Proving conjugation formula for Fillmore-Springer-Cnops construction¶
This notebook is a part of the MoebInv Notebooks project [2] .
Theorem I.4.13. [1] Let a matrix $M= \begin{pmatrix} a&b\\c&d \end{pmatrix}\in SL_2(\mathbb{R})$ define the Möbius transformation: \begin{equation} \begin{pmatrix} a&b\\c&d \end{pmatrix}:\ w\mapsto \frac{aw+b}{c w+d}, \tag{I.3.24}\label{eq:moebius-def} \end{equation} where $w=u+\iota v$ with $\iota^2=\sigma$.
The image $\tilde{C}^{s}_{\breve{\sigma}}$ of a cycle ${C}^{s}_{\breve{\sigma}}$ under transformation \eqref{eq:moebius-def} in $\mathbb{R}^2_{\sigma}$ is given by similarity of the matrix: \begin{equation} \label{eq:cycle-transform-short} \tilde{C}^{s}_{\breve{\sigma}} = M {C}^{s}_{\breve{\sigma}} M^{-1}. \end{equation} Explicitly, it means: \begin{equation} \label{eq:cycle-similarity-expl} \begin{pmatrix} \tilde{l}+\breve{\iota} s \tilde{n}&-\tilde{m}\\\tilde{k}&-\tilde{l}+\breve{\iota} s \tilde{n} \end{pmatrix} = \begin{pmatrix} a&b\\c&d \end{pmatrix} \begin{pmatrix} l+\breve{\iota} s n&-m\\k&-l+\breve{\iota} s n \end{pmatrix} \begin{pmatrix} d&-b\\-c&a \end{pmatrix}. \end{equation}
Proof. The statement can be fully demonstrated by symbolic computations in MoebInv
. Here we will not use the file init_cycle.py
and will redefine many objects from it. First, we need to introduce two generic metrics: one is for the point space and another is for the cycle space.
from cycle import *
sign = realsymbol('si', r'\sigma') # symbol to encode point space geometry
sign1=realsymbol("bs", r"\sigma_1") # symbol to encode cycle space geometry
mu=idx(symbol("mu"),1) # index for a cliffor unit
nu=idx(symbol("nu"),1) # index for a cliffor unit
e=clifford_unit(mu,diag_matrix([sign])) # clifford unit for the point space
es=clifford_unit(nu,diag_matrix([sign1])) # clifford unit for the cycle space
Now we define a generic cycle C
by arbitrary coefficients $(k,l,n,m)$.
k = realsymbol("k") # Define a real variable k
l = realsymbol("l") # Define a real variable l
n = realsymbol("n") # Define a real variable n
m = realsymbol("m") # Define a real variable m
C = cycle2D(k, [l, n], m, e) # Define the cycle
Then, for a given point $(u,v)$ we build a cycle passing it. This is done by subject_to()
menthod:
u = realsymbol('u') # the first coordinate of a point
v = realsymbol('v') # the second coordinate of the point
P = matrix([[u, v]]) # a point on the plane
C2=C.subject_to(C.passing(P))
Latex(f'Cycle C2=${C2}$ passes point $P={P}$: {bool(C2.passing(P))}')
Now we define an element of $SL_2(\mathbb{R})$ and construct the conjugation of the cycle C2
by similarity in the matrix $\begin{pmatrix}a&b\\c&d\end{pmatrix}$.
a = realsymbol('a')
b = realsymbol('b')
c = realsymbol('c')
d = realsymbol('d')
s = realsymbol('s')
C3=C2.sl2_similarity(a, b, c, d, es, matrix([[1,0],[0,s]]), True, matrix([[1,0],[0,1/s]]))
Latex(f'The transformed cycle: C3=${C3}$')
This explicit form of the cycle may be not particularly enlightening. But we are moving on and define the Mobius map of the point $P$:
P1=clifford_moebius_map(sl2_clifford(a,b,c,d,e),P,e)
Latex(f'${P1}$')
The two last outputs are cumbersome, fortunately computer can make the final check for us. We only need to suggest that the $SL_2(\mathbb{R})$ substitution $a=(1+bc)/d$ shall be used for simplification. Also we assume that $s^2=1$.
'Conjugated cycle C3 passes the Moebius image P1 of P: %s' % \
C3.val(P1).subs({a : (1+b*c)/d, pow(s,2) : 1}).normal().is_zero()
This finishes the proof by a direct calculation. $\Box$
This notebook is a part of the MoebInv notebooks project [2] .
References¶
Vladimir V. Kisil. Geometry of Möbius Transformations: Elliptic, Parabolic and Hyperbolic Actions of $SL_2(\mathbb{R})$. Imperial College Press, London, 2012. Includes a live DVD.
Vladimir V. Kisil, MoebInv notebooks, 2019.