic distance")
dist=pow(u-u1,2)
check_conformality(dist, 0)
Parabolic distance
Conformity in a cycle space with metric:   E      P      H 
Point space is Parabolic case (sign = 0)  True   True   True 

This notebook is a part of the MoebInv notebooks project [2] .

References

  1. Vladimir V. Kisil. Geometry of Möbius Transformations: Elliptic, Parabolic and Hyperbolic Actions of $SL_2(\mathbb{R})$. Imperial College Press, London, 2012. Includes a live DVD.

  2. Vladimir V. Kisil, MoebInv notebooks, 2019.

Back to Folder