Previous Up Next
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

References

[1]
Nicholas Young. An Introduction to Hilbert Space. Cambridge University Press, Cambridge, 1988. MR # 90e:46001.
[2]
Walter Rudin. Real and Complex Analysis. McGraw-Hill Book Co., New York, third edition, 1987. MR # 88k:00002.
[3]
Béla Bollobás. Linear analysis. An introductory course. Cambridge University Press, Cambridge, second edition, 1999. MR # 2000g:46001.
[4]
Erwin Kreyszig. Introductory functional analysis with applications. John Wiley & Sons Inc., New York, 1989. MR # 90m:46003.
[5]
Alexander A. Kirillov and Alexei D. Gvishiani. Theorems and Problems in Functional Analysis. Problem Books in Mathematics. Springer-Verlag, New York, 1982.
[6]
Michael Reed and Barry Simon. Functional Analysis, volume 1 of Methods of Modern Mathematical Physics. Academic Press, Orlando, second edition, 1980.
[7]
Vladimir V. Kisil. Wavelets in Banach spaces. Acta Appl. Math., 59(1):79–109, 1999. arXiv:math/9807141, On-line.
[8]
Vladimir V. Kisil. Meeting Descartes and Klein somewhere in a noncommutative space. In A. Fokas, J. Halliwell, T. Kibble, and B. Zegarlinski, editors, Highlights of mathematical physics (London, 2000), pages 165–189. Amer. Math. Soc., Providence, RI, 2002. arXiv:math-ph/0112059.
[9]
Vladimir V. Kisil. The real and complex techniques in harmonic analysis from the point of view of covariant transform. Eurasian Math. J., 5:95–121, 2014. arXiv:1209.5072. On-line.
[10]
A. N. Kolmogorov and S. V. Fomīn. Introductory real analysis. Dover Publications Inc., New York, 1975. Translated from the second Russian edition and edited by Richard A. Silverman, Corrected reprinting.
[11]
A. N. Kolmogorov and S. V. Fomin. Measure, Lebesgue integrals, and Hilbert space. Translated by Natascha Artin Brunswick and Alan Jeffrey. Academic Press, New York, 1961.
[12]
Roger Howe. On the role of the Heisenberg group in harmonic analysis. Bull. Amer. Math. Soc. (N.S.), 3(2):821–843, 1980.
[13]
Georg Polya. How To Solve It. Doubleday Anchor Books, New York, 1957. https://archive.org/details/howtosolveitnewa00pl.
[14]
Georg Polya. Mathematical Discovery. John Wiley & Sons, Inc., New York, 1962. https://archive.org/details/GeorgePolyaMathematicalDiscovery.

site search by freefind advanced

Last modified: February 16, 2025.
Previous Up Next