Check the formula for an inversive distance for a generic cycle¶
Exercise I.7.8 [1] $ \newcommand{\scalar}[3][]{\left\langle #2,#3 \right\rangle_{#1}} \newcommand{\Space}[3][]{\mathbb{#2}^{#3}_{#1}} \newcommand{\Space}[3][]{\mathbb{#2}^{#3}_{#1}} \newcommand{\cycle}[3][]{{#1 C^{#2}_{#3}}} \newcommand{\realline}[3][]{#1 R^{#2}_{#3}} \newcommand{\bs}{\breve{\sigma}} \newcommand{\zcycle}[3][]{#1 Z^{#2}_{#3}} \newcommand{\SL}[1][2]{\mathrm{SL}_{#1}(\Space{R}{})} \newcommand{\rs}{\sigma_r} \newcommand{\lvec}[1]{\overrightarrow{#1}} \newcommand{\rmi}{\mathrm{i}} \newcommand{\alli}{\iota} \newcommand{\rme}{\mathrm{e}} \newcommand{\rmd}{\mathrm{d}} \newcommand{\rmh}{\mathrm{j}} \newcommand{\rmp}{\varepsilon} \newcommand{\modulus}[2][]{\left| #2 \right|_{#1}} \newcommand{\sperp}{⋋} $ Let two cycles have e-centres $P$ and $P'$ with $\bs$-radii $r_{\bs}$ and $r_{\bs}'$. Then, the $(\bs,\bs)$-power% \index{power!cycle, of}% \index{point!cycle, of} of one cycle with respect to another is, \begin{equation} \frac{d_{\bs,\bs}^2(P,P')-r_{\bs}^2-r_{\bs}^{\prime 2}}{2r_{\bs}\, r_{\bs}'}. \end{equation}
Solution Define cycles C2
and C3
with radii r
and r1
respectively
from init_cycle import *
r=possymbol("r")
r1=possymbol("r1", "r_1")
C2=cycle2D([u,v],es,pow(r,2)).normalize_det()
C3=cycle2D([u1,v1],es,pow(r1,2)).normalize_det()
Latex(f"Cycle C2 is: ${C2.string()}$")
Latex("Power of a cycle with respect to another: $%s$" % \
C2.cycle_product(C3,e).normal())
This notebook is a part of the MoebInv notebooks project [2] .
References¶
Vladimir V. Kisil. Geometry of Möbius Transformations: Elliptic, Parabolic and Hyperbolic Actions of $SL_2(\mathbb{R})$. Imperial College Press, London, 2012. Includes a live DVD.
Vladimir V. Kisil, MoebInv notebooks, 2019.