The analytic function theory is the most powerful tool in the operator theory. Here we briefly recall few facts of complex analysis used in this course. Use any decent textbook on complex variables for a concise exposition. The only difference with our version that we consider function f(z) of a complex variable z taking value in an arbitrary normed space V over the field ℂ. By the direct inspection we could check that all standard proofs of the listed results work as well in this more general case.
f′(z0)= |
|
| . (108) |
f(z)= |
| ck zk, for some ck∈ V. (109) |
r′= |
| ⎪⎪ ⎪⎪ | cn | ⎪⎪ ⎪⎪ | 1/n and |
| = |
| ⎪⎪ ⎪⎪ | cn | ⎪⎪ ⎪⎪ | 1/n. (110) |
Bollobas99abook author=Bollobás, Béla, title=Linear analysis. An introductory course, edition=Second, publisher=Cambridge University Press, address=Cambridge, date=1999, ISBN=0-521-65577-3, note=MR # 2000g:46001, review=MR # 2000g:46001,
Howe80aarticle author=Howe, Roger, title=On the role of the Heisenberg group in harmonic analysis, date=1980, ISSN=0002-9904, journal=Bull. Amer. Math. Soc. (N.S.), volume=3, number=2, pages=821843, review=MR # 81h:22010,
KirGvi82book author=Kirillov, Alexander A., author=Gvishiani, Alexei D., title=Theorems and problems in functional analysis, series=Problem Books in Mathematics, publisher=Springer-Verlag, address=New York, date=1982,
Kisil98aarticle author=Kisil, Vladimir V., title=Wavelets in Banach spaces, date=1999, ISSN=0167-8019, journal=Acta Appl. Math., volume=59, number=1, pages=79109, note=arXiv:math/9807141, On-line, review=MR # MR1740458 (2001c:43013),
Kisil02cincollection author=Kisil, Vladimir V., title=Meeting Descartes and Klein somewhere in a noncommutative space, date=2002, booktitle=Highlights of mathematical physics (London, 2000), editor=Fokas, A., editor=Halliwell, J., editor=Kibble, T., editor=Zegarlinski, B., publisher=Amer. Math. Soc., address=Providence, RI, pages=165189, note=arXiv:math-ph/0112059, review=MR # MR2001578 (2005b:43015),
Kisil12darticle author=Kisil, Vladimir V., title=The real and complex techniques in harmonic analysis from the point of view of covariant transform, date=2014, journal=Eurasian Math. J., volume=5, pages=95121, note=arXiv:1209.5072. On-line,
KolmogorovFomin-measurebook author=Kolmogorov, A. N., author=Fomin, S. V., title=Measure, Lebesgue integrals, and Hilbert space, series=Translated by Natascha Artin Brunswick and Alan Jeffrey, publisher=Academic Press, address=New York, date=1961, review=MR # 0118797 (22 #9566b),
KolmogorovFominbook author=Kolmogorov, A. N., author=Fomīn, S. V., title=Introductory real analysis, publisher=Dover Publications Inc., address=New York, date=1975, note=Translated from the second Russian edition and edited by Richard A. Silverman, Corrected reprinting, review=MR # 0377445 (51 #13617),
Kreyszigbook author=Kreyszig, Erwin, title=Introductory functional analysis with applications, publisher=John Wiley & Sons Inc., address=New York, date=1989, ISBN=0-471-50459-9, note=MR # 90m:46003, review=MR # 90m:46003,
Polya57book author=Polya, Georg, title=How to solve it, publisher=Doubleday Anchor Books, address=New York, date=1957, note=https://archive.org/details/howtosolveitnewa00pl,
Polya62book author=Polya, Georg, title=Mathematical discovery, publisher=John Wiley & Sons, Inc., address=New York, date=1962, note=https://archive.org/details/GeorgePolyaMathematicalDiscovery,
SimonReed80book author=Reed, Michael, author=Simon, Barry, title=Functional analysis, edition=Second, series=Methods of Modern Mathematical Physics, publisher=Academic Press, address=Orlando, date=1980, volume=1,
Rudin87abook author=Rudin, Walter, title=Real and complex analysis, edition=Third, publisher=McGraw-Hill Book Co., address=New York, date=1987, ISBN=0-07-054234-1, note=MR # 88k:00002, review=MR # 88k:00002,
Young88abook author=Young, Nicholas, title=An introduction to Hilbert space, publisher=Cambridge University Press, address=Cambridge, date=1988, ISBN=0-521-33071-8; 0-521-33717-8, note=MR # 90e:46001, review=MR # 90e:46001,
site search by freefind | advanced |