Previous Up
Creative Commons License
This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

Index

  • ↑—monotonically converges from below, 14.2
  • є/3 argument, 8.1
  • B(X), 6.3
  • B(X,Y), 6.3
  • CP[−π,π], 5.1
  • c0, 11.1
  • F(X,Y), 8.1
  • H2, A.4
  • K(X,Y), 8.1
  • L1, 13.2
  • L2[a,b], 2.3
  • L, 13.2
  • L, 12.2
  • L(X), 6.3
  • L(X,Y), 6.3
  • Lp, 14.1
  • l2, 2.2, 11.1
  • l, 11.1
  • lp, 11.1
  • S, Schwartz space, 15.4
  • S(X), 13.2
  • IX, 6.1
  • kerT, 6.1
  • 1X (the identity map on X), 16.2.3
  • supp, 14.4
  • ||·||1 norm, 1.1.1, 1.1.1, 2.1
  • ||·||2 norm, 1.1.1, 1.1.1, 2.1
  • ||·|| norm, 1.1.1, 1.1.1, 2.1
  • ⊥, 3.1
  • σ-additivity, see countable additivity
  • σ-algebra, 12.1
  • σ-finite
  • σ-ring, 12.1
  • ⊔, 12.1
  • d1 metric, 1.1.1, 1.1.1, 1.1.1
  • d2 metric, 1.1.1, 1.1.1
  • d metric, 1.1.1, 1.1.1
  • S(k), 15.1
  • Z, 6.1
  • CLin(A), 2.4
  • l1n, 2.1
  • l2n, 2.1
  • ln, 2.1
  • Cb(X), 2.1
  • l(X), 2.1
  • Lin(A), 2.4
  • “zigzag” function, 16.3.1
  • a.e., see almost everywhere
  • absolute continuity, 13.3
  • absolutely continuous charge, 13.5
  • abstract completion of metric space, 1.2.1
  • accumulation point, 1.2.2
  • additivity, 12.1
  • adjoint operator, 6.4
  • adjoints, C.2
  • algebra
  • almost everywhere, 12.2
  • alternative
    • Fredholm, 10
  • analysis, 2.3
  • analytic function, D.1
  • approximation, 3.2
    • by polynomials, 5.4
    • identity, of the, 5.2, 15.4
    • Weierstrass, of, 5.4
  • argument
  • average
  • axiom of choice, 11.4
  • Baire’s categories, 16.3.1
  • Baire’s category theorem, 16.3.1
  • Banach Fixed point theorem, 16.2.1
  • Banach space, 2.1, 11.1, C.1
  • Banach–Steinhaus Uniform Boundedness theorem, 16.3.2
  • Bessel’s inequality, 3.2, C.1
  • Borel σ-algebra, 14.3
  • Borel set, 14.3
  • ball
  • basis, C.2
    • orthonormal, 3.3
  • best approximation, C.1
  • bilateral right shift, A.4
  • bounded
  • bounded linear functional, 4.1
  • bounded linear operator, 6.1
  • Cantor
  • Cantor function, 2.3
  • Carathéodory
    • measurable set, 12.2
  • Cauchy integral formula, 5.3
  • Cauchy sequence, 1.2.1, 2.1
  • Cauchy–Schwarz inequality, 1.1.1, C.1
  • Cauchy–Schwarz–Bunyakovskii inequality, 2.2
  • Cayley transform, 7.3
  • Cayley transform, C.2
  • Cesàro sum, 5.1
  • Chebyshev
  • Chebyshev polynomials, 3.4
  • Closed Graph theorem, 16.3.4
  • calculus
    • functional, 7
  • category
  • category theory, 2
  • character, 15.2
  • charge, 12.3
  • charges
  • closable
  • closed
  • closed linear span, 2.4
  • closure, 1.1.2
  • coefficient
  • coefficients
  • coherent states, 5.3
  • compact, 1.2.2
  • compact operator, 8.1, C.2
    • singular value decomposition, 9.2
  • compact set, 8.1
  • complement
    • orthogonal, 3.5
  • complete
  • complete metric space, 2.1
  • complete o.n.s., C.1
  • complete orthonormal sequence, 3.3
  • complete space, 1.2.1
  • condition
  • conditions
    • integrability, ??
  • continuity
  • continuous
  • continuous on average, 14.2
  • contraction, 16.2.1
  • convergence
    • almost everywhere, 13.1
    • in measure, 13.1
    • monotone
      • theorem B. Levi, on, 13.3
    • uniform, 13.1
  • convergent
  • convex, 3.1
  • convex set, 2.1, 16.2.1
  • convolution, 15.1
  • convolution operator, 15.1
  • coordinates, 2
  • corollary about orthoprojection, 6.2
  • cosine
    • Fourier coefficients, 0.1.2
  • countable
  • countably
    • countable sub-additivity, 12.2
  • countably additive
  • cover
  • Dirichlet kernel, 16.3.2
  • decreasing
  • dense
  • derivative, D.1
  • diagonal argument, 8.1
  • diagonal operator, 6.5
  • diffeomorphism, 16.2.3
  • differentiable function, D.1
  • differential equation
    • separation of variables, 0.2.1
  • discrete
  • disjoint
  • disjunctive measures, 12.3
  • distance, see metric, 2, 2.1
  • distance function, 2.1
  • domain
  • dual group, 15.2
  • dual space, 4.1
  • dual spaces, C.2
  • duality
    • Pontryagin’s, 15.2

  • Egorov’s theorem, 13.1
  • eigenspace, 9.1
  • eigenvalue of operator, 7.1
  • eigenvalues, C.2
  • eigenvector, 7.1
  • equation
    • Fredholm, 10
      • first kind, 10
      • second kind, 10, 10
    • heat, 5.4
    • Volterra, 10
  • equivalent
  • equivalent charges, 13.5
  • essentially bounded function, 13.2
  • examples of Banach spaces, C.1
  • examples of Hilbert spaces, C.1
  • Fatou’s lemma, 13.3
  • Fejér
  • Fejér kernel, 5.2, C.1
  • Fejér sum, 5.1
  • Fejér’s theorem, C.1
  • Fourier
  • Fourier transform
  • Fourier analysis, 0.3
  • Fourier coefficient, 3.3
  • Fourier coefficients, 0.1.2
  • Fourier series, 0.1.2, C.1
  • Fourier, Joseph, 0.3
  • Fredholm equation, 10
    • first kind, 10
  • Fredholm alternative, 10, C.2
  • Fredholm equation
    • second kind, 10
  • Fredholm equation of the second kind, 10
  • Fubini theorem, 13.4
  • finite
  • finite rank operator, 8.1, C.2
  • first category, 16.3.1
  • first resolvent identity, 7.1
  • fixed point, 16.2.1
  • formula
    • integral
    • Parseval’s, of, 5.3
  • frame of references, 2
  • function
  • functional, see linear functional
  • functional calculus, 7
  • functions of operators, 7
  • fundamental domain, 0.1.1
  • Gaussian, 15.4, 15.5
  • Gram–Schmidt orthogonalisation, 3.4
  • Gram–Schmidt orthonormalization process, C.1
  • general compact operators, C.2
  • generating function, 15.3
  • graph
  • group
  • group representations, 5.3
  • Hölder’s Inequality, 11.1
  • Haar measure, 15.1
  • Hahn decomposition of a charge, 12.3
  • Hahn-Banach theorem, 11.4
  • Hardy space, A.4
  • Heine–Borel theorem, 8.1
  • Heine–Borel theorem, 1.2.2
  • Hermitian operator, 6.5
  • Hermitian operator, C.2
  • Hilbert space, 2.2
  • Hilbert space, C.1
  • Hilbert–Schmidt operator, 8.2
  • Hilbert–Schmidt norm, 8.2, A.6
  • Hilbert–Schmidt operators, C.2
  • Hilbert–Schmidt theory, C.2
  • heat equation, 5.4
  • holomorphic function, D.1
  • Inverse, C.2
  • Inverse Function theorem, 16.2.3
  • identity
  • identity operator, 6.1
  • implicit function theorem, 16.2.3
  • incomplete spaces, C.1
  • indicator function, 13.2
  • inequality
    • Bessel’s, 3.2
    • Cauchy–Schwarz, 1.1.1
    • Cauchy–Schwarz–Bunyakovskii, of, 2.2
    • Chebyshev, 13.3
    • Hölder’s, 11.1
    • Minkowski’s , 11.1
    • triangle, of, 2.1, 2.1
  • inner product, 1.1.1, 2.2
  • inner product space, 2.2
    • complete, see Hilbert space
  • inner-product space, C.1
  • integrability conditions, ??
  • integrable
    • function, 13.2
    • seesummable function, 13.2
  • integral
  • integral formula
  • integral equations, C.2
  • integral operator, 8.2, 10
    • with separable kernel, 10
  • interior, 1.1.2
  • invariant measure, 15.1
  • inventor’s paradox, 16.1
  • inverse operator, 6.3
  • inverse Fourier transform, 15.5
  • inverse image, 1.1.3
  • invertible operator, 6.3
  • isometric
  • isometric metric space, 1.1.1
  • isometry, 1.1.1, 6.5, 11.2
  • isomorphic
    • isometrically, 11.2
  • isomorphic spaces, 11.2
  • isomorphism, 11.2, A.5
  • Jacobian, 16.2.1
  • kernel, 10
  • kernel of convolution, 15.1
  • kernel of integral operator, 8.2
  • kernel of linear functional, 4.1
  • kernel of linear operator, 6.1
  • Laguerre polynomials, 3.4
  • Lebesgue
    • integral, 13.2
    • measure
    • set
    • theorem, 12.2
    • theorem on dominated convergence, 13.3
  • Lebesgue integration, 2.3
  • Lebesgue measure, 12.4
  • Legendre polynomials, 3.4
  • Levi’s theorem on monotone convergence, 13.3
  • Lipschitz condition, 16.2.2
  • ladder
    • Cantor, see Cantor function
  • leading particular case, 16.1, 16.2.3
  • left inverse, 6.3
  • left shift operator, 6.3
  • lemma
    • about inner product limit, 2.4
    • Fatou’s, 13.3
    • Riesz–Fréchet, 4.2
    • Urysohn’s , 14.3
    • Zorn, 11.4
  • length of a vector, 2
  • limit
  • linear
  • linear functional
  • linear operator
    • image, of, 6.1
  • linear space, 2
  • linear functional, 4.1, C.2
  • linear operator, C.2
    • norm, of, 6.1
    • kernel, of, 6.1
  • linear span, 2.4
  • local-Ck- diffeomorphism, 16.2.3
  • locally compact topology, 15.1
  • locally convex topological vector space, 16.4
  • locally invertible function, 16.2.3
  • Minkowski’s inequality, 11.1
  • map
  • mathematical way of thinking, 3
  • mathematical way of thinking, 2
  • mean value theorem, 16.2.1
  • measurable
  • measure, 12.1
  • metric, 1.1.1, 2.1, 11.1
  • metric space, 2
  • metric space, 1.1.1
  • monotonicity
    • outer measure, 12.2
  • monotonicity of integral, 13.2
  • multiplication operator, 6.1
  • Neumann series, 7.1, 10, C.2
  • nearest point theorem, 3.1
  • neighbourhood, 1.1.2
  • nilpotent, A.5
  • norm, 1.1.1, 2.1, 11.1, C.1
  • norm of linear operator, 6.1
  • normal operator, 6.5, C.2
  • normed space, 2.1
  • normed space, 1.1.1
    • complete, see Banach space
  • nowhere dense set, 16.3.1
  • open
  • open mapping theorem, 16.3.3
  • operator, 11.2
  • operators
    • compact
      • normal
        • spectral theorem, 9.2
    • normal
      • compact
        • spectral theorem, 9.2
  • orthogonal
    • complement, 3.5
    • projection, 6.2
  • orthogonal complement, 3.5
  • orthogonal polynomials, 3.4
  • orthogonal projection, 6.2
  • orthogonal complements, C.1
  • orthogonal sequence, 3.1, C.1
  • orthogonal system, 3.1
  • orthogonalisation
    • Gram–Schmidt, of, 3.4
  • orthogonality, 2.2, 3, C.1
  • orthonormal basis, 3.3
  • orthonormal basis
  • orthonormal basis (o.n.b.), C.1
  • orthonormal sequence, 3.1
    • complete , 3.3
  • orthonormal sequence (o.n.s.), C.1
  • orthonormal system, 3.1
  • orthoprojection, 6.2
    • corollary, about, 6.2
  • outer measure, 12.2
  • Parseval’s
  • Parseval’s formula, C.1
  • Picard iteration, 16.2.2
  • Picard–Lindelöf theorem, 16.2.2
  • Plancherel
  • Pontryagin’s duality, 15.2
  • Pythagoras’ school, 5.4
  • Pythagoras’ theorem, 3.1
  • Pythagoras’s theorem, C.1
  • pairwise
  • parallelogram identity, 2.2, C.1
  • partial sum of the Fourier series, 5.1
  • period, 0.1.1
  • periodic, 0.1.1
  • perpendicular
    • theorem on, 3.2
  • point
  • polynomial
  • polynomial approximation, 5.4
  • polynomials
  • positive
  • pre-image, 1.1.3
  • product
  • product measure, 12.4, 13.4
  • projection
    • orthogonal, 6.2

  • quantum mechanics, 2, 2.3
  • Radon–Nikodym theorem, 13.5
  • Riesz representation, 14.4
  • Riesz–Fischer theorem, C.1
  • Riesz–Fisher theorem, 3.3
  • Riesz–Fréchet lemma, 4.2
  • Riesz–Fréchet theorem, C.2
  • radius
  • regular charge, 14.3
  • regular measure, 14.3
  • representation
  • resolvent, 7, 7.1
    • identity, first, 7.1
    • set, 7.1
  • resolvent set, 7.1
  • right shift operator, 6.1
  • right inverse, 6.3
  • Schwartz space, 15.4
  • Segal–Bargmann space, 2.3
  • Stone’s theorem, 16.1
  • Stone–Weierstrass theorem, 16.1
    • complex version, 16.1
  • scalar product, 2.2
  • school
    • Pythagoras’, 5.4
  • second category, 16.3.1
  • self-adjoint operator, see Hermitian operator, C.2
  • semi-norm, 16.4
  • semiring, 12.1
  • separable Hilbert space, 3.4
  • separable kernel, 10, C.2
  • separable metric space, 16.1
  • separation of variables, 0.2.1
  • sequence
  • sequential continuity, 1.1.3
  • sequentially compact, 1.2.2
  • series
  • set
  • shift
    • bilaterial right, A.4
  • shift operator, 15.1
  • signed measure, see charge
  • simple function, 13.2
  • sine
    • Fourier coefficients, 0.1.2
  • singular value decomposition of compact operator, 9.2
  • space
    • Banach, 2.1, 11.1
    • complete, 1.2.1
    • dual, 4.1
    • Hardy, A.4
    • Hilbert, 2.2
      • separable, 3.4
    • inner product, 1.1.1, 2.2
      • complete, see Hilbert space
    • linear, 2
    • locally convex, 16.4
    • metric, 1.1.1, 2
    • normed, 1.1.1, 2.1
      • complete, see Banach space
    • of bounded linear operators, 6.3
    • Schwartz, 15.4
    • Segal–Bargmann, 2.3
    • separable metric, 16.1
    • vector, see linear space
  • space of finite sequences, 2.3
  • span
  • spectral radius:, C.2
  • spectral properties of normal operators, C.2
  • spectral radius, 7.2
  • spectral radius formula, C.2
  • spectral theorem for compact normal operators, 9.2, C.2
  • spectrum, 7.1, C.2
  • statement
    • Fejér, see theorem
    • Gram–Schmidt, see theorem
    • Riesz–Fisher, see theorem
    • Riesz–Fréchet, see lemma
  • step
  • sub-additive
    • countable sub-additivity, 12.2
  • subcover, 1.2.2
  • subsequence
  • subspace, 2.3
  • subspaces, C.1
  • sum
    • Cesàro, of, 5.1
    • Fejér, of, 5.1
  • summable
  • sup-norm, 11.1
  • support of function, 14.4
  • symmetric difference of sets, 12.2
  • synthesis, 2.3
  • system
    • orthogonal, 3.1
    • orthonormal, 3.1

  • theorem
    • Baire’s category, 16.3.1
    • Banach fixed point, 16.2.1
    • Banach–Steinhaus Uniform Boundedness, 16.3.2
    • closed graph, 16.3.4
    • Egorov, 13.1
    • Fejér, of, 5.2
    • Fubini, 13.4
    • Gram–Schmidt, of, 3.4
    • Hahn-Banach, 11.4
    • Heine–Borel, 1.2.2, 8.1
    • implicit function, 16.2.3
    • inverse function, 16.2.3
    • Lebesgue, 12.2
    • Lebesgue on dominated convergence, 13.3
    • mean value, 16.2.1
    • monotone convergence, B. Levi, 13.3
    • on nearest point , 3.1
    • on orthonormal basis, 3.3
    • on perpendicular, 3.2
    • open mapping, 16.3.3
    • Picard–Lindelöf , 16.2.2
    • Pythagoras’, 3.1
    • Radon–Nikodym, 13.5
    • Riesz–Fisher, of, 3.3
    • Stone’s, 16.1
    • Stone–Weierstrass, 16.1
      • complex version, 16.1
    • spectral for compact normal operators, 9.2
    • Weierstrass approximation, 5.4, 16.1
    • Zermelo, 11.4
  • thinking
    • mathematical, 2, 3
  • topology
    • locally compact, 15.1
  • transform
  • triangle inequality, 2.1
  • triangle inequality, 2.1, C.1
  • trigonometric
  • two monotonic limits, 13.1, 13.3, 13.4
  • Urysohn’s lemma, 14.3
  • uniform convergence, 13.1
  • uniformly
  • unit ball, 2.1
  • unitary operator, 6.5
  • unitary operator, C.2
  • Volterra equation, 10
  • Volterra operator, A.4
  • variation of a charge, 12.3, 14.3
  • vector
    • length of, 2
  • vector space, 2
  • vectors
    • orthogonal, 3.1

  • Weierstrass approximation theorem, 5.4, 16.1, C.1
  • wavelet transform, 5.3
  • wavelets, 5.3, 5.4
  • windowed Fourier transform, 5.4
  • Zermelo’s theorem, 11.4
  • Zorn’s Lemma, 11.4
  • zero operator, 6.1
site search by freefind advanced

Last modified: February 16, 2025.
Previous Up