
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.References
- [1]
-
Nicholas Young.
An Introduction to Hilbert Space.
Cambridge University Press, Cambridge, 1988.
MR # 90e:46001.
- [2]
-
Walter Rudin.
Real and Complex Analysis.
McGraw-Hill Book Co., New York, third edition, 1987.
MR # 88k:00002.
- [3]
-
Béla Bollobás.
Linear analysis. An introductory course.
Cambridge University Press, Cambridge, second edition, 1999.
MR # 2000g:46001.
- [4]
-
Erwin Kreyszig.
Introductory functional analysis with applications.
John Wiley & Sons Inc., New York, 1989.
MR # 90m:46003.
- [5]
-
Alexander A. Kirillov and Alexei D. Gvishiani.
Theorems and Problems in Functional Analysis.
Problem Books in Mathematics. Springer-Verlag, New York,
1982.
- [6]
-
Michael Reed and Barry Simon.
Functional Analysis, volume 1 of Methods of Modern
Mathematical Physics.
Academic Press, Orlando, second edition, 1980.
- [7]
-
Vladimir V. Kisil.
Wavelets in Banach spaces.
Acta Appl. Math., 59(1):79–109, 1999.
arXiv:math/9807141,
On-line.
- [8]
-
Vladimir V. Kisil.
Meeting Descartes and Klein somewhere in a noncommutative space.
In A. Fokas, J. Halliwell, T. Kibble, and B. Zegarlinski, editors,
Highlights of mathematical physics (London, 2000), pages 165–189.
Amer. Math. Soc., Providence, RI, 2002.
arXiv:math-ph/0112059.
- [9]
-
Vladimir V. Kisil.
The real and complex techniques in harmonic analysis from the point
of view of covariant transform.
Eurasian Math. J., 5:95–121, 2014.
arXiv:1209.5072.
On-line.
- [10]
-
A. N. Kolmogorov and S. V. Fomīn.
Introductory real analysis.
Dover Publications Inc., New York, 1975.
Translated from the second Russian edition and edited by Richard A.
Silverman, Corrected reprinting.
- [11]
-
A. N. Kolmogorov and S. V. Fomin.
Measure, Lebesgue integrals, and Hilbert space.
Translated by Natascha Artin Brunswick and Alan Jeffrey. Academic
Press, New York, 1961.
- [12]
-
Roger Howe.
On the role of the Heisenberg group in harmonic analysis.
Bull. Amer. Math. Soc. (N.S.), 3(2):821–843, 1980.
- [13]
-
Georg Polya.
How To Solve It.
Doubleday Anchor Books, New York, 1957.
https://archive.org/details/howtosolveitnewa00pl.
- [14]
-
Georg Polya.
Mathematical Discovery.
John Wiley & Sons, Inc., New York, 1962.
https://archive.org/details/GeorgePolyaMathematicalDiscovery.
Last modified: February 16, 2025.